Tutorial Exercises 3 (mjs) (Canonical models for normal systems)

1. A relation R is 'serially reflexive' when $w R w^{\prime}$ implies $w^{\prime} R w^{\prime}$ for all w, w^{\prime}. Show that the logic $K \cup\{\square(\square A \rightarrow A)\}$ is determined by the class of serially reflexive frames.
2. Suppose the logic Σ has box operators K_{a} and K_{b} and is interpreted on frames $\left\langle W, R_{a}, R_{b}\right\rangle$. Show that if

$$
\vdash_{\Sigma} \mathrm{K}_{b} p \rightarrow \mathrm{~K}_{a} \neg \mathrm{~K}_{b} \neg p
$$

then the canonical frame $\left\langle W^{\Sigma}, R_{a}^{\Sigma}, R_{b}^{\Sigma}\right\rangle$ for Σ has the property that

$$
w R_{a}^{\Sigma} w^{\prime} \text { and } w^{\prime \prime} R_{b}^{\Sigma} w^{\prime} \text { implies } w R_{b}^{\Sigma} w^{\prime \prime}
$$

for all $w, w^{\prime}, w^{\prime \prime}$.
3. As in previous question, but show that

$$
\vdash_{\Sigma} \mathrm{K}_{a}\left(\mathrm{~K}_{b} A \rightarrow \mathrm{~K}_{a} \mathrm{~K}_{b} A\right)
$$

implies the canonical frame has the property:

$$
u R_{a}^{\Sigma} w \text { and } w R_{a}^{\Sigma} w^{\prime} \text { and } w^{\prime} R_{b}^{\Sigma} w^{\prime \prime} \text { implies } w R_{b}^{\Sigma} w^{\prime \prime}
$$

for all $u, w, w^{\prime}, w^{\prime \prime}$.
4. Prove that the normal modal logic KT5 is determined by the class of equivalence frames.
$(K T 5=K T 45=K T B 5=K T B 4$ is the logic S5. $)$
5. S 5 is also determined by the class of universal frames. (A relation R is universal when $w R w^{\prime}$ for all worlds w, w^{\prime}.) Show however that the canonical relation for S 5 is not universal.
Hint: consider either $\{p\}$ or $\{\square p\}$ (p any atom), and observe that both these sets are obviously S5-consistent.
6. From the 2003 exam:

The system $S 4.2$ is a normal modal logic of type $K T 4 G$, i.e., the smallest normal system containing the schemas T and 4 and the following schema:

$$
\text { G. } \diamond \square A \rightarrow \square \diamond A
$$

A relation R is said to be strongly convergent when, for all w, w^{\prime} there exists a v such that $w R v$ and $w^{\prime} R v$.
Using the canonical model, show that $S 4.2=K T 4 G$ is complete with respect to the class of reflexive, transitive, strongly convergent Kripke models.
You may assume without proof that

$$
\{A \mid \square A \in \Gamma\} \cup\left\{A \mid \square A \in \Gamma^{\prime}\right\}
$$

is $K T 4 G$-consistent for any maximal $K T 4 G$-consistent sets Γ and Γ^{\prime}.
(But see the comment in the next question.)
7. Harder Actually, $\{A \mid \square A \in \Gamma\} \cup\left\{A \mid \square A \in \Gamma^{\prime}\right\}$ in the previous question is not necessarily $K T 4 G$-consistent. That doesn't affect the argument in the previous question - it was simplified to make a short exam question. In fact, $K T 4 G$ is determined by the class of reflexive, transitive frames which satisfy the property ('incestual' or 'Church-Rosser') that, for all u, w, w^{\prime} such that $u R w$ and $u R w^{\prime}$ there exists a v such that $w R v$ and $w^{\prime} R v$.
Modify the argument in the previous question to show that this is so.

