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Normal systems

Semantics Let M = 〈W, R, h〉 be a standard, relational (‘Kripke’) model.

The truth conditions for 2A and 3A are

M, w |= 2A ⇔ ∀t(w R t ⇒ M, t |= A)

M, w |= 3A ⇔ ∃t(w R t & M, t |= A)

In terms of truth sets:
M, w |= 2A ⇔ R[w] ⊆ ‖A‖M

M, w |= 3A ⇔ R[w] ∩ ‖A‖M 6= ∅

where R[w]
def
= {t in M : w R t}.

Normal systems Normal systems of modal logic are defined in terms of the schemas

Df3. 3A↔ ¬2¬A

K. 2(A→ B)→ (2A→2B)

and the rule of inference (‘necessitation’)

RN.
A

2A

or equivalently, instead of the schema K and the rule RN, by the rule RK:

RK.
(A1 ∧ . . . ∧ An)→ A

(2A1 ∧ . . . ∧ 2An)→ 2A
(n ≥ 0)

The smallest normal modal logic is called K. To name normal systems we write

K ξ1 . . . ξn

for the normal modal logic that results when the schemas ξ1, . . . , ξn are taken as theorems;
i.e., K ξ1 . . . ξn is the smallest normal system of modal logic containing (every instance of)
the schemas ξ1, . . . , ξn.
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Classical systems of modal logic

(See Chellas [1980], Ch. 7–9.)

Classical systems of modal logic are defined in terms of the schema

Df3. 3A↔ ¬2¬A

and the rule of inference

RE.
A↔B

2A↔2B

Definition 1 (Classical system) A system of modal logic is classical iff it contains Df3
and is closed under RE.

And remember: every system of modal logic, by definition, also contains all tautologies
PL, and is closed under modus ponens and uniform substitution. (Though not by the
definition in Chellas: Chellas does not require closure under uniform substitution. It’s a
tiny point of detail.)

The smallest classical modal logic is called E. To name classical systems we write

E ξ1 . . . ξn

for the classical modal logic that results when the schemas ξ1, . . . , ξn are taken as theorems;
i.e., E ξ1 . . . ξn is the smallest classical system of modal logic containing (every instance of)
the schemas ξ1, . . . , ξn.

Monotonic and regular systems

Classical systems are sometimes classified further. (You don’t need to remember the
names!!)

RE.
A↔B

2A↔2B

RM.
A→B

2A→2B

RR.
(A ∧ B)→ C

(2A ∧ 2B)→2C

RK.
(A1 ∧ . . . ∧ An)→ A

(2A1 ∧ . . . ∧ 2An)→ 2A
(n ≥ 0)

Definition 2 (Monotonic system) A system of modal logic is monotonic iff it contains
Df3 and is closed under RM.

Definition 3 (Regular system) A system of modal logic is regular iff it contains Df3
and is closed under RR.
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Theorem 4

(1) Every monotonic system of modal logic is classical.
(2) Every regular system of modal logic is monotonic.
(3) Every normal system of modal logic is regular.

Proof The derivations for parts (1) and (3) are left as an exercise. For (2): suppose the
system is regular, i.e. closed under RR:

1. A→ B ass.
2. A ∧ A→ B 1, PL

3. (2A ∧ 2A)→ 2B 2, RR
4. 2A→2B 3, PL

Theorem 5

(1) Every monotonic system of modal logic contains M.
(2) Every regular system of modal logic contains M and C.
(3) Every regular system of modal logic contains M, C, R and K.

Proof Exercise.

Theorem 6 Let Σ be a system of modal logic containing Df3. Then:

(1) Σ is monotonic iff it contains M and is closed under RE.
(2) Σ is regular iff it contains C and is closed under RM.
(3) Σ is regular iff it contains C and M and is closed under RE.

Proof It only remains to show the right-to-left halves.
For (1):

1. A→ B ass.
2. A↔ (A ∧ B) 1, PL

3. 2A↔2(A ∧ B) 2, RE
4. 2(A ∧ B)→ (2A ∧ 2B) M
5. 2A→2B 4, PL

For (2):

1. (A ∧ B)→ C ass.
2. 2(A ∧ B)→ 2C 1, RM
3. (2A ∧ 2B)→ 2(A ∧ B) C
4. (2A ∧ 2B)→ 2C 2, 3, PL

Part (3) follows from parts (1) and (2).

normal

RK

regular

RR

monotonic

RM

classical

RE
RM “=” RE + M
RR “=” RE + MC
RK “=” RE + MCN
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M. 2(A ∧ B)→ (2A ∧ 2B)

C. (2A ∧ 2B)→2(A ∧ B)

N. 2⊤

Other schemas

The schemas P, D, T, B, 4, 5 also come up frequently.

P. ¬2⊥

D. 2A→3A

T. 2A→A

B. A→ 23A

4. 2A→ 22A

5. 3A→ 23A

We will look at some of their properties later.

Note that for a normal system Σ, schema P is in Σ iff D is in Σ. That is not the case for
non-normal systems in general.
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Models for classical systems: ‘neighbourhood semantics’

Here we look at ‘neighbourhood semantics’, also known as Montague-Scott semantics —
the most general kind of possible-worlds semantics compatible with retaining the classical
truth-table semantics for the truth-functional operators. In these notes, we shall call these
models ‘ν-models’ for short.

Chellas [1980] calls these models ‘minimal models’. This last name is best avoided, however,
since ‘minimal model’ is now used very extensively for a completely different notion in the
study of non-monotonic and defeasible logics. (See Knowledge Representation course in
Spring term.)

The idea is that each world w of W has associated with it a set ν(w) of propositions
— these are the propositions necessary at w. What is a proposition? In possible world
semantics (any kind), a proposition is identified with a set of possible worlds, i.e., with a
subset of W . So the set of propositions necessary at w, ν(w), is a set of propositions, i.e.
a set of subsets of W . Note that ν(w) may be any set of propositions, including the empty
set; there are no assumptions about ν except that it is a function from W to ℘(℘(W )).

Definition 7 (ν-model) A (neighbourhood, or Montague-Scott, or Chellas-minimal) model
(or ν-model for short) is a structure

M = 〈W, ν, h〉

where W is a set of worlds, h : L → ℘(W ) is a valuation of the propositional atoms (as
usual), and ν is a mapping from W to sets of subsets of W , i.e., ν : W → ℘(℘(W )).

The component 〈W, ν〉 is called a neighbourhood frame (or here ν-frame for short).

Definition 8 (ν-model: truth conditions) Let w be a world in a model M = 〈W, ν, h〉.

(1) M, w |= 2A ⇔ ‖A‖M ∈ ν(w)

(2) M, w |= 3A ⇔ (W − ‖A‖M) /∈ ν(w)

The second part of this definition is obviously designed so that the notions of necessity and
possibility again come out to be dual, i.e., so that 3 has the meaning ¬2¬.

Validity of a formula in a class of ν-models or in a class of ν-frames is defined as usual.

A relational (‘Kripke’) frame is a special case of a ν-frame — I’ll explain exactly what kind
of ν-frame it is later.
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Example Here is a ν-frame:

W = {a, b, c}

ν(a) = { {a, b, c}, {b}, {a, c} }

ν(b) = { {a}, {b}, {c} }

ν(c) = { ∅, {a} }

(There is no picture to draw because this is not a relational frame.)

Here is one possible valuation on this frame:

h(p) = { a, b }

h(q) = { b, c }

Call this combination the model M. We see that:

M, a |= 2⊤ (since ‖⊤‖M = W = {a, b, c})
M, a |= 2(p ∧ q) (since ‖p ∧ q‖M = {b})
M, a |= 2 ((p ∨ q) ∧ ¬(p ∧ q)) (since ‖(p ∨ q) ∧ ¬(p ∧ q)‖M = {a, c})
M, a 6|= 2p (since ‖p‖M /∈ ν(a))
M, a |= ¬2p M, a |= 3¬p

M, b |= 2(p ∧ ¬q) (since ‖p ∧ ¬q‖M = {a})
M, b |= 2(p ∧ q) (since ‖p ∧ q‖M = {b})
M, b |= 2(q ∧ ¬p) (since ‖q ∧ ¬p‖M = {c})
M, b 6|= 2⊤ (since W /∈ ν(b))
M, b |= ¬2⊤ M, b |= 3⊥
M, b |= 3⊤ (because M, b 6|= 2⊥)

M, c |= 2⊥ (since ‖⊥‖M = ∅)
M, c |= 2(p ∧ ¬q) (since ‖p ∧ ¬q‖M = {a})
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Theorem 9 Let C be a class of ν-models. Then:

(1) |=C 3A↔ ¬2¬A.

(2) If |=C A↔B then |=C 2A↔2B.

Proof For part (1): Let w be a world in any ν-model M = 〈W, ν, h〉 in class C.
M, w |= 3A ⇔ (W − ‖A‖M) /∈ ν(w)

⇔ ‖¬A‖M /∈ ν(w) (by definition of ‖.‖M)
⇔ M, w 6|= 2¬A
⇔ M, w |= ¬2¬A

For part (2): Suppose C is a class of ν-models such that |=C A↔B. Then ‖A‖M = ‖B‖M

for each M in C. It follows from this that for any world w in any model M = 〈W, ν, h〉 in
C, ‖A‖M ∈ ν(w) if and only if ‖B‖M ∈ ν(w). So for any w in any M in C, M, w |= 2A
if and only if M, w |= 2B, which means that |=C 2A↔ 2B.

So: the set of formulas valid in a class of ν-models (i) contains all instances of schema Df3,
and (ii) is closed under the rule RE. In other words, it is a classical system of modal logic
— in the Chellas sense (no requirement for closure under US).

This is the basis of soundness of classical systems with respect to ν-models. Completeness
(via canonical models) comes later.

ν-models: alternative notation

The following alternative notation is sometimes easier to work with. (It is just a convenient
notational variant, not some new kind of model.)

Given a function ν : W → ℘(℘(W )) we can always define a function f : ℘(W ) → ℘(W )

such that f(X)
def
= {w : X ∈ ν(w)}. And every function ν can be defined in terms of such

a function f . So we can define

w ∈ f(X) ⇔ X ∈ ν(w)

In terms of f , the truth conditions for 2A are M, w |= 2A ⇔ ‖A‖M ∈ ν(w) ⇔ w ∈
f(‖A‖M), i.e.

‖2A‖M = f(‖A‖M)

In similar fashion (check!):

‖3A‖M = W − f(W − ‖A‖M)
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The schemas M, C, N

M. 2(A ∧ B)→ (2A ∧ 2B)

C. (2A ∧ 2B)→2(A ∧ B)

N. 2⊤

Although each of these is valid in any class of standard (Kripke) models, each has a
counterexample in a ν-model.

Theorem 10 None of the schemas M, C, and N is valid in the class of all ν-models.

Proof Construct counterexamples. (Exercise. The example of a ν-model on page 6
already contains suitable counterexamples.)

Theorem 11 The schemas M, C, and N are valid in classes of ν-models satisfying the
following conditions (m), (c), and (n), respectively:

(m) X ∩ Y ∈ ν(w) ⇒ X ∈ ν(w) & Y ∈ ν(w)

(c) X ∈ ν(w) & Y ∈ ν(w) ⇒ X ∩ Y ∈ ν(w)

(n) W ∈ ν(w)

Proof For (1). Let w be a world in any ν-model M = 〈W, ν, h〉 satisfying property (m).
M, w |= 2(A ∧ B) ⇒ ‖A ∧ B‖M ∈ ν(w)

⇒ ‖A‖M ∩ ‖B‖M ∈ ν(w) (by definition of ‖.‖M)
⇒ ‖A‖M ∈ ν(w) and ‖B‖M ∈ ν(w) (by condition (m))
⇒ M, w |= 2A and M, w |= 2B

For (2). Let w be a world in any ν-model M = 〈W, ν, h〉 satisfying property (c).
M, w |= 2A ∧ 2B ⇒ ‖A‖M ∈ ν(w) and ‖B‖M ∈ ν(w)

⇒ ‖A‖M ∩ ‖B‖M ∈ ν(w) (by condition (c))
⇒ ‖A ∧ B‖M ∈ ν(w) (by definition of ‖.‖M)
⇒ M, w |= 2(A ∧ B)

For (3). Let w be a world in any ν-model M = 〈W, ν, h〉 and suppose W ∈ ν(w). W =
‖⊤‖M, and so ‖⊤‖M ∈ ν(w), from which follows M, w |= 2⊤.

Notice that condition (m) is equivalently expressed in terms of closure under supersets:

(rm) if X ⊆ Y then X ∈ ν(w) ⇒ Y ∈ ν(w).

(The proof is in the exercises.)

Notice: how conditions (m), (rm), (c) and (n) turn out if we use the alternative char-
acterisation of ν-models employing the function f : ℘(W ) → ℘(W ) whereby ‖2A‖M =
f(‖A‖M). Recall then w ∈ f(X) ⇔ X ∈ ν(w):

(mf) f(X ∩ Y ) ⊆ f(X) ∩ f(Y ) equivalently, (rmf ) X ⊆ Y ⇒ f(X) ⊆ f(Y )

(cf ) f(X) ∩ f(Y ) ⊆ f(X ∩ Y )

(nf) f(W ) = W
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The schemas P, D, T, B, 4, 5

P. ¬2⊥

D. 2A→3A

T. 2A→A

B. A→ 23A

4. 2A→ 22A

5. 3A→ 23A

Theorem 12 None of the schemas P, D, T, B, 4, 5 is valid in the class of all ν-models.

Proof Construct counterexamples (Exercise).

Theorem 13 The schemas P, D, T, B, 4, 5 are valid in classes of ν-models satisfying the
following conditions (p), (d), (t), (b), (iv), and (v), respectively:

(p) ∅ /∈ ν(w)

(d) X ∈ ν(w) ⇒ (W − X) /∈ ν(w)

(t) X ∈ ν(w) ⇒ w ∈ X

(b) w ∈ X ⇒ {w′ ∈ W : (W − X) /∈ ν(w′)} ∈ ν(w)

(iv) X ∈ ν(w) ⇒ {w′ ∈ W : X ∈ ν(w′)} ∈ ν(w)

(v) X /∈ ν(w) ⇒ {w′ ∈ W : X /∈ ν(w′)} ∈ ν(w)

Proof Let w be any world in a ν-model M = 〈W, ν, h〉.
For condition (p):

M, w |= ¬2⊥ ⇔ M, w 6|= 2⊥

⇔ ‖⊥‖M /∈ ν(w)

⇔ ∅ /∈ ν(w)

Suppose M satisfies condition (d):

M, w |= 2A ⇒ ‖A‖M ∈ ν(w)

⇒ (W − ‖A‖M) /∈ ν(w) by condition (d)

⇒ ‖¬A‖M /∈ ν(w)

⇒ M, w |= 3A

Suppose M satisfies condition (t):

M, w |= 2A ⇒ ‖A‖M ∈ ν(w)

⇒ w ∈ ‖A‖M by condition (t)

⇒ M, w |= A
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Suppose M satisfies condition (b):

M, w |= A ⇒ w ∈ ‖A‖M

⇒ {w′ ∈ W : (W − ‖A‖M) /∈ ν(w′)} ∈ ν(w) by condition (b)

⇒ {w′ ∈ W : ‖¬A‖M /∈ ν(w′)} ∈ ν(w)

⇒ {w′ ∈ W : M, w 6|= 2¬A} ∈ ν(w)

⇒ {w′ ∈ W : M, w |= ¬2¬A} ∈ ν(w)

⇒ ‖¬2¬A‖M ∈ ν(w)

⇒ M, w |= 2¬2¬A

⇒ M, w |= 23A

The proofs for conditions (iv) and (v) are on the exercise sheet.

Notice: how much more concisely these model conditions turn out when expressed using
the function w ∈ f(X) ⇔ X ∈ ν(w):

(pf) f(∅) = ∅

(df) f(X) ⊆ W − f(W − X)

(tf) f(X) ⊆ X

(bf) X ⊆ f(W − f(W − X))

(ivf ) f(X) ⊆ f(f(X))

(vf ) W − f(X) ⊆ f(W − f(X))

(See exercise sheet.)

As should be clear from the above, the f function often allows us to read off direct from
a schema the model condition that defines a class of ν-models that validate the schema.
There is nothing mysterious about this: remember ‖2A‖M = f(‖A‖M).

For example (1): notice that condition (vf) as stated above would seem to correspond to
a schema (5′)¬2A → 2¬2A, not to the schema (5)3A → 23A. The model condition
corresponding to (5) would be

W − f(W − X) ⊆ f(W − f(W − X))

But (5′) and (5) are logically equivalent and (check!) the two model conditions are equiv-
alent also (they hold for all subsets X of W ).

For example (2): consider the schema

G. 32A→23A

Schema G is valid in the class of ν-models satisfying the model condition that, for every
X ⊆ W :

(gf) W − f(W − f(X)) ⊆ f(W − f(W − X))

Check that this is true! (See exercise sheet.)
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Soundness

We already know (Theorem 9) that 3A↔ ¬2¬A is valid in any class C of ν-models, and
that |=C A ↔ B implies |=C 2A ↔ 2B. Soundness of classical systems with respect to
ν-models follows straightforwardly.

For the record:

Theorem 14 Let ξ1, . . . , ξn be schemas valid respectively in classes C1, . . . , Cn of ν-models.
Then the system of modal logic E ξ1 . . . ξn is sound with respect to the class C1 ∩ . . . ∩ Cn.

Proof By Theorem 9, Df3 is valid in any class of ν-models, and the rule RE, and all rules
of propositional logic, preserve validity in any such class. Further: if ξ1, . . . , ξn are valid
respectively in C1, . . . , Cn then they are valid in the intersection of these classes. So every
theorem of E ξ1 . . . ξn is valid in this intersection, which means that E ξ1 . . . ξn is sound with
respect to that class.

Completeness (via canonical models)

The basic idea is exactly the same as for canonical models for normal systems. We want to
establish completeness of a (classical) system Σ with respect to some class C of ν-models,
i.e. we want to prove that for all formulas A

|=C A ⇒ ⊢Σ A

We try to find a canonical model MΣ for system Σ, i.e. a model MΣ such that

MΣ |= A ⇔ ⊢Σ A

Now if we can show that this canonical model belongs to class C, i.e. that model MΣ

satisfies the model conditions that characterise the class C, then we have completeness.
Because (as usual): suppose that MΣ is a canonical model for system Σ; then if MΣ

belongs to the class of models C:

|=C A ⇒ MΣ |= A ⇒ ⊢Σ A

Sometimes, it is easier to go the other way: construct a model M that is clearly in class
C. Then show that M is a canonical model for the system Σ.

Now it just remains to figure out how to construct a canonical ν-model for a classical
system Σ.
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Canonical ν-models: Sketch

I am NOT going to present all the details of canonical ν-models. They are not difficult
but I don’t want to spend too much time on it. Here is the basic idea. Details are not
examinable.

Given a system Σ of modal logic, a canonical ν-model will be one in which, as usual, the
set of worlds W will be the set of Σ-maxi-consistent sets of formulas, and the valuation h
will be such that w ∈ h(p) ⇔ p ∈ w for every world w and every atom p. We will also
need a suitable constraint on the ‘neighbourhood’ function ν.

For classical systems, there are many canonical models, i.e., many choices of ν that will
give us the property we want:

MΣ, w |= A ⇔ A ∈ w

For example, the smallest canonical ν-model for a classical system Σ is the model MΣ =
〈W, ν, h〉 such that:

(1) W is the set of Σ-maxi-consistent sets.

(2) ν(w) = {|A|Σ : 2A ∈ w}.

(3) For every w in M and every atom p, w ∈ h(p) ⇔ p ∈ w, i.e. h(p) = |p|Σ.

Now it is very easy to check (try it) that, for the smallest canonical model, and every
formula A:

• 2A ∈ w ⇔ |A|Σ ∈ ν(w), and hence:

• MΣ, w |= A ⇔ A ∈ w (by induction on the structure of A), and hence:

• MΣ |= A ⇔ ⊢Σ A

From the above it follows immediately that:

Theorem 15 E is complete with respect to the class of ν-models.

For classical systems, there are other canonical models besides the ‘smallest’ one defined
above. I won’t go through the details here.

Example (just one) The classical system ET is complete with respect to the class of
ν-models satisfying the following condition, for every w in M, X ⊆ W :

(t) X ∈ ν(w) ⇒ w ∈ X

Proof Let M = 〈W, ν, h〉 be the smallest canonical ν-model for the system ET. Then
ν(w) = {|A|ET : 2A ∈ w}.
We show that this canonical model satisfies (t): X ∈ ν(w) ⇒ w ∈ X.
Suppose X ∈ ν(w). Then X = |A|ET for some 2A ∈ w. But ⊢ET 2A→A means that also
A ∈ w, and this means (by definition of proof set) that w ∈ |A|ET , i.e. w ∈ X as required.
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Relational (Kripke) models and ν-models

ν-models are more general than relational (Kripke) models. (Obviously, since classical sys-
tems subsume normal systems as a special case.) Relational (Kripke) models correspond to
a particular class of ν-models in which the ‘neighbourhood function’ has certain properties.

(You do not have to memorise any of the details here. This is just for your information.
Details are not examinable.)

(aug)

(mcn)

relational
(‘Kripke’)
models

1-1
correspondence

ν-models

(normal) system K = EMCN

determined by all three of
these classes of models

� Y

i

System K — the smallest normal system — is determined by (is sound and complete with
respect to) the following classes of models:

• relational (‘Kripke’) models

• the class of ν-models satisfying conditions (m), (c), and (n). I will call these (mcn)
models for short. (Sometimes they are called ‘filters’.)

• a sub-class of (mcn) models — those satisfying the additional property

(aug) X ∈ ν(w) ⇔
⋂

ν(w) ⊆ X ⊆ W

There is a 1-1 correspondence between the (aug) ν-models and relational (‘Kripke’) models.
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To check this and to obtain the diagram on the previous page, it nows remains to show
the following. (The proofs are all easy exercises. I omit them. This is probably already
more than you want to know.)

1. For every relational (Kripke) model M = 〈W, R, h〉 there is a ν-model Mν = 〈W, ν, h〉
satisfying condition (aug) such that, for every formula A,

M, w |= A ⇔ Mν , w |= A ‘pointwise equivalent’

and vice-versa (for every ν-model satisfying (aug) there is a relational (Kripke) model
that is pointwise equivalent).

2. The class of ν-models satisfying (aug) is a sub-class of those satisfying (mcn). (Easy.)

3. (aug) 6= (mcn): there are (mcn) models which do not satisfy (aug). (Not so easy.
Here is one. Take W to be the set of real numbers. Take ν(w) = {(w, w+δ) : δ > 0}.)

4. K is determined by the class of (mcn) models. (Easy to prove. Compare the method
for EMCT shown earlier.)

5. K is also determined by the class of (aug) models. (Given the smallest canonical
model it is easy to construct one that satisfies (aug). Then one shows that this
model is canonical for K = EMCN.)

I repeat: the details are given here for your interest only. There is no need to memorise
any of this, not even the picture on the previous page.
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