Tutorial Exercises 2 (mjs) (Maxi-consistent sets)

- From 2002 exam S4 is the normal modal logic KT4. Prove that if {□A₁,..., □A_n, ¬□B} is S4-consistent then so is {□A₁,..., □A_n, ¬B}.
 (This is not a question about maxi-consistent sets.)
- 2. This is not so much an 'exercise' as a few small observations about the properties of maxi-consistent sets.

Let Γ be a S4-maxi-consistent set. (S4 is the normal modal logic KT4.)~p and q are atoms.

(i) Suppose $p \in \Gamma$. Does that imply $q \in \Gamma$?

(Obviously not. This is an example that shows therefore that maxi-consistent sets are not closed under uniform substitution US.)

Informally you can think of Γ as a 'possible world'. If p holds in a possible world, does that imply q also holds in that possible world? Obviously not—but can you give a more careful formal explanation?

- (ii) Suppose $p \in \Gamma$. Does that imply $\Box p \in \Gamma$? (Obviously not. This is an example that shows therefore that maxi-consistent sets, even of normal logics, are not closed under the rule of necessitation RN.)
- (iii) Suppose $p \in \Gamma$. Does that imply $\Diamond p \in \Gamma$?

(Γ is a maxi-consistent set of S4=KT4 remember.)

- (iv) Suppose $A_1 \land \ldots \land A_n \to A \in \Gamma$. Does that imply $\Box A_1 \land \ldots \land \Box A_n \to \Box A \in \Gamma$?
- (v) Suppose $A_1 \land \ldots \land A_n \to A \in S4$. Does that imply $\Box A_1 \land \ldots \land \Box A_n \to \Box A \in \Gamma$?
- 3. (This is one of the unproved theorems in the notes.) Prove that:

(a) $\Gamma \vdash_{\Sigma} A$ iff $A \in \Delta$ for every Σ -maxi-consistent Δ such that $\Gamma \subseteq \Delta$.

(b) $\vdash_{\Sigma} A$ iff $A \in \Delta$ for every Σ -maxi-consistent Δ .

Hint: for the first one, one half is easy, the other half requires Lindenbaum's lemma. The second follows more or less immediately as a special case of the first.

4. (The following result is useful when we define canonical models for normal systems.) Prove that for any Σ -maxi-consistent sets Γ and Γ'

$$\{A \mid \Box A \in \Gamma\} \subseteq \Gamma' \quad \Leftrightarrow \quad \{\Diamond A \mid A \in \Gamma'\} \subseteq \Gamma$$

or equivalently

 $\forall A \left[\, \Box A \in \Gamma \Rightarrow A \in \Gamma' \, \right] \quad \Leftrightarrow \quad \forall A \left[\, A \in \Gamma' \Rightarrow \Diamond A \in \Gamma \, \right]$