499 Modal and Temporal Logic

Epistemic Logic and 'Common Knowledge'

Marek Sergot

Department of Computing Imperial College, London

Autumn 2007

Further reading:

- R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT Press, Cambridge, 1995.
- J-J. Ch. Meyer and W. van der Hoek. Epistemic Logic for Artificial Intelligence and Computer Science. Cambridge University Press, 1995.

The logic S5 ${ }^{n}$, and variations

The logic S5 = KT5 = KT45 is often taken as the standard logic of rational knowledge for a single agent (and $K D 45$ ('weak $S 5$ ') as the standard logic of belief).

Given a set of agents $\{1, \ldots, n\}$
The logic $\mathrm{S5}^{n}$ is the smallest modal logic in which each K_{i} is of type S 5 (i.e., of type $K T 5=K T 45=K T 4 B$), i.e. the smallest modal logic containing (for each $i \in 1 . . n$):

RN.	A	
K.	$\mathrm{K}_{i}(A \rightarrow B) \rightarrow\left(\mathrm{K}_{i} A \rightarrow \mathrm{~K}_{i} B\right)$	
T.	$\mathrm{K}_{i} A \rightarrow A$	'veridicality' or 'truth'
4.	$\mathrm{K}_{i} A \rightarrow \mathrm{~K}_{i} \mathrm{~K}_{i} A$	'positive introspection'
5.	$\neg \mathrm{K}_{i} A \rightarrow \mathrm{~K}_{i} \neg \mathrm{~K}_{i} A$	'negative introspection'

There are just 6 modalities in S 5 (see 'reduction laws', exercise sheet 1, e.g., $\vdash_{\mathrm{S} 5} \mathrm{~K}_{i}{ }^{k} A \leftrightarrow$ $\mathrm{K}_{i} A$, etc):

$$
\begin{aligned}
\mathrm{K}_{i} A & \rightarrow A \rightarrow \neg \mathrm{~K}_{i} \neg A \\
\mathrm{~K}_{i} \neg A \rightarrow \neg A & \rightarrow \neg \mathrm{~K}_{i} A
\end{aligned}
$$

A standard logic of belief: $K D 45^{n}$ (sometimes 'weak S5 ${ }^{n}$ ')

RN.	$\frac{A}{\mathrm{~B}_{i} A}$	
K.	$\mathrm{~B}_{i}(A \rightarrow B) \rightarrow\left(\mathrm{B}_{i} A \rightarrow \mathrm{~B}_{i} B\right)$	
P.	$\neg \mathrm{B}_{i} \perp$	'consistency'
D.	$\mathrm{B}_{i} A \rightarrow \neg \mathrm{~B}_{i} \neg A$	
4.	$\mathrm{~B}_{i} A \rightarrow \mathrm{~B}_{i} \mathrm{~B}_{i} A$	'positive introspection'
5.	$\neg \mathrm{~B}_{i} A \rightarrow \mathrm{~B}_{i} \neg \mathrm{~B}_{i} A$	'negative introspection'

Note that in every normal system the schemas P and D are inter-derivable: a normal system contains P iff it contains D.

These are very strong properties, whether we read them as referring to knowledge or belief. For example, it is generally accepted that negative introspection is a more demanding condition than positive introspection. Therefore many researchers argue that it is more reasonable to adopt $\mathrm{S} 4^{n}=K T 4^{n}$, rather than $\mathrm{S} 5^{n}$, as the logic of knowledge (and $K D 4^{n}$ as the logic of belief).

Logical omniscience

Notice that these are all normal logics and so they have, among other things:

$$
\frac{A \rightarrow B}{\mathrm{~K}_{i} A \rightarrow \mathrm{~K}_{i} B}
$$

An agent knows all the logical consequences of what it knows - one manifestation of logical omniscience.
Clearly this is not a property of real agents, and what they actually know.
But if modal epistemic logics do not describe what agents actually know, what do they describe?
Several possible suggested readings for $\mathrm{K}_{i} A$:

- "agent i knows A implicitly"
- "A follows from i 's knowledge"
- "agent i carries the information A "
- " A is agent i 's possible knowledge"

These and other possible suggestions refer to what is implicitly represented in an agent's information state, i.e., what logically follows from its actual knowledge. They do not refer to any notion of how an agent computes knowledge or answers questions based on its knowledge. What an agent actually knows is called its explicit knowledge. We won't be looking at possible formalisations of explicit knowledge and actual reasoning mechanisms.

Models

Given a set of agents $\{1, \ldots, n\}$

$$
\mathcal{M}=\left\langle W, R_{1}, \ldots, R_{n}, h\right\rangle
$$

For $\mathrm{S} 5^{n}$ every accessibility relation R_{i} is an equivalence relation.
Note that every transitive relation is symmetric if and only if it is euclidean.

Theorem

1. K^{n} is determined by the class of all models with n accessibility relations.
2. $\mathrm{T}^{n}=K T^{n}$ is determined by the class of models where the n accessibility relations are all reflexive.
3. $\mathrm{S} 4^{n}=K T 4^{n}$ is determined by the class of models where the n accessibility relations are all reflexive and transitive.
4. $\mathrm{S} 5^{n}=K T 5^{n}=K T 45^{n}$ is determined by the class of models where the n accessibility relations are all equivalence relations.
5. $K D^{n}$ is determined by the class of models where the n accessibility relations are all serial.
6. $K D 4^{n}$ is determined by the class of models where the n accessibility relations are all serial and transitive.
7. $K D 45^{n}$ is determined by the class of models where the n accessibility relations are all serial, transitive, and euclidean.

Mutual knowledge - 'everyone knows'

The auxiliary operator E (to be interpreted as "everyone knows") is defined as:

$$
\mathrm{E} A={ }_{\operatorname{def}} \mathrm{K}_{1} A \wedge \ldots \wedge \mathrm{~K}_{n} A
$$

Or more generally where G is any non-empty subset of $\{1, \ldots, n\}$:

$$
\mathrm{E}_{G} A={ }_{\operatorname{def}} \bigwedge_{i \in G} \mathrm{~K}_{i} A
$$

$\mathrm{E}_{G} A$ - "everyone in group G knows A ".
Sometimes called mutual knowledge.
Similarly we can define mutual belief - "everyone (in group G) believes A."
Given a model $\mathcal{M}=\left\langle W, R_{1}, \ldots, R_{n}, h\right\rangle$, we can define the truth conditions for $\mathrm{E}_{G} A$ as follows:

$$
\mathcal{M}, w \models \mathrm{E}_{G} A \quad \text { iff for every } i \text { in } G, \mathcal{M}, w \models \mathrm{~K}_{i} A
$$

iff for every i in G, for every $w^{\prime}, w R_{i} w^{\prime}$ implies $\mathcal{M}, w^{\prime} \models A$
iff for every $w^{\prime}, w R_{\mathrm{E}_{G}} w^{\prime}$ implies $\mathcal{M}, w^{\prime} \models A$
where $R_{\mathrm{E}_{G}}=R_{i_{1}} \cup \cdots \cup R_{i_{m}}$ for $G=\left\{i_{1}, \ldots, i_{m}\right\} . R_{\mathrm{E}_{G}}=\bigcup_{i \in G} R_{i}$.
E_{G} is evaluated on a relation (the relation $R_{\mathrm{E}_{G}}$). It follows that each E_{G} is normal:

$$
\begin{array}{lc}
\text { RN. } & \frac{A}{\mathrm{E}_{G} A} \\
\text { K. } & \mathrm{E}_{G}(A \rightarrow B) \rightarrow\left(\mathrm{E}_{G} A \rightarrow \mathrm{E}_{G} B\right)
\end{array}
$$

Further, if each R_{i} is reflexive, then clearly $R_{1} \cup \cdots \cup R_{n}$ is also reflexive (it is enough that one of the R_{i} is reflexive), and so we also have:

$$
\text { T. } \quad \mathrm{E}_{G} A \rightarrow A
$$

However, it is easy to check:

- $R_{1} \cup \cdots \cup R_{n}$ is not necessarily transitive even if all the R_{i} are transitive
- $R_{1} \cup \cdots \cup R_{n}$ is not necessarily euclidean even if all the R_{i} are euclidean.

And so the following are not valid:

$$
\begin{aligned}
& \not \models \mathrm{E}_{G} A \rightarrow \mathrm{E}_{G} \mathrm{E}_{G} A \\
& \not \models \neg \mathrm{E}_{G} A \rightarrow \mathrm{E}_{G} \neg \mathrm{E}_{G} A
\end{aligned}
$$

However, the union of a set of symmetric relations is also symmetric, and so if all the R_{i} are symmetric (as they are if all are equivalence relations) then the following schema is valid:

$$
\text { B. } \quad A \rightarrow \mathrm{E}_{G} \neg \mathrm{E}_{G} \neg A
$$

It is also easy to see that

$$
\models \mathrm{E}_{G} A \rightarrow \mathrm{E}_{G^{\prime}} A \quad \text { when } G^{\prime} \subseteq G
$$

One can construct a representation of mutual belief ("everyone in group G believes") in similar fashion.
Notice that the union of a set of serial relations is also serial. And so, e.g.:

$$
\begin{aligned}
& \vdash_{K D 45^{n}} \neg \mathrm{E}_{G} \perp \\
& \vdash_{K D 45^{n}} \mathrm{E}_{G} A \rightarrow \neg \mathrm{E}_{G} \neg A
\end{aligned}
$$

Distributed knowledge

(Not so interesting in my opinion.)
If mutual knowledge of a group of agents corresponds to the union of the accessibility relations $R_{1} \cup \cdots \cup R_{n}$, what kind of knowledge corresponds to the intersection $R_{1} \cap \cdots \cap R_{n}$?

Given a model $\mathcal{M}=\left\langle W, R_{1}, \ldots, R_{n}, h\right\rangle$, define the truth conditions for $\mathrm{D}_{G} A$ as follows: $\mathcal{M}, w \models \mathrm{D}_{G} A \quad$ iff for every w^{\prime} such that $w R_{i} w^{\prime}$ for every $i \in G$ we have $\mathcal{M}, w^{\prime} \models A$ iff for every $w^{\prime}, w R_{\mathrm{D}_{G}} w^{\prime}$ implies $\mathcal{M}, w^{\prime} \models A$
where $R_{\mathrm{D}_{G}}=R_{i_{1}} \cap \cdots \cap R_{i_{m}}$ for $G=\left\{i_{1}, \ldots, i_{m}\right\} . R_{\mathrm{D}_{G}}=\bigcap_{i \in G} R_{i}$.
Easy to see that the following schema is valid:

$$
\models \mathrm{K}_{i} A \rightarrow \mathrm{D}_{G} A \quad \text { for every } i \in G
$$

Or in other words: $\quad \models \bigvee_{i \in G} \mathrm{~K}_{i} A \rightarrow \mathrm{D}_{G} A$
This is easy to check because $\bigcap_{j \in G} R_{j} \subseteq R_{i} \quad$ for every $i \in G$.
But the following is not valid:

$$
\not \models \mathrm{D}_{G} A \rightarrow \bigvee_{i \in G} \mathrm{~K}_{i} A
$$

So $\mathrm{D}_{G} A$ means that group G 'knows' A if they could somehow pool their information even when no i in G individually knows A.

Clearly: $\quad \models \mathrm{D}_{G} A \rightarrow \mathrm{D}_{G^{\prime}} A \quad$ when $G \subseteq G^{\prime}$
D_{G} is interpreted on a relation (the relation $R_{\mathrm{D}_{G}}=\bigcap_{i \in G} R_{i}$).
It follows that every D_{G} is normal. The logic of distributed knowledge has:

$$
\begin{array}{lc}
\text { RN. } & \frac{A}{\mathrm{D}_{G} A} \\
\text { K. } & \mathrm{D}_{G}(A \rightarrow B) \rightarrow\left(\mathrm{D}_{G} A \rightarrow \mathrm{D}_{G} B\right)
\end{array}
$$

Also:

- if each R_{i} is reflexive then $\bigcap_{i \in G} R_{i}$ is reflexive;
- if each R_{i} is symmetric then $\bigcap_{i \in G} R_{i}$ is symmetric;
- if each R_{i} is transitive then $\bigcap_{i \in G} R_{i}$ is transitive.

And so e.g. the logic $S 5^{n}$ with distributed knowledge has:

$$
\begin{array}{cc}
\text { T. } & \mathrm{D}_{G} A \rightarrow A \\
\text { 4. } & \mathrm{D}_{G} A \rightarrow \mathrm{D}_{G} \mathrm{D}_{G} A \\
\text { 5. } & \neg \mathrm{D}_{G} A \rightarrow \mathrm{D}_{G} \neg \mathrm{D}_{G} A
\end{array}
$$

Distributed knowledge is not very interesting, in my opinion. However, there is a recently established (August 2007!) connection to the logic of collective action.
Roughly: read $\mathrm{D}_{i} A$ as ' A is a necessary consequence of what i does'.
Then $\mathrm{D}_{G} A$ represents a kind of collective action by the group $G: A$ is a necessary consequence of the group G 's collective actions, though not a necessary consequence of what any of the individual members in G does.'

Some useful observations

Consider models/frames

$$
\mathcal{M}=\left\langle W, R_{1}, R_{2}, \ldots\right\rangle
$$

with \square_{1} and \square_{2} interpreted on R_{1} and R_{2} respectively.
If $R_{1} \subseteq R_{2}$ then

- $\models \diamond_{1} A \rightarrow \diamond_{2} A$
- $\models \square_{2} A \rightarrow \square_{1} A$

It is easy to check that $\square_{2} A \rightarrow \square_{1} A$ is canonical for $R_{1} \subseteq R_{2}$

Mutual knowledge ('everyone knows')

$$
R_{\mathrm{E}_{G}}=R_{1} \cup \cdots \cup R_{n}
$$

- $R_{\mathrm{E}_{G}} \subseteq R_{1} \cup \cdots \cup R_{n}$ gives $\vDash \mathrm{K}_{1} A \wedge \cdots \wedge \mathrm{~K}_{n} A \rightarrow \mathrm{E}_{G} A$.
- $R_{1} \cup \cdots \cup R_{n} \subseteq R_{\mathrm{E}_{G}}$ gives $\models \mathrm{E}_{G} \rightarrow \mathrm{~K}_{1} A \wedge \cdots \wedge \mathrm{~K}_{n} A$.
$\mathrm{E}_{G} \leftrightarrow \mathrm{~K}_{1} A \wedge \cdots \wedge \mathrm{~K}_{n} A$ is canonical for $R_{\mathrm{E}_{G}}=R_{1} \cup \cdots \cup R_{n}$

Distributed knowledge

$$
R_{\mathrm{D}_{G}}=R_{1} \cap \cdots \cap R_{n}
$$

- $R_{1} \cap \cdots \cap R_{n} \subseteq R_{i}$ so $\models \mathrm{K}_{i} A \rightarrow \mathrm{D}_{G} A$.

But $\models \mathrm{K}_{i} A \rightarrow \mathrm{D}_{G} A$ just implies

- $R_{i} \subseteq R_{\mathrm{D}_{G}}$ for every $i \in G$
- $R_{1} \cap \cdots \cap R_{n} \subseteq R_{\mathrm{D}_{G}}$
$\mathrm{K}_{1} A \vee \cdots \vee \mathrm{~K}_{n} A \rightarrow \mathrm{D}_{G} A$ is canonical for $R_{1} \cap \cdots \cap R_{n} \subseteq R_{\mathrm{D}_{G}}$

Finally (useful in a minute)

$$
\mathcal{M}=\left\langle W, R_{1}, R_{2}, \ldots\right\rangle
$$

$$
\mathcal{M}, w \models \square_{1} \square_{2} A \quad \text { iff } \mathcal{M}, w^{\prime} \models A \text { for all }\left(w, w^{\prime}\right) \in R_{1} \circ R_{2}
$$

where $R_{1} \circ R_{2}$ is the composition of relations R_{1} and R_{2} :
$\left(w, w^{\prime}\right) \in R_{1} \circ R_{2} \quad$ iff there exists $w^{\prime \prime}$ such that $\left(w, w^{\prime \prime}\right) \in R_{1}$ and $\left(w^{\prime \prime}, w^{\prime}\right) \in R_{2}$

Common knowledge

Basic idea: it is common knowledge in group G that A when everyone in group G knows A, and everyone in group G knows everyone in group G knows A, and everyone in group G knows everyone in group G knows everyone in group G knows A, etc, etc.

$$
\mathrm{C}_{G} A \leftrightarrow \mathrm{E}_{G} A \wedge \mathrm{E}_{G} \mathrm{E}_{G} A \wedge \cdots \wedge \mathrm{E}_{G}^{k} A \wedge \ldots
$$

But the above is an infinitely long conjunction, and hence is not a well formed formula.
Given a model $\mathcal{M}=\left\langle W, R_{1}, \ldots, R_{n}, h\right\rangle$, we can define the truth conditions for $\mathrm{C}_{G} A$ as follows:

$$
\mathcal{M}, w \models \mathrm{C}_{G} A \quad \text { iff } \mathcal{M}, w \models \mathrm{E}_{G}^{k} A \text { for every } k \geq 1
$$

Reminder

When R and S are both binary relations on a set W their composition $R \circ S$ is defined as follows:
$\left(w, w^{\prime}\right) \in R \circ S \quad$ iff there exists $w^{\prime \prime}$ such that $\left(w, w^{\prime \prime}\right) \in R$ and $\left(w^{\prime \prime}, w^{\prime}\right) \in S$
Usual notation: $R^{1}=R, \quad R^{2}=R \circ R, \quad \ldots, \quad R^{k+1}=R \circ R^{k}=R^{k} \circ R, \quad \ldots$
So R^{k} can be seen as the set of all paths of length k of R (or rather, the set of pairs of elements of W that are connected by paths of length k of R).

The transitive closure R^{+}of a binary relation R is the smallest (set inclusion) transitive relation that contains R. And \ldots

$$
R^{+}=R^{1} \cup R^{2} \cup \cdots \cup R^{k} \cup \ldots=\bigcup_{k \geq 1} R^{k}
$$

So, given a model $\mathcal{M}=\left\langle W, R_{1}, \ldots, R_{n}, h\right\rangle$, we can also define the truth conditions for $\mathrm{C}_{G} A$ as follows:

$$
\mathcal{M}, w \models \mathrm{C}_{G} A \quad \text { iff } \mathcal{M}, w \models \mathrm{E}_{G}{ }^{k} A \text { for every } k \geq 1
$$

iff for every $w^{\prime}, w R_{\mathbb{E}_{G}}^{k} w^{\prime}$ implies $\mathcal{M}, w^{\prime} \models A$, for every $k \geq 1$
iff for every $w^{\prime}, w R_{\mathrm{C}_{G}} w^{\prime}$ implies $\mathcal{M}, w^{\prime} \models A$
where $R_{\mathrm{C}_{G}}=R_{\mathrm{E}_{G}}^{+}$, the transitive closure of $R_{\mathrm{E}_{G}}$.

$$
\text { For } G=\left\{i_{1}, \ldots, i_{m}\right\}
$$

$$
\begin{aligned}
& R_{\mathrm{E}_{G}}=\left(R_{i_{1}} \cup \ldots R_{i_{m}}\right) \\
& R_{\mathrm{C}_{G}}=\left(R_{i_{1}} \cup \ldots R_{i_{m}}\right)^{+}=\bigcup_{k \geq 1}\left(R_{i_{1}} \cup \ldots R_{i_{m}}\right)^{k}
\end{aligned}
$$

C_{G} is interpreted on a relation (the relation $R_{\mathrm{C}_{G}}=R_{\mathrm{E}_{G}}^{+}$).
It follows that every C_{G} is normal. Also:

- the transitive closure of a reflexive relation is also reflexive; if the R_{i} are reflexive, $R_{\mathrm{E}_{G}}$ is reflexive and so is $R_{\mathrm{C}_{G}}$;
- the transitive closure of a symmetric relation is also symmetric; if the R_{i} are transitive and euclidean they are symmetric; $R_{\mathrm{E}_{G}}$ is symmetric and so is $R_{\mathrm{C}_{G}}$;
- the transitive closure of a relation is obviously transitive; a transitive relation that is symmetric is also euclidean; so if the R_{i} are transitive and euclidean, $R_{\mathrm{C}_{G}}$ is symmetric and therefore also euclidean.

And so e.g. the logic $S 5_{\mathrm{C}}^{n}$ has:

$$
\begin{gathered}
\frac{A}{\mathrm{C}_{G} A} \\
\mathrm{C}_{G}(A \rightarrow B) \rightarrow\left(\mathrm{C}_{G} A \rightarrow \mathrm{C}_{G} B\right) \\
\mathrm{C}_{G} A \rightarrow A \\
\mathrm{C}_{G} A \rightarrow \mathrm{C}_{G} \mathrm{C}_{G} A \\
\neg \mathrm{C}_{G} A \rightarrow \mathrm{C}_{G} \neg \mathrm{C}_{G} A
\end{gathered}
$$

It is also easy to see that

$$
\vdash_{\mathrm{S5}_{\mathrm{C}}^{n}} \mathrm{C}_{G} A \rightarrow \mathrm{C}_{G^{\prime}} A \quad \text { when } G^{\prime} \subseteq G
$$

And obviously

- $\vdash_{\mathrm{S5}_{\mathrm{c}}^{n}} \mathrm{C}_{G} A \rightarrow \mathrm{E}_{G} A$
- $\vdash_{\mathrm{Ss}_{\mathrm{C}}^{n}} \mathrm{C}_{G} A \rightarrow \mathrm{C}_{G} \mathrm{E}_{G} A$
- $\vdash_{\mathrm{S}_{\mathrm{C}}^{n}} \mathrm{C}_{G} A \rightarrow \mathrm{C}_{G} \mathrm{~K}_{i} A$
etc, etc.
One can construct a representation of common belief ('it is a common belief in group G that") in similar fashion.
The transitive closure of a serial relation is also serial. And so:

$$
\begin{aligned}
& \vdash_{K D 45_{\mathrm{C}}^{n}} \neg \mathrm{C}_{G} \perp \\
& \vdash_{K D 45_{\mathrm{C}}^{n}} \mathrm{C}_{G} A \rightarrow \neg \mathrm{C}_{G} \neg A
\end{aligned}
$$

Axioms

Logics of common knowledge can be axiomatized on the basis of the corresponding epistemic logics by adding suitable axiom schemata and inference rules. The following axiomatization is due to Halpern and Moses.

FP. $\quad \mathrm{C}_{G} A \rightarrow \mathrm{E}_{G}\left(A \wedge \mathrm{C}_{G} A\right) \quad$ 'Fixpoint axiom'
RI. $\frac{A \rightarrow \mathrm{E}_{G}(A \wedge B)}{A \rightarrow \mathrm{C}_{G} B} \quad$ 'Rule of Induction'

Various other axiomatizations exist. (There is no need to memorise the above.)
The rule RI is equivalent to the following (which is perhaps clearer)

$$
\mathrm{RI}^{\prime} \quad \frac{A \rightarrow \mathrm{E}_{G}(A \wedge B)}{A \rightarrow \mathrm{C}_{G}(A \wedge B)}
$$

It is easy to show the above are sound (with respect to the class of models in which $R_{\mathrm{C}_{G}}=R_{\mathrm{E}_{G}}^{+}$.)
For the schema FP, notice that

- $\mathrm{C}_{G} A \rightarrow \mathrm{E}_{G} A$ is validated by $R_{\mathrm{E}_{G}} \subseteq R_{\mathrm{E}_{G}}^{+}$;
- $\mathrm{C}_{G} A \rightarrow \mathrm{E}_{G} \mathrm{C}_{G} A$ is validated by $R_{\mathrm{E}_{G}} \circ R_{\mathrm{E}_{G}}^{+} \subseteq R_{\mathrm{E}_{G}}^{+}$
(Check it. Easy.)
For RI^{\prime}, suppose $\mathcal{M} \models A \rightarrow \mathrm{E}_{G}(A \wedge B)$. Suppose $\mathcal{M}, w \models A$. Now show $\mathcal{M}, w \models \mathrm{C}_{G}(A \wedge B)$: show by induction on k that $\mathcal{M}, w^{\prime} \models A \wedge B$ for every $\left(w, w^{\prime}\right) \in R_{\mathrm{E}_{G}}^{k}$, for every $k \geq 1$.

One can also show completeness by the canonical model method. (There are a couple of little fiddly details, which I omit. See e.g. the book by Fagin, Halpern,Moses, and Vardi.)
(There is no need to memorise the axiomatisation. It is included for your interest.)

