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Tutorial Exercises 4 (mjs)

SOLUTIONS

Question 1
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1. ISb |= recbit→ (KR (bit=0) ∨ KR (bit=1))

recbit is true at global states (0, 0), (1, 1), (0-ack , 0), (1-ack , 1). So we need to check
that (KR (bit=0) ∨ KR (bit=1)) is true at each of these global states.

To show ISb, (0, 0) |= (KR (bit=0)∨KR (bit=1)): the global states R-accessible from
(0, 0) are (0, 0) and (0-ack , 0). (Or if you prefer, the global states that are indistinguish-
able for R from (0, 0) are (0, 0) and (0-ack , 0).) In both of these global states, recbit

is true, and so ISb, (0, 0) |= KR (bit=0) and ISb, (0, 0) |= (KR (bit=0) ∨ KR (bit=1)).

Now check the calculation for each of the remaining three global states (1, 1), (0-ack , 0),
(1-ack , 1).

2. ISb |= recack→ recbit

recack is true at global states (0-ack , 0), (1-ack , 1). So we need to check that recbit

is true at each of these global states, which it clearly is.

3. ISb |= (bit=0)→ KS (bit=0)

By direct evaluation in the model again. (bit=0) is true at global states (0, ǫ), (0, 0),
(0-ack , 0). We need to check that KS (bit=0) is true at each of these global states.

For (0, ǫ), the S-accessible (or S-indistinguishable) global states are (0, ǫ) and (0, 0).
Clearly (bit = 0) is true at both of these global states.

For (0, 0), the S-accessible (or S-indistinguishable) global states are again (0, ǫ) and
(0, 0). Clearly (bit = 0) is true at both of these global states (we just checked this).

For (0-ack , 0), the only S-accessible (or S-indistinguishable) global state is (0-ack , 0)
itself. Clearly (bit=0) is true at this global state.

4. ISb |= recack→ KS recack

As in the previous part, evaluate the formula at every global state in the model.
recack is true at global states (0-ack , 0) and (1-ack , 1). The only global state S-
accessible from (0-ack , 0) is (0-ack , 0) itself, and here recack is true. Similarly for
(1-ack , 1).
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5. ISb 6|= recack→ KR recack

We just need to find one global state at which recack is true but KR recack is false.
Consider global state (0-ack , 0): we show KR recack is false at this global state. The
global states R-accessible from (0-ack , 0) are (0-ack , 0) and (0, 0). But recack is false
at (0, 0) and so KR recack is false at (0-ack , 0).

6. ISb |= recbit ∧ (bit=0)→ KR (bit=0)

recbit ∧ (bit=0) is true at global states (0, 0) and (0-ack , 0). The global states R-
accessible from (0, 0) are (0, 0) and (0-ack , 0); the global states R-accessible from (0, 0)
are also (0, 0) and (0-ack , 0). And clearly (bit=0) is true at both of those global states.

7. ISb |= recack→ (KR (bit=0) ∨ KR (bit=1))

One can evaluate this directly at each global state in the model. But it is much quicker
to notice that it follows immediately by propositional logic from parts (1) and (2).

8. ISb |= recack→ KS(KR (bit=0) ∨ KR (bit=1))

Look at the previous part: ISb |= KS recack→KS(KR (bit=0)∨KR (bit=1)) follows
from it by rule RM. (If A→ B is valid in model ISb then KS A→ KS B is also valid
in model ISb, because that holds for all relational (‘Kripke’) models, of which ISb is
one.)

Now combine this with part (4) and propositional logic.

9. ISb |= recack ∧ (bit=0)→ KS KR (bit=0)

Parts (2) and (6) by propositional logic give ISb |= recack∧ (bit=0)→KR (bit=0).
By rule RK (n = 2) we get ISb |= KS recack ∧ KS (bit=0)→ KS KR (bit=0).

Now parts (4) and (3) by propositional logic give ISb |= recack ∧ (bit=0) →
KS recack ∧ KS (bit=0).

Propositional logic again gives IS b |= recack ∧ (bit=0)→ KS KR (bit=0).

10. ISb 6|= recack ∧ (bit=0)→ KR KS KR (bit = 0)

recack∧(bit=0) is true at global state (0-ack , 0) but ISb, (0-ack , 0) 6|= KR KS KR (bit = 0).
Because: the global states R-accessible from (0-ack , 0) are (0, 0) and (0-ack , 0), and
KS KR (bit=0) is false at (0, 0). This is because the global states S-accessible from
(0, 0) are (0, 0) and (0, ǫ), and KR (bit=0) is false at (0, ǫ). And this is because the
global states R-accessible from (0, ǫ) are (0, ǫ) and (1, ǫ), and clearly (bit=0) is false
at (1, ǫ).
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Question 2

Validity of T and 4 in reflexive and transitive frames, respectively, has been shown in lecture
notes and previous tutorial exercises. I’ll repeat a proof for validity of 4 (2A→ 22A) in
transitive frames for your convenience.

Let M = 〈W, R, h 〉 be any model in which R is transitive, and let w be any world in W .

Suppose M, w |= 2A. We have to show M, w |= 22A.

So consider any world w′ such that w R w′. We need to show M, w′ |= 2A.

So consider any world w′′ such that w′ R w′′. We need to show M, w′′ |= A.

We have w R w′ and w′ R w′′, and so also w R w′′ because R is transitive. Since M, w |= 2A,
and w R w′′, we have M, w′′ |= A, as required.

Now validity of 5 (3A→ 23A) in symmetric transitive frames.

Let M = 〈W, R, h 〉 be any model in which R is both symmetric and transitive, and let w

be any world in W .

Suppose M, w |= 3A. We have to show M, w |= 23A.

So consider any world w′ such that w R w′. We need to show M, w′ |= 3A.

¿From M, w |= 3A, we know M, w′′ |= A for some w′′ such that w R w′′.

We have w R w′ and so also w′ R w because R is symmetric.

But w′ R w and w R w′′ implies w′ R w′′ (R is transitive).

So now we have w′ R w′′ and M, w′′ |= A, and so M, w′ |= 3A as required.

(It is easier to see the argument if you draw a picture.)

Question 3

Solution omitted from this version as Question 3 might be part of the assessed coursework.

3


