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Reminder

– The set of formulas Σ is a system of modal logic iff it contains all propositional tautologies
(PL) and is closed under modus ponens (MP) and uniform substitution (US).

– ⊢Σ A means that A is a theorem of Σ. ⊢Σ A iff A ∈ Σ.

(The following is applicable to all systems of normal logic, not just normal systems.)

Deducibility and consistency

A formula A is deducible from a set of formulas Γ in a logic Σ — written Γ ⊢Σ A — iff Σ
contains a theorem of the form

(A1 ∧ · · · ∧ An) → A

where the conjuncts A1, . . . , An are formulas in Γ. It is convenient to extend the notation:
for Γ′ a set of formulas, Γ ⊢Σ Γ′ means that Γ ⊢Σ A for every A in Γ′.

A set of formulas Γ is inconsistent in Σ (Σ-inconsistent) just in case ⊥ is Σ-deducible from
Γ. A set of formulas Σ-consistent when it is not Σ-inconsistent.

Definition 1 (Deducibility) Γ ⊢Σ A iff there are formulas A1, . . . , An ∈ Γ (n ≥ 0) such
that ⊢Σ (A1 ∧ · · · ∧ An) → A.

For Γ′ a set of formulas, Γ ⊢Σ Γ′ means that Γ ⊢Σ A for every A in Γ′.

Definition 2 (Consistency) Γ is Σ-consistent iff not Γ ⊢Σ ⊥. Γ is Σ-inconsistent iff
Γ ⊢Σ ⊥.
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Some properties (there is no need to memorize these theorems!):

Theorem 3 [Chellas Thm 2.16, p47]

(1) ⊢Σ A iff ∅ ⊢Σ A.

(2) ⊢Σ A iff for every Γ, Γ ⊢Σ A.

(3) If Γ ⊢PL A, then Γ ⊢Σ A.

(4) If A ∈ Γ then Γ ⊢Σ A. (Or using the ⊢Σ notation for sets of formulas, Γ ⊢Σ Γ.)

(5) If Γ ⊢Σ B and {B} ⊢Σ A, then Γ ⊢Σ A.

More generally, for Γ′ any set of formulas: if Γ ⊢Σ Γ′ and Γ′ ⊢Σ A, then Γ ⊢Σ A.

(6) If Γ ⊢Σ A and Γ ⊆ Γ′, then Γ′ ⊢Σ A.

(7) Γ ⊢Σ A iff there is a finite subset Γx of Γ such that Γx ⊢Σ A.

(8) Γ ⊢Σ A → B iff Γ ∪ {A} ⊢Σ B.

Comments on Theorem 3

Properties (1)—(3) should be clear enough.

Property (4) is reflexivity of the deducibility relation ⊢Σ. It’s sometimes called ‘inclusion’.

Property (5) is transitivity of the deducibility relation ⊢Σ. It’s sometimes called ‘cut’.

Property (6) means that the deducibility relation ⊢Σ is monotonic. It can be expressed as
Γ ⊢Σ A ⇒ Γ ∪ Γ′ ⊢Σ A, for any set of formulas Γ′.

Property (7) is ‘compactness’ of the deducibility relation ⊢Σ.

Property (8) is the so-called deduction theorem for ⊢Σ.

Proofs:

(1) ⊢Σ A iff ∅ ⊢Σ A.

Trivially: if ⊢Σ A then there is a Σ-theorem of the form (A1 ∧ · · · ∧ An) → A where
n = 0 and the conditional is just A. Since the (non-existent) Ai in the antecedent are
all in ∅, ∅ ⊢Σ A. Conversely, if ∅ ⊢Σ A then it must be that ⊢Σ (A1 ∧ · · · ∧ An) → A
for n = 0. That is, ⊢Σ A.

(2) ⊢Σ A iff for every Γ, Γ ⊢Σ A.

Left-to-right: as for part (1), if ⊢Σ A then there is a Σ-theorem of the form (A1∧· · ·∧
An) → A where n = 0. Since the (non-existent) Ai in the antecedent are trivially all
in Γ, for any set of formulas Γ, Γ ⊢Σ A. For the converse, if Γ ⊢Σ A for any set of
formulas Γ, then in particular ∅ ⊢Σ A, which by part (1) means ⊢Σ A.

(3) If Γ ⊢PL A, then Γ ⊢Σ A.

If Γ ⊢PL A then there is a theorem (A1∧· · ·∧An) → A in PL where {A1, . . . , An} ⊆ Γ.
But PL ⊆ Σ for any system Σ, so also Γ ⊢Σ A.

(4) If A ∈ Γ then Γ ⊢Σ A. (Or Γ ⊢Σ Γ.)

The formula A → A is a tautology, hence a PL-theorem, hence a Σ-theorem for any
system Σ. So if A ∈ Γ then there is a theorem A → A in Σ whose antecedent A is in
Γ. So Γ ⊢Σ A.
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(5) If Γ ⊢Σ B and {B} ⊢Σ A, then Γ ⊢Σ A.

More generally: if Γ ⊢Σ Γ′ and Γ′ ⊢Σ A, then Γ ⊢Σ A.

The first part is obviously a special case of the more general statement. So suppose
Γ ⊢Σ Γ′ and Γ′ ⊢Σ A. Γ′ ⊢Σ A means there is a theorem (A1∧· · ·∧An) → A in Σ such
that {A1, . . . , An} ⊆ Γ′. Γ ⊢Σ Γ′ means Γ ⊢Σ B for every B ∈ Γ′, and so in particular
Γ ⊢Σ Ai for every Ai (1 ≤ i ≤ n). Γ ⊢Σ Ai for each such Ai means there is a Σ-theorem
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we have Γ ⊢Σ A.

(6) If Γ ⊢Σ A and Γ ⊆ Γ′, then Γ′ ⊢Σ A.

Monotonicity. Very easy: if Γ ⊢Σ A then there is a Σ-theorem of the form (A1 ∧ · · ·∧
An) → A such that {A1, . . . , An} ⊆ Γ. But if Γ ⊆ Γ′ then also {A1, . . . , An} ⊆ Γ′,
and Γ′ ⊢Σ A as required.

(7) Γ ⊢Σ A iff there is a finite subset Γx of Γ such that Γx ⊢Σ A.

Compactness. Left-to-right follows immediately from the fact that by definition the
number of conjuncts in the antecedent of the required conditional (A1∧· · ·∧An) → A
is finite. Right-to-left follows from part (6) (monotonicity).

(8) Γ ⊢Σ A → B iff Γ ∪ {A} ⊢Σ B.

Deduction theorem:

Γ ⊢Σ A → B ⇔ ⊢Σ (A1 ∧ · · · ∧ An) → (A → B) for some {A1, . . . , An} ⊆ Γ

⇔ ⊢Σ (A1 ∧ · · · ∧ An ∧ A) → B for some {A1, . . . , An} ⊆ Γ, by RPL

⇔ ⊢Σ (A1 ∧ · · · ∧ An ∧ A) → B for some {A1, . . . , An, A} ⊆ Γ ∪ {A}

⇔ Γ ∪ {A} ⊢Σ B
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Theorem 4 [Chellas Thm 2.16, p47]

(1) Γ is Σ-consistent iff there is an A such that not Γ ⊢Σ A.

(2) Γ is Σ-consistent iff there is no A such that both Γ ⊢Σ A and Γ ⊢Σ ¬A.

(3) If Γ is Σ-consistent, then Γ is PL-consistent.
(4) If Γ is Σ-consistent and Γ′ ⊆ Γ, then Γ′ is Σ-consistent.

(5) Γ is Σ-consistent iff every finite subset Γx of Γ is Σ-consistent.
(6) Γ ⊢Σ A iff Γ ∪ {¬A} is Σ-inconsistent.

(7) Γ ∪ {A} is Σ-consistent iff Γ 6⊢Σ ¬A.

Comments on Theorem 4

Properties (1)–(2) are alternative (equivalent) characterisations of Σ-consistency of a set
of formulas Γ.

Properties (3)–(5) should be clear enough given the corresponding properties of ⊢Σ.
Properties (6)–(7) relate Σ-consistency and deducibility ⊢Σ.

Proofs: All of these follow more or less immediately from their counterparts in Theo-
rem 3.

(1) Γ is Σ-consistent iff there is an A such that not Γ ⊢Σ A.

Suppose that Γ is Σ-consistent, i.e. that not Γ ⊢Σ ⊥. Then clearly there is a formula
A such that not Γ ⊢Σ A. For the reverse, suppose that Γ is Σ-inconsistent, i.e. that
Γ ⊢Σ ⊥. Then by RPL and Theorem 3(3), {⊥} ⊢Σ A, for every formula A. So
Γ ⊢Σ A for every formula A by Theorem 3(5).

(2) Γ is Σ-consistent iff there is no A such that both Γ ⊢Σ A and Γ ⊢Σ ¬A.

Prove the contrapositive: that Γ is Σ-inconsistent iff there is a formula A such that
Γ ⊢Σ A and Γ ⊢Σ ¬A. Left-to-right of this follows from part (1). For right-to-left:
Γ ⊢Σ {A,¬A} and {A,¬A} ⊢PL ⊥ implies Γ ⊢Σ ⊥ by Theorem 3 parts (3) and (5).

(3) If Γ is Σ-consistent, then Γ is PL-consistent.

Prove the contrapositive: if Γ is PL-inconsistent then Γ ⊢PL ⊥, which implies by
Theorem 3(3) that Γ ⊢Σ ⊥, i.e. that Γ is Σ-inconsistent.

(4) If Γ is Σ-consistent and Γ′ ⊆ Γ, then Γ′ is Σ-consistent.

Again, prove the contrapositive: if Γ ⊆ Γ′ then Γ ⊢Σ ⊥ implies Γ′ ⊢Σ ⊥ by Theo-
rem 3(6) (monotonicity of ⊢Σ).

(5) Γ is Σ-consistent iff every finite subset Γx of Γ is Σ-consistent.

Follows straightforwardly from Theorem 3(7).

(6) Γ ⊢Σ A iff Γ ∪ {¬A} is Σ-inconsistent.

Left-to-right: suppose Γ ⊢Σ A. By Theorem 3(6) (monotonicity of ⊢Σ), we have
Γ∪ {¬A} ⊢Σ A. But by Theorem 3(4) (reflexivity of ⊢Σ), we have Γ∪ {¬A} ⊢Σ ¬A.
So by part (1) Γ is Σ-inconsistent.

Right-to-left: suppose Γ∪{¬A} is Σ-inconsistent, i.e. that Γ∪{¬A} ⊢Σ ⊥. Then by
Theorem 3(8) (deduction theorem for ⊢Σ), Γ ⊢Σ ¬A → ⊥. But ¬A → ⊥ is equivalent
in PL to A, so by Theorem 3 parts (3) and (5), Γ ⊢Σ A.

(7) Γ ∪ {A} is Σ-consistent iff Γ 6⊢Σ ¬A.

Follows straightforwardly from part (6).
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Maxi-consistent sets

A set of sentences is maximal consistent in a system Σ (Σ-maxi-consistent for short) just
in case it is Σ-consistent and has only Σ-inconsistent proper extensions. In other words, a
set is Σ-maxi-consistent if it is consistent and contains as many formulas as it can without
becoming inconsistent.

Definition 5 (Σ-maxi-consistent set) A set of formulas Γ is Σ-maxi-consistent iff (i)
Γ is Σ-consistent, and (ii) for every formula A, if Γ ∪ {A} is Σ-consistent, then A ∈ Γ.

Note that clause (ii) says that where Γ is Σ-maxi-consistent, the addition of a formula not
already in Γ yields a Σ-inconsistent set of formulas.

Here are some properties of Σ-maxi-consistent sets.

Theorem 6 [Chellas Thm 2.18, p53] Let Γ be a Σ-maxi-consistent set. Then:

(1) A ∈ Γ ⇔ Γ ⊢Σ A.

(2) Σ ⊆ Γ.

(3) ⊤ ∈ Γ.

(4) ⊥ /∈ Γ.

(5) ¬A ∈ Γ ⇔ A /∈ Γ.

(6) A ∧ B ∈ Γ ⇔ A ∈ Γ and B ∈ Γ.

(7) A ∨ B ∈ Γ ⇔ A ∈ Γ or B ∈ Γ.

(8) A → B ∈ Γ ⇔ (A ∈ Γ ⇒ B ∈ Γ).

(9) A ↔ B ∈ Γ ⇔ (A ∈ Γ ⇔ B ∈ Γ).

(10) Γ is a Σ-system.

Proof I hesitate to show all the proofs because the details, in particular of (6)–(9) are
rather fiddly, and can obscure what is essentially a simple argument. Still . . .

(1) A ∈ Γ ⇔ Γ ⊢Σ A.

Left-to-right is just Theorem 3(4). For right-to-left: suppose not, i.e., suppose that
Γ ⊢Σ A but A /∈ Γ. By the maximality of Γ, Γ∪ {A} is Σ-inconsistent. From this by
Theorem 4(6), Γ ⊢Σ ¬A. So Γ is Σ-inconsistent (Theorem 4(2)). But this contradicts
Γ is Σ-maxi-consistent.

(2) Σ ⊆ Γ.

Suppose that A ∈ Σ, i.e. that ⊢Σ A. Then by Theorem 3, Γ′ ⊢Σ A for every set of
formulas Γ′. In particular, Γ ⊢Σ A which by part (1) above means A ∈ Γ.

(3) ⊤ ∈ Γ.

⊤ ∈ PL, so ⊤ ∈ Σ, so ⊤ ∈ Γ by the previous part (2).

(4) ⊥ /∈ Γ.

Suppose ⊥ ∈ Γ. Then Γ ⊢Σ ⊥, which contradicts Γ is Σ-maxi-consistent.
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(5) ¬A ∈ Γ ⇔ A /∈ Γ.

Suppose not, i.e., suppose that either (i) A ∈ Γ and ¬A ∈ Γ or (ii) A /∈ Γ and
¬A /∈ Γ. If (i), then by Theorem 4(2), Γ is Σ-inconsistent, which is a contradiction.
If (ii), then by part (1), Γ 6⊢Σ A and Γ 6⊢Σ ¬A which means (by Theorem 4(7))
Γ∪{A} is Σ-consistent and Γ∪{¬A} is Σ-consistent. So by maximality of Γ, A ∈ Γ
and ¬A ∈ Γ. But that again contradicts that Γ is Σ-consistent.

(6) A ∧ B ∈ Γ ⇔ A ∈ Γ and B ∈ Γ.

For left-to-right: suppose A∧B ∈ Γ. Then by part (1) Γ ⊢Σ A∧B. Now {A∧B} ⊢PL

A and hence {A∧B} ⊢Σ A, so by Theorem 3(5) (transitivity of ⊢Σ) we have Γ ⊢Σ A,
from which A ∈ Γ by part (1). The argument for B ∈ Γ is similar.

For right-to-left, by a similar argument: A ∈ Γ and B ∈ Γ imply Γ ⊢Σ A and Γ ⊢Σ B,
i.e., Γ ⊢Σ {A, B}. {A, B} ⊢PL A ∧ B and so {A, B} ⊢Σ A ∧ B. By the general form
of Theorem 3(5) (transitivity of ⊢Σ), Γ ⊢Σ A∧B, from which A∧B ∈ Γ by part (1).

(7) A ∨ B ∈ Γ ⇔ A ∈ Γ or B ∈ Γ.

Right-to-left: A ∈ Γ implies Γ ⊢Σ, and {A} ⊢PL A ∨ B. The rest follows as in part
(6) above.

For left-to-right, we show that A ∨ B ∈ Γ and A /∈ Γ implies B ∈ Γ. Since Γ is
Σ-maxi-consistent, A /∈ Γ implies ¬A ∈ Γ by part (5). And by part (1), we have
Γ ⊢Σ {A ∨ B,¬A}. Now {A ∨ B,¬A} ⊢PL B, so Γ ⊢Σ B, and hence B ∈ Γ by part
(1).

(8) A → B ∈ Γ ⇔ (A ∈ Γ ⇒ B ∈ Γ).

Left-to-right follows by a similar argument to parts (6) and (7). We need to show
that if A → B ∈ Γ and A ∈ Γ then B ∈ Γ, i.e. by part (1) that Γ ⊢Σ {A → B, A}
implies Γ ⊢Σ B. This follows as in parts (6) and (7) because {A → B, A} ⊢PL B.

For right-to-left we show that A → B /∈ Γ implies A ∈ Γ and B /∈ Γ. By parts (5)
and (1) it is enough to show Γ ⊢Σ ¬(A → B) implies Γ ⊢Σ A and Γ ⊢Σ ¬B. And
this follows as in previous parts from {¬(A → B)} ⊢PL A and {¬(A → B)} ⊢PL ¬B.
(Note: ¬(A → B) is equivalent in PL to A ∧ ¬B).

(9) A ↔ B ∈ Γ ⇔ (A ∈ Γ ⇔ B ∈ Γ).

This obviously follows from part (8), since A ↔ B is equivalent in PL as (A →
B) ∧ (B → A).

(10) Γ is a Σ-system.

This is just a re-statement of part (2). Γ is a Σ-system means that Γ contains every
theorem of Σ, or in other words, Σ ⊆ Γ.
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Lindenbaum’s Lemma

Theorem 7 (Lindenbaum’s lemma) Let Γ be a Σ-consistent set of formulas. Then
there exists a Σ-maxi-consistent set ∆ such that Γ ⊆ ∆.

Proof (Sketch) Let A0, A1, A2, . . . be an enumeration of the formulas of the language.
Define the set ∆ as the union of a sequence of Σ-consistent sets, as follows:

∆0 = Γ,

∆i+1 =

{

∆i ∪ {Ai}, if this is Σ-consistent

∆i ∪ {¬Ai}, otherwise

∆ =
⋃

i≥0

∆i.

Now it remains to show that

(i) ∆i is Σ-consistent, for all i;

(ii) exactly one of A and ¬A is in ∆, for every formula A;

(iii) if ∆ ⊢Σ A, then A ∈ ∆; and finally

(iv) ∆ is a Σ-maxi-consistent set.

Details omitted. (Try them!)

There is a relationship between deducibility in Σ (Γ ⊢Σ A) and Σ-maxi-consistent sets.

From Lindenbaum’s lemma it follows that a formula A is deducible from a set of formulas
Γ if and only if A belongs to every maximal extension of Γ. And a formula A is a theorem
of Σ(i.e. ⊢Σ A) if and only if A is a member of every Σ-maxi-consistent set. In other words:

Theorem 8 [Chellas Thm 2.20, p57]

(1) Γ ⊢Σ A iff A ∈ ∆ for every Σ-maxi-consistent ∆ such that Γ ⊆ ∆.

(2) ⊢Σ A iff A ∈ ∆ for every Σ-maxi-consistent ∆.

Proof Exercise. (In the tutorial exercises.)

Proof sets

Definition 9 (Proof set) The proof set of a formula A in system Σ — denoted |A|Σ —
is the set of Σ-maxi-consistent sets that contain A.

In other words, where Γ is a Σ-maxi-consistent set, Γ ∈ |A|Σ ⇔ A ∈ Γ.

Notice that the set of all Σ-maxi-consistent sets is |⊤|Σ.

This extra notation is quite useful when we look at canonical models (next). But if you
don’t like it you can ignore it.
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