
499 Modal and Temporal Logic

‘Interpreted Systems’ and Epistemic Logic

Marek Sergot

Department of Computing

Imperial College, London

Autumn 2008

Further reading (optional!!):
R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge, 1995.

(These notes are based on notes by Alessio Lomuscio.)

This is an example of how epistemic logic (‘epistemic’—pertaining to knowledge) can be
applied to the analysis of computer systems. It is also an example of what is sometimes
called ‘computationally grounded semantics’.

A common criticism of the application of (modal) logics to the modelling and analysis of
computer systems is that there is no clear correspondence between a Kripke (relational)
model and the possible states of a computational system, and no clear intuition (with the
possible exception of temporal logics) about what the accessibility relation is supposed to
represent. This is seen as a severe limitation. In particular, metalogical results (especially
completeness) are rendered more or less useless.

Hence the study of computationally grounded semantics. Here one begins with a formal
structure that more directly represents the features of the computer system of interest, and
then one seeks to evaluate (modal) logic languages on that structure, possibly by showing
how they map to familiar relational (Kripke) models.

One well-developed example is the formalism of ‘interpreted systems’—a kind of compu-
tationally grounded semantics intended to model temporal and epistemic properties of
multi-agent systems and distributed computer systems.

In these notes the aim is just to give the basic idea of ‘grounded semantics’ in general
and ‘interpreted systems’ in particular. We will only look at the epistemic (‘knowledge’)
components in these notes. There are some brief comments at the end on how temporal
aspects can be added.

1

Interpreted systems

Let {1, . . . , n} be a set of n agents (or n components of a distributed computer system).

Local states

Li — set of local states for agent i

LE — set of local states for the environment

The local states Li model the instantaneous configuration of the agent i in the system. The
content varies according to what we want to model: it may be the values of some (local)
variables, a database of facts, An example follows presently.

Further assume that the agents operate in an environment whose possible states can also
be modelled as a set of possible local states LE . The environment captures relevant in-
formation that is not specific to any individual agent, such as messages in transit in a
communication channel, values of sensors on some external ‘world’, etc.

Global states The set G of global states of the system is

G ⊆ L1 × · · · × Ln × LE

A global state g = (l1, . . . , ln, lE) represents a snapshot of the system in which agent 1 is
in local state l1 ∈ L1, agent 2 is in local state l2 ∈ L2, . . . , agent n is in local state ln ∈ Ln,
and the environment is in local state lE ∈ LE .

We will write li(g) to denote the local state of agent i in global state g.

A global state g ∈ G gives a snapshot of the system. We are (often) interested in the
evolution of the system over time. This is usually modelled by the notion of a run, which
is a function r : N → G where N is the set of the natural numbers. We will ignore runs
and time in these notes; there are some brief comments at the end.

Interpreted system Now we define a language L which will be used to express global

properties of the system as a whole.

An interpreted system is
IS = 〈G, h 〉

where G is a set of global states and h is an interpretation function for the propositional
atoms of L. As usual h : Atoms(L) → ℘(G).

Truth functional connectives (∧, ∨, ¬) are defined in the standard way. So now we can
write (as usual) IS , g |= ϕ to mean that formula ϕ is true at global state g in the interpreted
system IS , and IS |= ϕ to mean that ϕ is valid in IS , i.e., that ϕ is true at every global
state g of IS .

(In these notes I am using ϕ to stand for an arbitrary formula and not A, B, . . . as
previously. There is nothing significant about this — just that I typed these at a different
time.)

2

Epistemic modalities Interpreted systems provide a

computationally grounded semantics

that has been used to model knowledge, belief, communication, . . .

Write Ki ϕ to represent that agent i ‘knows’ ϕ.

IS , g |= Ki ϕ iff for all g′ we have that li(g) = li(g
′) implies IS , g′ |= ϕ.

Ki is an information-theoretic notion of ‘knows’. When li(g) = li(g
′) then global states g

and g′ are indistinguishable for i.

Perhaps you might prefer to look at it like this. When does agent i not know that ϕ in
global state g? When there is a global state g′ indistinguishable for i in which ϕ is not
true. And so:

IS , g 6|= Ki ϕ iff ∃ g′ [li(g) = li(g
′) & IS , g′ 6|= ϕ]

which is equivalently stated as

IS , g |= Ki ϕ iff ∀ g′ [li(g) = li(g
′) ⇒ IS , g′ |= ϕ]

which is exactly the truth condition given above.

Ki ϕ means that i has enough information in its own local states to determine that ϕ holds
globally in the system as a whole. It does not mean that i has actually performed whatever
reasoning is required to determine that ϕ holds. Or to put it another way: Ki represents
a bird’s eye notion of knowledge: it is something that we, as external observers, attribute
to agent i.

Model associated with an IS Given a set of agents {1, . . . , n} and an interpreted
system IS = 〈G, h 〉, the model

MIS = 〈G, R1, . . . , Rn, h 〉

is defined as follows:

• the set of possible worlds G is the set of global states in IS

• for any i ∈ 1..n, and any g, g′ ∈ G, the accessibility relation Ri is defined as g Ri g
′

iff li(g) = li(g
′)

• h is the valuation function for the atoms, as usual.

Clearly, by construction, for every global state g and formula ϕ we have

IS , g |= ϕ iff MIS , g |= ϕ

So now we have a way of relating the (new) notion of an interpreted system to the standard
notion of a (Kripke, relational) model. Ri in MIS is the epistemic accessibility relation for
agent i.

Obviously every accessibility relation Ri in MIS is an equivalence relation.

So we can expect that each Ki will be of type S5 (i.e., KT5 = KT45 = KT4B). This
turns out to be so (see ‘Axiomatisation’ later).

3

Example: the bit transmission problem

A widely studied problem in the literature on distributed systems.

Sender S wants to communicate some message (the value of a bit, say) to receiver R over
a faulty (unreliable) communication channel. The value of the bit will not be corrupted,
but messages between the two may get lost.

How can sender S be sure that receiver R has received the bit?

One simple protocol:

• S sends the value of the bit to R, and continues to do so until it receives
an acknowledgement.

• R does nothing until it receives the value of the bit, and then it sends
acknowledgements to S, forever.

• S keeps sending the bit until it receives an acknowledgement from R,
and then it stops sending.

How can we determine whether this protocol has the desired effect?

Bit transmission: Formalisation

LS = {0, 1, 0-ack , 1-ack}

LR = {0, 1, ǫ}

LE = {·}

The environment will play no role in this formulation of the bit transmission problem
(though it does in more complicated versions) so LE is just {·}. Moreover, we’ll omit the
environment’s local state when writing global states to reduce clutter: I will write (0, 0)
when really I mean the global state (0, 0, ·).

What is the set of global states G ⊆ LS × LR × LE for this example?

We are interested in the set of global states reachable from the initial configurations

(0, ǫ) and (1, ǫ)

So we have six global states, obtained as follows:

(0, ǫ) (0, 0) (0-ack , 0)

(1, ǫ) (1, 1) (1-ack , 1)

4

Bit transmission: Analysis

Ignoring temporal considerations, we have six global states. Here they are, showing now
the epistemic accessibility relations for S and R (reflexive arcs omitted):

(0, ǫ) (0, 0) (0-ack , 0)

(1, ǫ) (1, 1) (1-ack , 1)

S R

R

S R

Now we define a suitable language. Let bit=0, bit=1, recbit, recack be propositional
atoms. Define the valuation function h so that:

h(bit=0) = {(0, ǫ), (0, 0), (0-ack , 0)}

h(bit=1) = {(1, ǫ), (1, 1), (1-ack , 1)}

h(recbit) = {(0, 0), (0-ack , 0), (1, 1), (1-ack , 1)}

h(recack) = {(0-ack , 0), (1-ack , 1)}

which gives

IS b, g |= bit=0 if lS(g) = 0, or lS(g) = 0-ack

IS b, g |= bit=1 if lS(g) = 1, or lS(g) = 1-ack

IS b, g |= recbit if lR(g) = 1, or lR(g) = 0

IS b, g |= recack if lS(g) = 1-ack, or lS(g) = 0-ack.

It is easy to check from the diagram that:

IS b |= recbit →
(

KR (bit=0) ∨ KR (bit=1)
)

IS b |= recack → recbit

And also:

IS b |= recack →
(

KR (bit=0) ∨ KR (bit=1)
)

IS b |= recack → KS

(

KR (bit=0) ∨ KR (bit=1)
)

IS b |= recack ∧ (bit=0) → KS KR (bit=0)

This last in particular represents that communication between S and R has been estab-
lished. But notice:

IS b 6|= recack ∧ (bit=0) → KR KS KR (bit=0)

To get KR KS KR (bit=0), the sender would have to send an acknowledgement back to the
receiver, and so on.

Check these calculations (tutorial exercise).

5

Axiomatization

As already observed, we can expect that each individual Ki will be a normal modality of
type S5.

The logic S5n The logic S5n is the smallest modal logic in which each Ki is normal, i.e.
containing (for each i ∈ 1..n) all instances of:

K. Ki(A → B) → (Ki A → Ki B)

RN.
A

Ki A

and containing (for each i ∈ 1..n) all instances of:

T. Ki A → A

4. Ki A → Ki Ki A

5. ¬Ki A → Ki ¬Ki A

We have the following, which we assert without proof. (The proof is not difficult.)

Theorem The logic S5n is sound and complete with respect to the most general class of

interpreted systems with n agents.

Again: it is important to note that interpreted systems are intended to provide a bird’s
eye view of the system and so S5n should not be seen as modelling the actual reasoning
capabilities of the individual agents. Ki A means that i has enough information in its
own local states to determine that A holds globally; it does not mean that i has actually
performed whatever reasoning is required to determine that A holds.

Note also that because of axiom T, we have:

⊢S5n Ki A → ¬Kj ¬A

so there are some interaction patterns between the ‘knowledge’ of the agents.

These can be strengthened. For example, to model a multi-agent system in which one agent
(say agent i) knows what every other agent knows we could consider the logic S5n∪{Kj A →
Ki A} for all j ∈ 1..n.

A currently active area of research is the study of axiomatisations of the knowledge prop-
erties of particular classes of interpreted systems. Some of the most interesting semantical
classes result from interactions between knowledge and time.

6

Reminder: validity in a model

Let C be a class of relational (Kripke) models.

We know that ΣC, the set of formulas valid on the class of models C, is not a system of
modal logic according to the definition we have been using — because ΣC in general is not
closed under uniform substitution.

You can see that easily in the bit transmission example earlier: for example

ISb |= recack → recbit

but (for example)
ISb 6|= bit=0 → recbit

So ΣC in general is not closed under uniform substitution. But it is closed under modus
ponens (propositional consequence RPL), necessitation (RN), rules RM, RK, etc.

If this is not obvious, notice that (Chellas, Theorem 3.3, p69):

• if |=C A then |=C 2A

from which follows e.g.

• if |=C A → B then |=C 2A → 2B (i.e., rule RM)

Easy to see this: if |=C A → B then |=C 2(A → B). But schema K is valid in every class
of relational models: |=C 2(A → B) → (2A → 2B); |=C 2A → 2B follows by modus
ponens.

We have, by construction
IS , g |= ϕ iff MIS , g |= ϕ

which implies
IS |= ϕ iff MIS |= ϕ

We also have (soundness)

⊢S5n ϕ ⇒ |=Equiv ϕ ⇒ MIS |= ϕ ⇒ IS |= ϕ

(We have completeness as well but we won’t use that here.)

So in the bit transmission example, we check in the model that, for instance:

ISb |= recack → recbit

and it follows from this, without any need for further evaluation in the model, that (for
instance):

IS b |= KS recack → KS recbit

and that (for example)

ISb |= KR KS recack → KR KS recbit

ISb |= KS recack → KS KS recbit

etc, etc

(See tutorial sheet for more examples, and why they are useful.)

7

Interpreted systems and time

(For interest only; details are not examinable. In fact, details will not be provided.)

The global states G ⊆ L1×· · ·×Ln×LE give a snapshot of the system. To study evolution
of the system over time, it is usual to look at the possible runs of the system:

R ⊆ {r | r : N → G}

Now one defines a language with suitably chosen temporal operators (such as F, G, P, H,
‘since’ and ‘until’, etc.) interpreted on the set of runs R.

The combination of temporal and epistemic operators gives much expressive power. For
example, by nesting temporal formulas inside epistemic ones (as in e.g. Ki F ϕ) we can
model knowledge about a changing world. By nesting epistemic formulas inside temporal
ones (as in e.g. G Ki ϕ) we can model the temporal evolution of knowledge.

There is a multitude of complex interactions that can be studied here. Two features in
particular have received much attention in distributed computing:

• synchronicity

• perfect recall

Synchronicity is an assumption commonly made when studying distributed systems. A
system is synchronous if all agents/components in the system share a common clock. All
systems in which agents/components/processes proceed in turns (for instance, by waiting
until all agents have performed an action) are synchronous.

Perfect recall is the assumption that agents remember all information to which they
have been exposed, or in other words, that the local state of every agent contains a record
of all its previous local states and actions it performed. Although this is an unrealistic
assumption in many practical settings, it is nevertheless very useful in many applications.
In cryptography, for example, one is not interested in whether or not an agent has decoded
a message, but in whether or not it has enough information in principle to decode the
message given the information it has acquired so far.

Synchronicity, perfect recall (and other properties) can be studied independently and in
various combinations. To give just one example, it turns out that the class of synchronous
interpreted systems with perfect recall is characterised by the following schema:

Ki X A → X Ki A

where X is the ‘tomorrow/next state’ operator: X ϕ is true at a time n when ϕ is true at
time n + 1.

8

