499 Modal and Temporal Logic

Deducibility, Consistency, Maxi-consistent sets

Marek Sergot
Department of Computing
Imperial College, London

Autumn 2008

Further reading:

B.F. Chellas, Modal logic: an introduction, Cambridge University Press, 1980.

P. Blackburn, M. de Rijke, Y. Venema, Chapter 4, *Modal Logic*. Cambridge University Press, 2002.

Reminder

- The set of formulas Σ is a *system of modal logic* iff it contains all propositional tautologies (PL) and is closed under modus ponens (MP) and uniform substitution (US).
- $-\vdash_{\Sigma} A$ means that A is a theorem of Σ . $\vdash_{\Sigma} A$ iff $A \in \Sigma$.

(The following is applicable to all systems of modal logic, not just normal systems.)

Deducibility and consistency

A formula A is deducible from a set of formulas Γ in a logic Σ — written $\Gamma \vdash_{\Sigma} A$ — iff Σ contains a theorem of the form

$$(A_1 \wedge \cdots \wedge A_n) \to A$$

where the conjuncts A_1, \ldots, A_n are formulas in Γ . It is convenient to extend the notation: for Γ' a set of formulas, $\Gamma \vdash_{\Sigma} \Gamma'$ means that $\Gamma \vdash_{\Sigma} A$ for every A in Γ' .

A set of formulas Γ is inconsistent in Σ (Σ -inconsistent) just in case \bot is Σ -deducible from Γ . A set of formulas Σ -consistent when it is not Σ -inconsistent.

Definition 1 (Deducibility) $\Gamma \vdash_{\Sigma} A$ iff there are formulas $A_1, \ldots, A_n \in \Gamma$ $(n \ge 0)$ such that $\vdash_{\Sigma} (A_1 \land \cdots \land A_n) \to A$.

For Γ' a set of formulas, $\Gamma \vdash_{\Sigma} \Gamma'$ means that $\Gamma \vdash_{\Sigma} A$ for every A in Γ' .

Definition 2 (Consistency) Γ *is* Σ -consistent iff not $\Gamma \vdash_{\Sigma} \bot$. Γ *is* Σ -inconsistent iff $\Gamma \vdash_{\Sigma} \bot$.

Some properties (there is no need to memorize these theorems!):

Theorem 3 [Chellas Thm 2.16, p47]

- (1) $\vdash_{\Sigma} A \text{ iff } \emptyset \vdash_{\Sigma} A.$
- (2) $\vdash_{\Sigma} A$ iff for every Γ , $\Gamma \vdash_{\Sigma} A$.
- (3) If $\Gamma \vdash_{PL} A$, then $\Gamma \vdash_{\Sigma} A$.
- (4) If $A \in \Gamma$ then $\Gamma \vdash_{\Sigma} A$. (Or using the \vdash_{Σ} notation for sets of formulas, $\Gamma \vdash_{\Sigma} \Gamma$.)
- (5) If $\Gamma \vdash_{\Sigma} B$ and $\{B\} \vdash_{\Sigma} A$, then $\Gamma \vdash_{\Sigma} A$.

 More generally, for Γ' any set of formulas: if $\Gamma \vdash_{\Sigma} \Gamma'$ and $\Gamma' \vdash_{\Sigma} A$, then $\Gamma \vdash_{\Sigma} A$.
- (6) If $\Gamma \vdash_{\Sigma} A$ and $\Gamma \subseteq \Gamma'$, then $\Gamma' \vdash_{\Sigma} A$.
- (7) $\Gamma \vdash_{\Sigma} A$ iff there is a finite subset Γ_x of Γ such that $\Gamma_x \vdash_{\Sigma} A$.
- (8) $\Gamma \vdash_{\Sigma} A \to B \text{ iff } \Gamma \cup \{A\} \vdash_{\Sigma} B.$

Comments on Theorem 3

Properties (1)—(3) should be clear enough.

Property (4) is reflexivity of the deducibility relation \vdash_{Σ} . It's sometimes called 'inclusion'.

Property (5) is transitivity of the deducibility relation \vdash_{Σ} .

Property (6) means that the deducibility relation \vdash_{Σ} is *monotonic*. It can be expressed as $\Gamma \vdash_{\Sigma} A \Rightarrow \Gamma \cup \Gamma' \vdash_{\Sigma} A$, for any set of formulas Γ' .

Property (7) is 'compactness' of the deducibility relation \vdash_{Σ} .

Property (8) is the so-called deduction theorem for \vdash_{Σ} .

Proofs:

 $(1) \vdash_{\Sigma} A \text{ iff } \emptyset \vdash_{\Sigma} A.$

Trivially: if $\vdash_{\Sigma} A$ then there is a Σ -theorem of the form $(A_1 \land \cdots \land A_n) \to A$ where n=0 and the conditional is just A. Since the (non-existent) A_i in the antecedent are all in \emptyset , $\emptyset \vdash_{\Sigma} A$. Conversely, if $\emptyset \vdash_{\Sigma} A$ then it must be that $\vdash_{\Sigma} (A_1 \land \cdots \land A_n) \to A$ for n=0. That is, $\vdash_{\Sigma} A$.

(2) $\vdash_{\Sigma} A$ iff for every Γ , $\Gamma \vdash_{\Sigma} A$.

Left-to-right: as for part (1), if $\vdash_{\Sigma} A$ then there is a Σ -theorem of the form $(A_1 \land \cdots \land A_n) \to A$ where n = 0. Since the (non-existent) A_i in the antecedent are trivially all in Γ , for any set of formulas Γ , $\Gamma \vdash_{\Sigma} A$. For the converse, if $\Gamma \vdash_{\Sigma} A$ for any set of formulas Γ , then in particular $\emptyset \vdash_{\Sigma} A$, which by part (1) means $\vdash_{\Sigma} A$.

(3) If $\Gamma \vdash_{PL} A$, then $\Gamma \vdash_{\Sigma} A$.

If $\Gamma \vdash_{PL} A$ then there is a theorem $(A_1 \land \cdots \land A_n) \to A$ in PL where $\{A_1, \ldots, A_n\} \subseteq \Gamma$. But $PL \subseteq \Sigma$ for any system Σ , so also $\Gamma \vdash_{\Sigma} A$.

(4) If $A \in \Gamma$ then $\Gamma \vdash_{\Sigma} A$. (Or $\Gamma \vdash_{\Sigma} \Gamma$.)

The formula $A \to A$ is a tautology, hence a PL-theorem, hence a Σ -theorem for any system Σ . So if $A \in \Gamma$ then there is a theorem $A \to A$ in Σ whose antecedent A is in Γ . So $\Gamma \vdash_{\Sigma} A$.

(5) If $\Gamma \vdash_{\Sigma} B$ and $\{B\} \vdash_{\Sigma} A$, then $\Gamma \vdash_{\Sigma} A$.

More generally: if $\Gamma \vdash_{\Sigma} \Gamma'$ and $\Gamma' \vdash_{\Sigma} A$, then $\Gamma \vdash_{\Sigma} A$.

The first part is obviously a special case of the more general statement. So suppose $\Gamma \vdash_\Sigma \Gamma'$ and $\Gamma' \vdash_\Sigma A$. $\Gamma' \vdash_\Sigma A$ means there is a theorem $(A_1 \land \dots \land A_n) \to A$ in Σ such that $\{A_1, \dots, A_n\} \subseteq \Gamma'$. $\Gamma \vdash_\Sigma \Gamma'$ means $\Gamma \vdash_\Sigma B$ for every $B \in \Gamma'$, and so in particular $\Gamma \vdash_\Sigma A_i$ for every A_i $(1 \le i \le n)$. $\Gamma \vdash_\Sigma A_i$ for each such A_i means there is a Σ -theorem $(A_1^i \land \dots \land A_{m_i}^i) \to A_i$ for each A_i such that $\{A_1^i, \dots, A_{m_i}^i\} \subseteq \Gamma$. By RPL, there is therefore a Σ -theorem $(A_1^1 \land \dots \land A_{m_1}^1 \land \dots \land A_{m_1}^1 \land \dots \land A_{m_n}^1 \land \dots \land A_{m_n}^n) \to (A_1 \land \dots \land A_n)$, and hence also a Σ -theorem $(A_1^1 \land \dots \land A_{m_1}^i \land \dots \land A_{m_1}^i \land \dots \land A_{m_n}^i \land \dots \land A_{m_n}^i \land \dots \land A_{m_n}^i) \to A$. Since $\{A_1^1, \dots, A_{m_1}^1, \dots, A_{m_i}^i, \dots, A_{m_i}^i, \dots, A_{m_n}^n\} \subseteq \Gamma$, we have $\Gamma \vdash_\Sigma A$.

- (6) If $\Gamma \vdash_{\Sigma} A$ and $\Gamma \subseteq \Gamma'$, then $\Gamma' \vdash_{\Sigma} A$. Monotonicity. Very easy: if $\Gamma \vdash_{\Sigma} A$ then there is a Σ -theorem of the form $(A_1 \land \cdots \land A_n) \to A$ such that $\{A_1, \ldots, A_n\} \subseteq \Gamma$. But if $\Gamma \subseteq \Gamma'$ then also $\{A_1, \ldots, A_n\} \subseteq \Gamma'$, and $\Gamma' \vdash_{\Sigma} A$ as required.
- (7) Γ⊢_Σ A iff there is a finite subset Γ_x of Γ such that Γ_x ⊢_Σ A.
 Compactness. Left-to-right follows immediately from the fact that by definition the number of conjuncts in the antecedent of the required conditional (A₁ ∧····∧A_n) → A is finite. Right-to-left follows from part (6) (monotonicity).
- $(8) \ \Gamma \vdash_{\Sigma} A \to B \ \text{iff} \ \Gamma \cup \{A\} \vdash_{\Sigma} B.$

Deduction theorem:

```
\begin{array}{lll} \Gamma \vdash_\Sigma A \to B & \Leftrightarrow & \vdash_\Sigma (A_1 \wedge \dots \wedge A_n) \to (A \to B) & \text{for some } \{A_1, \dots, A_n\} \subseteq \Gamma \\ & \Leftrightarrow & \vdash_\Sigma (A_1 \wedge \dots \wedge A_n \wedge A) \to B & \text{for some } \{A_1, \dots, A_n\} \subseteq \Gamma, \text{ by RPL} \\ & \Leftrightarrow & \vdash_\Sigma (A_1 \wedge \dots \wedge A_n \wedge A) \to B & \text{for some } \{A_1, \dots, A_n, A\} \subseteq \Gamma \cup \{A\} \\ & \Leftrightarrow & \Gamma \cup \{A\} \vdash_\Sigma B \end{array}
```

Theorem 4 [Chellas Thm 2.16, p47]

- (1) Γ is Σ -consistent iff there is an A such that not $\Gamma \vdash_{\Sigma} A$.
- (2) Γ is Σ -consistent iff there is no A such that both $\Gamma \vdash_{\Sigma} A$ and $\Gamma \vdash_{\Sigma} \neg A$.
- (3) If Γ is Σ -consistent, then Γ is PL-consistent.
- (4) If Γ is Σ -consistent and $\Gamma' \subseteq \Gamma$, then Γ' is Σ -consistent.
- (5) Γ is Σ -consistent iff every finite subset Γ_r of Γ is Σ -consistent.
- (6) $\Gamma \vdash_{\Sigma} A \text{ iff } \Gamma \cup \{\neg A\} \text{ is } \Sigma\text{-inconsistent.}$
- (7) $\Gamma \cup \{A\}$ is Σ -consistent iff $\Gamma \not\vdash_{\Sigma} \neg A$.

Comments on Theorem 4

Properties (1)–(2) are alternative (equivalent) characterisations of Σ -consistency of a set of formulas Γ .

Properties (3)–(5) should be clear enough given the corresponding properties of \vdash_{Σ} .

Properties (6)–(7) relate Σ -consistency and deducibility \vdash_{Σ} .

Proofs: All of these follow more or less immediately from their counterparts in Theorem 3.

- (1) Γ is Σ-consistent iff there is an A such that not Γ ⊢_Σ A.
 Suppose that Γ is Σ-consistent, i.e. that not Γ ⊢_Σ ⊥. Then clearly there is a formula A such that not Γ ⊢_Σ A. For the reverse, suppose that Γ is Σ-inconsistent, i.e. that Γ ⊢_Σ ⊥. Then by RPL and Theorem 3(3), {⊥} ⊢_Σ A, for every formula A. So Γ ⊢_Σ A for every formula A by Theorem 3(5).
- (2) Γ is Σ -consistent iff there is no A such that both $\Gamma \vdash_{\Sigma} A$ and $\Gamma \vdash_{\Sigma} \neg A$. Prove the contrapositive: that Γ is Σ -inconsistent iff there is a formula A such that $\Gamma \vdash_{\Sigma} A$ and $\Gamma \vdash_{\Sigma} \neg A$. Left-to-right of this follows from part (1). For right-to-left: $\Gamma \vdash_{\Sigma} \{A, \neg A\}$ and $\{A, \neg A\} \vdash_{PL} \bot$ implies $\Gamma \vdash_{\Sigma} \bot$ by Theorem 3 parts (3) and (5).
- (3) If Γ is Σ -consistent, then Γ is PL-consistent. Prove the contrapositive: if Γ is PL-inconsistent then $\Gamma \vdash_{PL} \bot$, which implies by Theorem 3(3) that $\Gamma \vdash_{\Sigma} \bot$, i.e. that Γ is Σ -inconsistent.
- (4) If Γ is Σ -consistent and $\Gamma' \subseteq \Gamma$, then Γ' is Σ -consistent. Again, prove the contrapositive: if $\Gamma \subseteq \Gamma'$ then $\Gamma \vdash_{\Sigma} \bot$ implies $\Gamma' \vdash_{\Sigma} \bot$ by Theorem 3(6) (monotonicity of \vdash_{Σ}).
- (5) Γ is Σ-consistent iff every finite subset Γ_x of Γ is Σ-consistent. Follows straightforwardly from Theorem 3(7).
- (6) $\Gamma \vdash_{\Sigma} A$ iff $\Gamma \cup \{\neg A\}$ is Σ -inconsistent. Left-to-right: suppose $\Gamma \vdash_{\Sigma} A$. By Theorem 3(6) (monotonicity of \vdash_{Σ}), we have $\Gamma \cup \{\neg A\} \vdash_{\Sigma} A$. But by Theorem 3(4) (reflexivity of \vdash_{Σ}), we have $\Gamma \cup \{\neg A\} \vdash_{\Sigma} \neg A$. So by part (1) Γ is Σ -inconsistent.
 - Right-to-left: suppose $\Gamma \cup \{\neg A\}$ is Σ -inconsistent, i.e. that $\Gamma \cup \{\neg A\} \vdash_{\Sigma} \bot$. Then by Theorem 3(8) (deduction theorem for \vdash_{Σ}), $\Gamma \vdash_{\Sigma} \neg A \to \bot$. But $\neg A \to \bot$ is equivalent in PL to A, so by Theorem 3 parts (3) and (5), $\Gamma \vdash_{\Sigma} A$.
- (7) $\Gamma \cup \{A\}$ is Σ -consistent iff $\Gamma \not\vdash_{\Sigma} \neg A$. Follows straightforwardly from part (6).

Maxi-consistent sets

A set of sentences is maximal consistent in a system Σ (Σ -maxi-consistent for short) just in case it is Σ -consistent and has only Σ -inconsistent proper extensions. In other words, a set is Σ -maxi-consistent if it is consistent and contains as many formulas as it can without becoming inconsistent.

Definition 5 (Σ-maxi-consistent set) A set of formulas Γ is Σ-maxi-consistent iff (i) Γ is Σ-consistent, and (ii) for every formula A, if $\Gamma \cup \{A\}$ is Σ-consistent, then $A \in \Gamma$.

Note that clause (ii) says that where Γ is Σ -maxi-consistent, the addition of a formula not already in Γ yields a Σ -inconsistent set of formulas.

Here are some properties of Σ -maxi-consistent sets.

Theorem 6 [Chellas Thm 2.18, p53] Let Γ be a Σ -maxi-consistent set. Then:

- (1) $A \in \Gamma \Leftrightarrow \Gamma \vdash_{\Sigma} A$.
- (2) $\Sigma \subset \Gamma$.
- (3) $\top \in \Gamma$.
- (4) $\perp \notin \Gamma$.
- (5) $\neg A \in \Gamma \Leftrightarrow A \notin \Gamma$.
- (6) $A \wedge B \in \Gamma \Leftrightarrow A \in \Gamma \text{ and } B \in \Gamma$.
- (7) $A \lor B \in \Gamma \Leftrightarrow A \in \Gamma \text{ or } B \in \Gamma$.
- (8) $A \to B \in \Gamma \Leftrightarrow (A \in \Gamma \Rightarrow B \in \Gamma)$.
- (9) $A \leftrightarrow B \in \Gamma \Leftrightarrow (A \in \Gamma \Leftrightarrow B \in \Gamma)$.
- (10) Γ is a Σ -system.

Proof I hesitate to show all the proofs because the details, in particular of (6)–(9) are rather fiddly, and can obscure what is essentially a simple argument. Still ...

- (1) $A \in \Gamma \Leftrightarrow \Gamma \vdash_{\Sigma} A$.
 - Left-to-right is just Theorem 3(4) ('inclusion'/reflexivity). For right-to-left: suppose not, i.e., suppose that $\Gamma \vdash_{\Sigma} A$ but $A \notin \Gamma$. By the maximality of Γ , $\Gamma \cup \{A\}$ is Σ -inconsistent. From this by Theorem 4(6), $\Gamma \vdash_{\Sigma} \neg A$. So Γ is Σ -inconsistent (Theorem 4(2)). But this contradicts Γ is Σ -maxi-consistent.
- (2) Σ ⊆ Γ.
 Suppose that A ∈ Σ, i.e. that ⊢_Σ A. Then by Theorem 3, Γ' ⊢_Σ A for every set of formulas Γ'. In particular, Γ ⊢_Σ A which by part (1) above means A ∈ Γ.
- (3) $\top \in \Gamma$. $\top \in PL$, so $\top \in \Sigma$, so $\top \in \Gamma$ by the previous part (2).
- (4) ⊥ ∉ Γ.
 Suppose ⊥ ∈ Γ. Then Γ ⊢_Σ ⊥, which contradicts Γ is Σ-maxi-consistent.

- (5) $\neg A \in \Gamma \iff A \notin \Gamma$.
 - Suppose not, i.e., suppose that either (i) $A \in \Gamma$ and $\neg A \in \Gamma$ or (ii) $A \notin \Gamma$ and $\neg A \notin \Gamma$. If (i), then by Theorem 4(2), Γ is Σ -inconsistent, which is a contradiction. If (ii), then by part (1), $\Gamma \not\vdash_{\Sigma} A$ and $\Gamma \not\vdash_{\Sigma} \neg A$ which means (by Theorem 4(7)) $\Gamma \cup \{A\}$ is Σ -consistent and $\Gamma \cup \{\neg A\}$ is Σ -consistent. So by maximality of Γ , $A \in \Gamma$ and $\neg A \in \Gamma$. But that again contradicts that Γ is Σ -consistent.
- (6) $A \wedge B \in \Gamma \Leftrightarrow A \in \Gamma \text{ and } B \in \Gamma$.
 - For left-to-right: suppose $A \wedge B \in \Gamma$. Then by part (1) $\Gamma \vdash_{\Sigma} A \wedge B$. Now $\{A \wedge B\} \vdash_{PL} A$ and hence $\{A \wedge B\} \vdash_{\Sigma} A$, so by Theorem 3(5) (transitivity of \vdash_{Σ}) we have $\Gamma \vdash_{\Sigma} A$, from which $A \in \Gamma$ by part (1). The argument for $B \in \Gamma$ is similar. For right-to-left, by a similar argument: $A \in \Gamma$ and $B \in \Gamma$ imply $\Gamma \vdash_{\Sigma} A$ and $\Gamma \vdash_{\Sigma} B$, i.e., $\Gamma \vdash_{\Sigma} \{A, B\} \vdash_{PL} A \wedge B$ and so $\{A, B\} \vdash_{\Sigma} A \wedge B$. By the general form
- (7) $A \lor B \in \Gamma \Leftrightarrow A \in \Gamma \text{ or } B \in \Gamma$.
 - Right-to-left: $A \in \Gamma$ implies $\Gamma \vdash_{\Sigma}$, and $\{A\} \vdash_{PL} A \vee B$. The rest follows as in part (6) above.

of Theorem 3(5) (transitivity of \vdash_{Σ}), $\Gamma \vdash_{\Sigma} A \land B$, from which $A \land B \in \Gamma$ by part (1).

- For left-to-right, we show that $A \vee B \in \Gamma$ and $A \notin \Gamma$ implies $B \in \Gamma$. Since Γ is Σ -maxi-consistent, $A \notin \Gamma$ implies $\neg A \in \Gamma$ by part (5). And by part (1), we have $\Gamma \vdash_{\Sigma} \{A \vee B, \neg A\}$. Now $\{A \vee B, \neg A\} \vdash_{PL} B$, so $\Gamma \vdash_{\Sigma} B$, and hence $B \in \Gamma$ by part (1).
- (8) $A \to B \in \Gamma \Leftrightarrow (A \in \Gamma \Rightarrow B \in \Gamma)$.
 - Left-to-right follows by a similar argument to parts (6) and (7). We need to show that if $A \to B \in \Gamma$ and $A \in \Gamma$ then $B \in \Gamma$, i.e. by part (1) that $\Gamma \vdash_{\Sigma} \{A \to B, A\}$ implies $\Gamma \vdash_{\Sigma} B$. This follows as in parts (6) and (7) because $\{A \to B, A\} \vdash_{PL} B$. For right-to-left we show that $A \to B \notin \Gamma$ implies $A \in \Gamma$ and $B \notin \Gamma$. By parts (5) and (1) it is enough to show $\Gamma \vdash_{\Sigma} \neg (A \to B)$ implies $\Gamma \vdash_{\Sigma} A$ and $\Gamma \vdash_{\Sigma} \neg B$. And this follows as in previous parts from $\{\neg (A \to B)\} \vdash_{PL} A$ and $\{\neg (A \to B)\} \vdash_{PL} \neg B$. (Note: $\neg (A \to B)$) is equivalent in PL to $A \land \neg B$).
- (9) $A \leftrightarrow B \in \Gamma \Leftrightarrow (A \in \Gamma \Leftrightarrow B \in \Gamma)$. This obviously follows from part (8), since $A \leftrightarrow B$ is equivalent in PL as $(A \rightarrow B) \land (B \rightarrow A)$.
- (10) Γ is a Σ -system.
 - This is just a re-statement of part (2). Γ is a Σ -system means that Γ contains every theorem of Σ , or in other words, $\Sigma \subseteq \Gamma$.

Lindenbaum's Lemma

Theorem 7 (Lindenbaum's lemma) Let Γ be a Σ -consistent set of formulas. Then there exists a Σ -maxi-consistent set Δ such that $\Gamma \subseteq \Delta$.

Proof (Sketch) Let $A_0, A_1, A_2, ...$ be an enumeration of the formulas of the language. Define the set Δ as the union of a sequence of Σ -consistent sets, as follows:

$$\begin{array}{rcl} \Delta_0 &=& \Gamma, \\ \\ \Delta_{i+1} &=& \begin{cases} \Delta_i \cup \{A_i\}, & \text{if this is Σ-consistent} \\ \\ \Delta_i \cup \{\neg A_i\}, & \text{otherwise} \end{cases} \\ \\ \Delta &=& \bigcup_{i \geq 0} \Delta_i. \end{array}$$

Now it remains to show that

- (i) Δ_i is Σ -consistent, for all i;
- (ii) exactly one of A and $\neg A$ is in Δ , for every formula A;
- (iii) if $\Delta \vdash_{\Sigma} A$, then $A \in \Delta$; and finally
- (iv) Δ is a Σ -maxi-consistent set.

Details omitted. (Try them!)

There is a relationship between deducibility in Σ ($\Gamma \vdash_{\Sigma} A$) and Σ -maxi-consistent sets.

¿From Lindenbaum's lemma it follows that a formula A is deducible from a set of formulas Γ if and only if A belongs to every maximal extension of Γ . And a formula A is a theorem of Σ (i.e. $\vdash_{\Sigma} A$) if and only if A is a member of every Σ -maxi-consistent set. In other words:

Theorem 8 [Chellas Thm 2.20, p57]

- (1) $\Gamma \vdash_{\Sigma} A \text{ iff } A \in \Delta \text{ for every } \Sigma\text{-maxi-consistent } \Delta \text{ such that } \Gamma \subseteq \Delta.$
- (2) $\vdash_{\Sigma} A \text{ iff } A \in \Delta \text{ for every } \Sigma\text{-maxi-consistent } \Delta.$

Proof Exercise. (In the tutorial exercises.)

Proof sets

Definition 9 (Proof set) The proof set of a formula A in system Σ — denoted $|A|_{\Sigma}$ — is the set of Σ -maxi-consistent sets that contain A.

In other words, where Γ is a Σ -maxi-consistent set, $\Gamma \in |A|_{\Sigma} \Leftrightarrow A \in \Gamma$.

Notice that the set of all Σ -maxi-consistent sets is $|\top|_{\Sigma}$.

This extra notation is quite useful when we look at canonical models (next). But if you don't like it you can ignore it.