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Notation

M |= A — A is valid in model M (A is true at all worlds in M)
F |= A — A is valid on the frame F (valid in all models with frame F)
|=C A — A is valid in the class of models C (valid in all models in C)
|=F A — A is valid in the class of frames F (valid on all frames in F)

Truth sets

The truth set, ‖A‖M, of the formula A in the model M is the set of worlds in M at which
A is true.

Definition 1 (Truth set)

‖A‖M =def {w in M : M, w |= A}

Theorem 2 [Chellas Thm 2.10, p38] Let M = 〈W, . . . , h 〉 be a model. Then:

(1) ‖p‖M = h(p), for any atom p.

(2) ‖⊤‖M = W .

(3) ‖⊥‖M = ∅.

(4) ‖¬A‖M = W − ‖A‖M.

(5) ‖A ∧ B‖M = ‖A‖M ∩ ‖B‖M.

(6) ‖A ∨ B‖M = ‖A‖M ∪ ‖B‖M.

(7) ‖A → B‖M = (W − ‖A‖M) ∪ ‖B‖M.

Proof Exercise (very easy).

‖A‖M can be regarded as the proposition expressed by the formula A in the model M.
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Relational (‘Kripke’) semantics

Let M = 〈W, R, h 〉 be a standard, relational (‘Kripke’) model.

The truth conditions for 2A and 3A are

M, w |= 2A ⇔ ∀t (w R t ⇒ M, t |= A)

M, w |= 3A ⇔ ∃t (w R t & M, t |= A)

In terms of truth sets:
M, w |= 2A ⇔ R[w] ⊆ ‖A‖M

M, w |= 3A ⇔ R[w] ∩ ‖A‖M 6= ∅

where R[w] =def {t in M : w R t}. R[w] is the set of worlds accessible from w.

And you know that validities of certain formulas correspond to various frame properties,
e.g.

2A → A reflexive frames
2A → 22A transitive frames
2A → 3A serial frames
etc.

Multi-modal systems

All this can be generalised easily to the multi-modal case.

Example: consider a language with ‘box’ operators Ka, Kb, Kc, . . . interpreted on models
with structure 〈W, Ra, Rb, Rc, . . . , h 〉.

You can read KaA as ‘a knows that A’ for example.

Suppose each Ri is reflexive. Then KiA → A is valid for each i = a, b, c, . . . .

There may also be bridging properties, say:

KbA → KaA

which is valid in frames in which Ra ⊆ Rb.

We will prove that later.

One can also have modal operators with arity 2, 3, . . . (even arity 0). Example: ‘since’ and
‘until’, which are binary. I may include some further examples later, for various forms of
conditionals, if time allows.

Modal logics: syntactic characterisations

But now we are going to look at syntactic characterisations of modal logics — axioms,
rules of inference, systems, theorems, deducibility, etc.

Of particular interest are so-called normal systems of modal logics. These are the logics
of relational (‘Kripke’) frames.

There are also weaker non-normal modal logics. They don’t have a relational (‘Kripke’)
semantics.
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Systems of modal logic

In common with most modern approaches, we will define systems of modal logic (‘modal
logics’ or just ‘logics’ for short) in rather abstract terms — a system of modal logic is just
a set of formulas satisfying certain closure conditions. A formula A is a theorem of the
system Σ simply when A ∈ Σ. Which closure conditions? See below.

Systems of modal logic can also be defined (syntactically) in other ways, usually by refer-
ence to some kind of proof system. For example:

• Hilbert systems: given a set of formulas called axioms and a set of rules of proof,
a formula A is a theorem of the system when it is the last formula of a sequence
of formulas each of which is either an axiom or obtained from its predecessor by
applying one of the rules of proof.

There are also natural deduction proof systems, tableau-style proof systems, etc for modal
logics. We shall not be covering them in this course.

In this course, a system of modal logic is just a set of formulas satisfying certain closure
conditions (defined below).

The theorems of a logic Σ are just the formulas in Σ. We write ⊢Σ A to mean that A is a
theorem of Σ.

Definition ⊢Σ A iff A ∈ Σ

Schemas

A schema is a set of formulas of a particular form. Example:

5. 3A → 23A

stands for the set of all formulas of this form where A is any formula. ‘5’ here is just a
label for the schema, for reference.

PL denotes the set of all propositional tautologies (including formulas with modal opera-
tors, such as 2p ∨ ¬2p, which are tautologies).

Rules of inference

In general, a rule of inference has the form

A1, . . . , An

A
(n ≥ 0)

A set of formulas Σ is closed under (or sometimes just has) a rule of inference just in case
whenever the set Σ contains all of A1, . . . , An it contains also A, in other words

if {A1, . . . , An} ⊆ Σ then A ∈ Σ

One can use rule schemas too.
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Example

Some modal logics have (are closed under) the rule

RN.
A

2A

If ⊢Σ A then ⊢Σ 2A

Example

Many modal logics (the ‘classical’ systems) have (are closed under) the rule

RE.
A ↔ B

2(A ↔ B)

If ⊢Σ A ↔ B then ⊢Σ 2(A ↔ B)

Modus ponens

MP.
A → B, A

B

If ⊢Σ A → B and ⊢Σ A then ⊢Σ B.

Uniform substitution

US.
A

B
where B is obtained from A by uniformly replacing
propositional atoms in A by arbitrary formulas.

If ⊢Σ A then ⊢Σ B where B is obtained from A by uniformly replacing propositional atoms
in A by arbitrary formulas.

Tautological consequence (propositional consequence)

RPL.
A1, . . . , An

A
(n ≥ 0),

where A is a tautological consequence of A1, . . . , An.

(A is a tautological consequence of A1, . . . , An when A follows from A1, . . . , An in ordinary
propositional logic; that is to say, when (A1 ∧ · · · ∧ An) → A is a tautology.)
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Systems of modal logic — definition

Definition 3 (System of modal logic) A set of formulas Σ is a system of modal logic
iff it contains all propositional tautologies (PL) and is closed under modus ponens (MP)
and uniform substitution (US).

Equivalently, a system of modal logic is any set of formulas closed under the rules RPL
and uniform substitution (US).

The point is: a system of modal logic is any set of formulas that is closed with respect to
all propositionally correct modes of interence.

We will usually just say ‘logic’ or sometimes ‘system’ instead of ‘system of modal logic’.

The theorems of a logic are just the formulas in it. We write ⊢Σ A to mean that A is a
theorem of Σ.

Definition 4 ⊢Σ A iff A ∈ Σ

Example 5 (Blackburn et al, p190)

(i) The set of all formulas L is a system of modal logic, the inconsistent logic.

(ii) If {Σi | i ∈ I} is a collection of logics, then
⋂

i∈I
Σi is a logic.

(iii) Define ΣF to be the set of formulas valid on a class F of frames. ΣF is a logic.

(iv) Define ΣC to be the set of formulas valid on a class C of models. ΣC need not be a
logic. (Consider a class C consisting of models M in which p is true at all worlds but
q is not. Then |=C p, but 6|=C q. So ΣC is not closed under uniform substitution.)

Exercise: Prove the above statements (i) to (iii).

(i) Trivial. We need to show that L contains PL and is closed under MP and US. This
is trivial, because L is the set of all formulas.

(ii) Easy. PL is a subset of every Σi, so also a subset of the intersection. To show
the intersection is closed under MP: suppose A and A → B are formulas in the
intersection. Then both formulas belong to every Σi too, and since every Σi is closed
under MP, B must belong to every Σi. So B is in the intersection also, so the
intersection is closed under MP. A similar argument works for uniform substitution
US.

(iii) We have to show that ΣF contains PL and is closed under MP and US.

The first two are straightforward and are left as an exercise (tutorial sheet). To show
closure under US is not difficult but is rather long and fiddly so details omitted here.
The basic idea is simple enough. Blackburn et al put it like this: validity on a frame
abstracts away from the effects of particular assignments: if a formula is valid on a
frame, this cannot be because of the particular values assigned to its propositional
atoms. So we should be free to replace the atoms in the formula with any other
formula, as long as we do this uniformly (i.e., as long as we replace all occurrences
of an atom p by the same formula).
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Note: For those looking at the book by Chellas. The definition of a system of modal
logic used by Chellas is very slightly different. Chellas’s definition (2.11, p46) requires only
that the set of formulas is closed under propositional consequence (RPL, or equivalently,
contains all tautologies PL and is closed under modus ponens (MP)) — there is no mention
of uniform substitution. In the presentation of actual systems of interest it makes no
difference because these are usually presented in terms of schemas, and schemas build
in the effect of uniform substitution indirectly. But be aware that there is a technical
difference between these definitions. We have already seen an example: the ΣC defined in
the last part of the previous example.

Because logics are simply sets of formulas, their relative strength is measured in terms of
set inclusion: a logic Σ is at least as strong as a logic Σ′ when Σ ⊇ Σ′.

Definition 6 A system of modal logic is a Σ-system when it contains every theorem of Σ.

So Σ is always itself a Σ-system. And every system of modal logic is a PL-system.

Theorem 7 [Chellas Thm 2.13, p46]

(1) PL is a system of modal logic.

(2) Every system of modal logic is a PL-system.

(3) PL is the smallest (set inclusion) system of modal logic.

Proof Exercise. (Very easy — apply the definitions.)

How to define a system of modal logic Σ?

Various ways, but one common way is this: given a set of formulas Γ and a set of rules
of inference R, define Σ to be the smallest system of modal logic containing Γ and closed
under R. (Or equivalently, given the definition of ‘system of modal logic’, the smallest set
of formulas containing PL and Γ, and closed under R, modus ponens (MP), and uniform
substitution (US).)

One then says that the system Σ is generated by or sometimes axiomatized by 〈Γ, R 〉. Γ
and R are sometimes called ‘axioms’ of Σ.

Note that the same system may be generated by different sets of formulas and rules.
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Example The modal logic S4 (which is the normal modal logic KT4 in the standard
classification, as explained later) is generated by (is the smallest system of modal logic
containing) the following schemas (the labels are standard — see later):

K. 2(A → B) → (2A → 2B)

T. 2A → A

4. 2A → 22A

and closed under the following rule of inference:

RN.
A

2A

Because of uniform substitution, some authors prefer to write the above with propositional
atoms instead of arbitrary formulas (A, B etc) and schemas. So they would write that S4
is generated by the following set of formulas

K. 2(p → q) → (2p → 2q)

T. 2p → p

4. 2p → 22p

and the following rule of inference:

RN.
p

2p

My personal preference is to use schemas, but it’s a trivial point.

The same system S4 can be defined in other ways. For example it is also generated by the
following schemas and rules:

RM.
A → B

2A → 2B

N. 2⊤

C. (2A ∧ 2B) → 2(A ∧ B)

T. 2p → p

4. 2p → 22p

Exercise: justify the above claim. (The answer is contained in Theorem 12 below.)

One typical problem is to determine whether 〈Γ, R 〉 generates the same system of modal
logic as 〈Γ′, R′ 〉. One way of doing that is to show that Γ′ and R′ can be derived from
〈Γ, R 〉 (and that Γ and R can be derived from 〈Γ′, R′ 〉). Another way is to show that
〈Γ, R 〉 and 〈Γ′, R′ 〉 are sound and complete with respect to the same class of semantic
structures (models or frames). We will look at how to do that presently.
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Example

Suppose Σ is a system of modal logic containing the following schema

K. 2(A → B) → (2A → 2B)

and closed under the following rule of inference:

RN.
A

2A

(Σ is then by definition a ‘normal modal logic’, but ignore that for now.)

Show that Σ contains all instances of the following schema as theorems:

(2A ∧ 2B) → 2(A ∧ B)

1. ⊢Σ A → (B → (A ∧ B)) PL

2. ⊢Σ 2(A → (B → (A ∧ B))) 1, RN
3. ⊢Σ 2(A → (B → (A ∧ B))) → (2A → 2(B → (A ∧ B))) K (an instance of K)
4. ⊢Σ 2A → 2(B → (A ∧ B)) 2, 3, MP
5. ⊢Σ 2(B → (A ∧ B)) → (2B → 2(A ∧ B)) K (an instance of K)
6. ⊢Σ 2A → (2B → 2(A ∧ B)) 4, 5, RPL
7. ⊢Σ (2A ∧ 2B) → 2(A ∧ B) 6, RPL

Note:

Step 6 is a bit casual. You can read it as ‘6 follows from 4 and 5 by propositional logic’.
Officially, there are a couple of steps omitted here.

The same holds for step 7: read it as ‘follows from 6 by propositional logic’.

Steps 2 and 3 above are a bit long-winded. They could be combined, like this:

2. ⊢Σ 2(A → (B → (A ∧ B)))
3′. ⊢Σ 2A → 2(B → (A ∧ B)) 2, K, MP

This is probably easier to read.

Similarly, one could combine steps 4 and 5, like this:

4. ⊢Σ 2A → 2(B → (A ∧ B))
5′. ⊢Σ 2A → (2B → 2(A ∧ B)) 4, K, RPL
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Example

Suppose, as in the previous example, that Σ is a modal logic containing schema K and
closed under the rule RN. Show that Σ is closed under the following rule RM:

RM.
A → B

2A → 2B

1. ⊢Σ A → B assumption
2. ⊢Σ 2(A → B) 1, RN
3. ⊢Σ 2A → 2B 2, K, MP

With step 2 written out in full detail, the derivation looks like this

1. ⊢Σ A → B assumption
2. ⊢Σ 2(A → B) 1, RN
3. ⊢Σ 2(A → B) → (2A → 2B) K (an instance of K)
4. ⊢Σ 2A → 2B 2, 3, MP
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Normal modal logics

Normal systems of modal logic are defined in terms of the schema

K. 2(A → B) → (2A → 2B)

and the rule of inference (‘necessitation’)

RN.
A

2A

(or equivalently, in terms of the rule RK, see below).

3 can be treated as an abbreviation for ¬2¬ or as a primitive of the language. We will
follow usual practice and treat it as a primitive. So we need another schema:

Df3. 3A ↔ ¬2¬A

Definition 8 (Normal system) A system of modal logic is normal iff it contains Df3
and K and is closed under RN.

Equivalently ...

Theorem 9 A system of modal logic is normal iff it contains Df3 and is closed under
RK.

RK.
(A1 ∧ . . . ∧ An) → A

(2A1 ∧ . . . ∧ 2An) → 2A
(n ≥ 0)

This is a special case of Theorem 12 later.

Example 10 (Blackburn et al, p192)

(i) The inconsistent logic is a normal logic.

(ii) PL is not a normal logic.

(iii) If {Σi | i ∈ I} is a collection of normal logics, then
⋂

i∈I
Σi is a normal logic.

(iv) If F is any class of frames then ΣF, the set of formulas valid on F, is a normal logic.

Exercise: Prove the above statements. (In the tutorial exercises.)

The smallest normal modal logic is called K. It is therefore the smallest modal logic con-
taining K and Df3 and closed under RN. It is also the logic of formulas valid on the class
of all relational (‘Kripke’) frames.
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Normal systems

The smallest normal modal logic is called K. To name normal systems it is usual to write

K ξ1 . . . ξn

for the normal modal logic that results when the schemas ξ1, . . . , ξn are taken as theorems;
i.e., K ξ1 . . . ξn is the smallest normal system of modal logic containing (every instance of)
the schemas ξ1, . . . , ξn.

Some common axiom schemas:

D. 2A → 3A

T. 2A → A

B. A → 23A

4. 2A → 22A

5. 3A → 23A

And some that are a bit less common (but still well-known):

H. (2(A ∨ B) ∧ 2(2A ∨ B) ∧ 2(A ∨ 2B)) → (2A ∨ 2B)

L. 2(2A → A) → 2A

(Obviously you are not expected to memorise these axioms schemas. Those in the first
group come up so frequently that you probably will remember them anyway.)

Some systems also have historical names (T, B, S4, S4.2, S4.3, S5, . . . ).

K the class of all frames (‘Kripke frames’)
K4 the class of transitive frames
T = KT the class of reflexive frames
B = KB the class of symmetric frames
KD the class of serial frames
KD45 the class of serial, transitive, euclidean frames
S4 = KT4 the class of reflexive, transitive frames
S5 = KT5 the class of frames whose relation is an equivalence relation

the class of frames whose relation is a universal relation
S4.3 =KT4H the class of reflexive, transitive frames with no branching to the right
KL the class of finite transitive trees

Some Soundness and Completeness Results
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Theorem 11 [Chellas Thm 4.2, p114] Every normal system of modal logic has the follow-
ing rules of inference and theorems.

RN.
A

2A

RM.
A → B

2A → 2B

RR.
(A ∧ B) → C

(2A ∧ 2B) → 2C

RK.
(A1 ∧ . . . ∧ An) → A

(2A1 ∧ . . . ∧ 2An) → 2A
(n ≥ 0)

RE.
A ↔ B

2A ↔ 2B

N. 2⊤

M. 2(A ∧ B) → (2A ∧ 2B)

C. (2A ∧ 2B) → 2(A ∧ B)

R. (or MC.) 2(A ∧ B) ↔ (2A ∧ 2B)

K. 2(A → B) → (2A → 2B)

Note: There is an important difference between the system K (the smallest normal sys-
tem of modal logic), the schema K, and the rule of inference RK. All normal systems,
including the smallest such, K, are closed under the rule RK. All systems closed under RK
are normal. But there are non-normal systems that contain the schema K: the schema
K by itself does not guarantee that a system is normal. The schema K together with the
‘rule of necessitation’ RN are equivalent to the rule RK characteristic of normal systems.
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Proofs of theorem 11

RN: By definition of normal system.

RM: This is the special case of RK for n = 1. But here is a direct proof:

1. ⊢Σ A → B ass.
2. ⊢Σ 2(A → B) 1, RN
3. ⊢Σ 2(A → B) → (2A → 2B) K
4. ⊢Σ 2A → 2B 2, 3, MP

RR: This is the special case of RK for n = 2. But it might be helpful to see a direct proof:

1. ⊢Σ (A ∧ B) → C ass.
2. ⊢Σ A → (B → C) 1, RPL
3. ⊢Σ 2A → 2(B → C) 2, RM
4. ⊢Σ 2(B → C) → (2B → 2C) K
5. ⊢Σ 2A → (2B → 2C) 3, 4, RPL
6. ⊢Σ (2A ∧ 2B) → 2C 5, RPL

RK: This is a generalisation of the previous proof RR, by induction on n. The base case
n = 0 is just RN. For the inductive step, assume RK holds for some n ≥ 0 and
consider the case n + 1:

1. ⊢Σ (A1 ∧ · · · ∧ An ∧ An+1) → A ass.
2. ⊢Σ (A1 ∧ · · · ∧ An) → (An+1 → A) 1, RPL
3. ⊢Σ (2A1 ∧ · · · ∧ 2An) → 2(An+1 → A) 2, Ind.Hyp.
4. ⊢Σ 2(An+1 → A) → (2An+1 → 2A) K
5. ⊢Σ (2A1 ∧ · · · ∧ 2An) → (2An+1 → 2A) 3, 4, RPL
6. ⊢Σ (2A1 ∧ · · · ∧ 2An ∧ 2An+1) → 2A 5, RPL

RE: Follows immediately from RM. A ↔ B is the conjunction of A → B and B → A.
Apply RM to both, and then form the conjunction to get the biconditional 2A ↔
2B.

N: Just apply RN:

1. ⊢Σ ⊤ PL

2. ⊢Σ 2⊤ 1, RN

M: Follows from RM:

1. ⊢Σ (A ∧ B) → A PL

2. ⊢Σ 2(A ∧ B) → 2A 1, RM
3. ⊢Σ (A ∧ B) → B PL

4. ⊢Σ 2(A ∧ B) → 2B 3, RM
5. ⊢Σ 2(A ∧ B) → (2A ∧ 2B) 2, 4, RPL

C: Follows immediately by RR, i.e. by RK for the case n = 2:

1. ⊢Σ (A ∧ B) → (A ∧ B) PL

2. ⊢Σ (2A ∧ 2B) → 2(A ∧ B) 1, RK(n = 2)

K: By definition of normal system.
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Theorem 12 [Chellas Thm 4.3, p115] Let Σ be a system of modal logic containing Df3.
Then:

(1) Σ is normal iff it is closed under RK.

(2) Σ is normal iff it contains N and is closed under RR.

(3) Σ is normal iff it contains N and C and is closed under RM.

(4) Σ is normal iff it contains N, C, and M and is closed under RE.

(The last of these (4) will be particularly useful when we look at non-normal systems later.)

Proofs of theorem 12

We only need to prove the ‘only if’ parts. The ‘if’ parts are theorem 11.

(1) RN is the special case of RK for case n = 0. To derive K: notice K is logically
equivalent (in PL) to ( 2A∧2(A → B) ) → 2B. Which leads me to start a derivation
as follows:

1. ⊢Σ ( A ∧ (A → B) ) → B PL

2. ⊢Σ ( 2A ∧ 2(A → B) ) → 2B 1, RK(n = 2)
3. ⊢Σ 2(A → B) → (2A → 2B) 2, RPL

(2) To derive K, the same derivation works as in part (1) since it uses only RK(n = 2)
which is RR. To derive RN:

1. ⊢Σ A ass.
2. ⊢Σ (⊤∧ ⊤) → A 1, RPL
3. ⊢Σ (2⊤ ∧ 2⊤) → 2A 2, RR
4. ⊢Σ 2⊤ N
5. ⊢Σ 2A 3, 4, RPL

(3) Given part (2), it is sufficient to derive RR.

1. ⊢Σ (A ∧ B) → C ass.
2. ⊢Σ 2(A ∧ B) → 2C 1, RM
3. ⊢Σ (2A ∧ 2B) → 2(A ∧ B) C
4. ⊢Σ (2A ∧ 2B) → 2C 2, 3, RPL

(4) Given part (3), it is sufficient to derive RM.

1. ⊢Σ A → B ass.
2. ⊢Σ (A ∧ B) ↔ A 1, RPL
3. ⊢Σ 2(A ∧ B) ↔ 2A 2, RE
4. ⊢Σ 2(A ∧ B) → (2A ∧ 2B) M
5. ⊢Σ 2A → 2B 3, 4, RPL
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Some authors (e.g., Blackburn et al) prefer to present systems, schemas and rules primarily
in terms of the possibility operator 3 rather than the necessity operator 2. This is just a
matter of personal preference.

Theorem 13 [Chellas Thm 4.4, p116] Every normal system of modal logic has the follow-
ing rules and theorems.

K3. (¬3A ∧ 3B) → 3(¬A ∧ B)

RN3.
¬A

¬3A

Df2. 2A ↔ ¬3¬A

RK3.
A → (A1 ∨ · · · ∨ An)

3A → (3A1 ∨ · · · ∨ 3An)
(n ≥ 0)

RM3.
A → B

3A → 3B

RE3.
A ↔ B

3A ↔ 3B

N3. ¬3⊥

M3. (3A ∨ 3B) → 3(A ∨ B)

C3. 3(A ∨ B) → (3A ∨ 3B)

R3 (or MC3). 3(A ∨ B) → (3A ∨ 3B)

Proof For example, for RK3:

1. ⊢Σ A → (A1 ∨ · · · ∨ An) ass.
2. ⊢Σ (¬A1 ∧ · · · ∧ ¬An) → ¬A 1, RPL
3. ⊢Σ (2¬A1 ∧ · · · ∧ 2¬An) → 2¬A 2, RK
4. ⊢Σ ¬2¬A → (¬2¬A1 ∨ · · · ∨ ¬2¬An) 3, RPL
5. ⊢Σ 3A → (3A1 ∨ · · · ∨ 3An) 4, Df2 and RPL

The other parts are left as exercises. They all proceed similarly.

Theorem 14 Let Σ be a system of modal logic containing Df2. Then Σ is normal iff:

(1) it contains K and is closed under RN3;

(2) it contains K3 and is closed under RN3;

(3) it is closed under RK3.

Proof Easy exercise.

Other characterisations can be given. (Cf. Theorem 12.)
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Summary: Normal modal logics

Three equivalent characterisations:

Definition [Normal system] A system of modal logic is normal iff it contains Df3 and
K and is closed under RN.

Equivalently . . .

Theorem A system of modal logic is normal iff it contains Df3 and is closed under RK.

RK.
(A1 ∧ . . . ∧ An) → A

(2A1 ∧ . . . ∧ 2An) → 2A
(n ≥ 0)

Equivalently again . . .

Theorem A system of modal logic is normal iff it contains Df3, is closed under RE

RE.
A ↔ B

2A ↔ 2B

and contains the following schemas:

M. 2(A ∧ B) → (2A ∧ 2B)

C. (2A ∧ 2B) → 2(A ∧ B)

N. 2⊤

(Personally I like the last characterisation best.)

Remember: There is an important difference between the system K (the smallest normal
system of modal logic), the schema K, and the rule of inference RK. All normal systems,
including the smallest such, K, are closed under the rule RK. All systems closed under RK
are normal. But there are non-normal systems that contain the schema K: the schema
K by itself does not guarantee that a system is normal. The schema K together with the
‘rule of necessitation’ RN are equivalent to the rule RK characteristic of normal systems.
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Classical systems of modal logic

(See Chellas [1980], Ch. 7–9.)

The smallest classical modal logic is called E. To name classical systems we write

E ξ1 . . . ξn

for the classical modal logic that results when the schemas ξ1, . . . , ξn are taken as theorems;
i.e., E ξ1 . . . ξn is the smallest classical system of modal logic containing (every instance of)
the schemas ξ1, . . . , ξn.

Classical systems of modal logic are defined in terms of the schema

Df3. 3A ↔ ¬2¬A

and the rule of inference

RE.
A ↔ B

2A ↔ 2B

Definition [Classical system] A system of modal logic is classical iff it contains Df3
and is closed under RE.

Notice: every normal system is classical but not every classical system is normal.

Classical systems are sometimes classified further. (You don’t need to remember the
names!!)

RE.
A ↔ B

2A ↔ 2B

RM.
A → B

2A → 2B

RR.
(A ∧ B) → C

(2A ∧ 2B) → 2C

RK.
(A1 ∧ . . . ∧ An) → A

(2A1 ∧ . . . ∧ 2An) → 2A
(n ≥ 0)

normal

RK

regular

RR

monotonic

RM

classical

RE
RM “=” RE + M
RR “=” RE + MC
RK “=” RE + MCN
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Other schemas

The schemas P, D, T, B, 4, 5 also come up frequently.

P. ¬2⊥

D. 2A → 3A

T. 2A → A

B. A → 23A

4. 2A → 22A

5. 3A → 23A

We will look at some of their properties later.

Note that for a normal system Σ, schema P is in Σ iff D is in Σ. That is not the case for
non-normal systems in general.

Are there any systems of modal logic that are not classical? YES — but they are very
weak and are not studied much.

How do classical non-normal logics come up?

• when a language is interpreted on model structures that are not relational ;

• sometimes a ‘box’ operator defined in terms of two or more normal modalities comes
out non-normal;

• we give an axiomatic characterisation of some concept represented as a modal oper-
ator, and these axioms make the operator non-normal (example below);

• and perhaps lots of other reasons.

Example

Let ExA represent that agent x is responsible for, is the direct cause of, A is the case.

So for example we have an axiom ExA → A.

But clearly no agent x can be responsible for, can be the direct cause of, logical truth. So
we add an axiom

¬Ex⊤

Now, every normal system contains Ex⊤.

So either this logic is not normal, or it is the inconsistent logic (which is, trivially, a normal
logic).

We will look at classical systems of modal logic in a bit more detail later.
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