Tutorial Exercises 2 (mjs) (Maxi-consistent sets)

- From 2002 exam S4 is the normal modal logic KT4. Prove that if {□A₁,..., □A_n, ¬□B} is S4-consistent then so is {□A₁,..., □A_n, ¬B}.
 (This is not a question about maxi-consistent sets.)
- 2. (This is one of the unproved theorems in the notes.) Prove that:
 - (a) $\Gamma \vdash_{\Sigma} A$ iff $A \in \Delta$ for every Σ -maxi-consistent Δ such that $\Gamma \subseteq \Delta$.
 - (b) $\vdash_{\Sigma} A$ iff $A \in \Delta$ for every Σ -maxi-consistent Δ .

Hint: for the first one, one half is easy, the other half requires Lindenbaum's lemma. The second follows more or less immediately as a special case of the first.

3. (The following result is useful when we define canonical models for normal systems.) Prove that for any Σ -maxi-consistent sets Γ and Γ'

 $\{A \mid \Box A \in \Gamma\} \subseteq \Gamma' \quad \Leftrightarrow \quad \{\Diamond A \mid A \in \Gamma'\} \subseteq \Gamma$

or equivalently

 $\forall A \left[\Box A \in \Gamma \Rightarrow A \in \Gamma' \right] \quad \Leftrightarrow \quad \forall A \left[A \in \Gamma' \Rightarrow \Diamond A \in \Gamma \right]$