Tutorial Exercises 2 (mjs)

SOLUTIONS

1. We prove the contrapositive. Suppose $\left\{\square A_{1}, \ldots, \square A_{n}, \neg B\right\}$ is S4-inconsistent. Then either
(i) $\vdash_{\mathrm{S} 4}\left(\square A_{i} \wedge \cdots \wedge \square A_{k}\right) \rightarrow \perp$
or (ii) $\vdash_{\mathrm{S} 4}\left(\square A_{i} \wedge \cdots \wedge \square A_{k} \wedge \neg B\right) \rightarrow \perp$
for some $\left\{\square A_{i}, \ldots, \square A_{k}\right\} \subseteq\left\{\square A_{1}, \ldots, \square A_{n}\right\}$.
If case (i) then $\left\{\square A_{1}, \ldots, \square A_{n}, \neg \square B\right\}$ is also S 4 -inconsistent
If case (ii) then $\vdash_{\mathrm{S} 4}\left(\square A_{i} \wedge \cdots \wedge \square A_{k}\right) \rightarrow B$.
And so (S4 is normal, and rule RK) $\vdash_{\mathrm{S} 4}\left(\square \square A_{i} \wedge \cdots \wedge \square \square A_{k}\right) \rightarrow \square B$.
But (schema 4, and RPL) $\vdash_{\mathrm{S} 4}\left(\square A_{i} \wedge \cdots \wedge \square A_{k}\right) \rightarrow\left(\square \square A_{i} \wedge \cdots \wedge \square \square A_{k}\right)$
and so $\vdash_{\mathrm{S} 4}\left(\square A_{i} \wedge \cdots \wedge \square A_{k}\right) \rightarrow \square B$.
Hence $\vdash_{\mathrm{S} 4}\left(\square A_{i} \wedge \cdots \wedge \square A_{k} \wedge \neg \square B\right) \rightarrow \perp$ and so $\left\{\square A_{1}, \ldots, \square A_{n}, \neg \square B\right\}$ is S4inconsistent.
(Note that this doesn't use schema T.)
The following (slightly quicker) is also fine.
If $\left\{\square A_{1}, \ldots, \square A_{n}, \neg B\right\}$ is S 4 -inconsistent then

$$
\vdash_{\mathrm{S} 4}\left(\square A_{i} \wedge \cdots \wedge \square A_{k}\right) \rightarrow B
$$

Now (same argument as above, details omitted)

$$
\vdash_{\mathrm{S} 4}\left(\square A_{i} \wedge \cdots \wedge \square A_{k}\right) \rightarrow \square B
$$

So $\left\{\square A_{1}, \ldots, \square A_{n}, \neg \square B\right\}$ is S4-inconsistent.
2. (i) You could say $\{p, q\}$ and $\{p, \neg q\}$ are both S4-consistent, so (by Lindenbaum's lemma) there are at least two distinct S4-maxi-consistent sets containing $p-$ one has q and the other has $\neg q$.
Or: if $p \in \Gamma$ implied $q \in \Gamma$ that would mean $p \rightarrow q \in \Gamma$ (by Theorem 6(8) of the lecture notes). Since Γ is arbitrary, we would have shown $p \rightarrow q \in \Gamma$ for every S4-maxi-consistent set Γ, and hence (by Theorem $8(2)$ of the notes-see next question of this sheet) that $\vdash_{\mathrm{S} 4} p \rightarrow q$, which is clearly not true.
(ii) Same argument as above. $\{p, \square p\}$ and $\{p, \neg \square p\}$ are both S4-consistent. Or: by the same argument as above, we would have $\vdash_{\mathrm{S} 4} p \rightarrow \square p$, which is clearly not true.
(iii) Yes, $p \in \Gamma$ does imply $\diamond p \in \Gamma$. Because . .
$\vdash_{\mathrm{S} 4} p \rightarrow \diamond p$. This is because S4 contains all instances of the schema $\mathrm{T}(\square A \rightarrow$ A), of which one instance is $\square \neg p \rightarrow \neg p$, which is propositionally equivalent to $p \rightarrow \neg \square \neg p$. (Or: the 'dual schema' of T is $A \rightarrow \diamond A$.)
Since $\vdash_{\text {S4 }} p \rightarrow \diamond p$ and Γ is S4-maxi-consistent, $p \rightarrow \diamond p \in \Gamma$. But $p \in \Gamma$ and Γ is closed under MP, so $\diamond p \in \Gamma$.
(iv) No. (Part (ii) is already a counter-example for the case $n=0$.)
(v) Yes. If $A_{1} \wedge \cdots \wedge A_{n} \rightarrow A \in \mathrm{~S} 4$, then $\square A_{1} \wedge \cdots \wedge \square A_{n} \rightarrow \square A \in \mathrm{~S} 4$ (by the rule RK, and the fact that S4 is normal)
If $\square A_{1} \wedge \cdots \wedge \square A_{n} \rightarrow \square A \in \mathrm{~S} 4$ then $\square A_{1} \wedge \cdots \wedge \square A_{n} \rightarrow \square A \in \Gamma$ because any S4-maxi-consistent set Γ contains all theorems of S4.
3. This is a theorem in the notes relating deducibility $\left(\vdash_{\Sigma}\right)$ with maxiconsistent sets. We need to prove that:
(a) $\Gamma \vdash_{\Sigma} A$ iff $A \in \Delta$ for every Σ-maxi-consistent Δ such that $\Gamma \subseteq \Delta$.
(b) $\vdash_{\Sigma} A$ iff $A \in \Delta$ for every Σ-maxi-consistent Δ.

Proof. Left to right: suppose $\Gamma \vdash_{\Sigma} A$. Suppose $\Gamma \subseteq \Delta$. Then $\Delta \vdash_{\Sigma} A$ (monotonicity of \vdash_{Σ}). For the other half: suppose $\Gamma \vdash_{\Sigma} A$. We have to show there is a Σ-maxiconsistent Δ such that $\Gamma \subseteq \Delta$ and $A \notin \Delta$. ¿From $\Gamma \vdash_{\Sigma} A$, it follows that $\Gamma \cup\{\neg A\}$ is Σ-consistent. By Lindenbaum's lemma there is therefore a Σ-maxi-consistent Δ such that $\Gamma \cup\{\neg A\} \subseteq \Delta$. Because $\{\neg A\} \subseteq \Delta$, i.e., $\neg A \in \Delta, A \notin \Delta$ as required.

Part (b) is just the special case of part (a) where $\Gamma=\emptyset$, and so follows immediately remembering that $\emptyset \vdash_{\Sigma} A \Leftrightarrow \vdash_{\Sigma} A$.
4. We want to prove that for any Σ-maxi-consistent sets Γ and Γ^{\prime}

$$
\{A \mid \square A \in \Gamma\} \subseteq \Gamma^{\prime} \quad \Leftrightarrow \quad\left\{\diamond A \mid A \in \Gamma^{\prime}\right\} \subseteq \Gamma
$$

or equivalently

$$
\forall A\left[\square A \in \Gamma \Rightarrow A \in \Gamma^{\prime}\right] \quad \Leftrightarrow \quad \forall A\left[A \in \Gamma^{\prime} \Rightarrow \diamond A \in \Gamma\right]
$$

Assume LHS. Now suppose $A \in \Gamma^{\prime}$. We need to show $\diamond A \in \Gamma$.
Suppose not. Suppose $\diamond A \notin \Gamma$.

$$
\begin{array}{rll}
\diamond A \notin \Gamma & \Rightarrow \neg \diamond A \in \Gamma \quad(\Gamma \text { is maxi }) \\
\neg \diamond A \in \Gamma & \Rightarrow \square \neg A \in \Gamma & \\
\square \neg A \in \Gamma & \Rightarrow \neg A \in \Gamma^{\prime} \quad(\text { assumed LHS }) \\
\neg A \in \Gamma^{\prime} & \Rightarrow A \notin \Gamma^{\prime} \quad\left(\Gamma^{\prime} \text { is } \Sigma\right. \text {-consistent) } \\
A \notin \Gamma^{\prime} & \text { Contradiction (we assumed } \left.A \in \Gamma^{\prime}\right)
\end{array}
$$

The other direction is similar. Here it is ...
Assume RHS. Now suppose $\square A \in \Gamma$. We need to show $A \in \Gamma^{\prime}$.
Suppose not. Suppose $A \notin \Gamma^{\prime}$.

$$
\begin{array}{rll}
A \notin \Gamma^{\prime} & \Rightarrow \neg A \in \Gamma^{\prime} \quad\left(\Gamma^{\prime}\right. \text { is maxi) } \\
\neg A \in \Gamma^{\prime} & \Rightarrow \diamond \neg A \in \Gamma \quad \text { (assumed RHS) } \\
\diamond \neg A \in \Gamma & \Rightarrow \neg \diamond \neg A \notin \Gamma \quad(\Gamma \text { is } \Sigma \text {-consistent) } \\
\neg \diamond \neg A \notin \Gamma & \Rightarrow \square A \notin \Gamma & \\
\square A \notin \Gamma & \text { Contradiction (we assumed } \square A \in \Gamma)
\end{array}
$$

