Tutorial Exercises 4 (mjs) (*v*-models for classical systems)

1. Show that each of the following can be falsified in ν -models:

М.	$\Box(A \land B) \longrightarrow (\Box A \land \Box B)$
С.	$(\Box A \land \Box B) \longrightarrow \Box (A \land B)$
N.	

- 2. Consider the following conditions on a model $\mathcal{M} = \langle W, \nu, h \rangle$, for every world w and propositions (i.e. sets of worlds) X and Y:
 - (m) if $X \cap Y \in \nu(w)$ then $X \in \nu(w)$ and $Y \in \nu(w)$
 - (c) if $X \in \nu(w)$ and $Y \in \nu(w)$ then $X \cap Y \in \nu(w)$
 - (n) $W \in \nu(w)$

Prove that the schemas M, C, and N are valid in classes of ν -models satisfying conditions (m), (c), and (n), respectively.

3. Prove that condition (m) is equivalently expressed as follows:

(rm) if $X \subseteq Y, X \in \nu(w) \Rightarrow Y \in \nu(w)$.

4. Prove that for any ν -model satisfying (m) or (rm)

 $\nu(w) \neq \emptyset \iff W \in \nu(w)$

- 5. Re-express the model conditions (m), (c), (n), (rm) above in terms of the function $f: \wp(W) \to \wp(P)$ defined as $w \in f(X) \Leftrightarrow X \in \nu(w)$.
- 6. Every normal system contains D if and only if it contains P.

Р.	$\neg\Box\bot$
D.	$\Box A \longrightarrow \Diamond A$

Show that in a classical system P and D can be independent, in the sense that a classical system can contain P without containing D, and can contain D without containing P.

Now show that every classical $E\!M\!D$ system contains P but not every $E\!M\!P$ system contains D.

Finally, prove the assertion at the top of this question, that every *normal* system contains D if and only if it contains P.

7. Show that the schemas

Р.	$\neg\Box\bot$
D.	$\Box A \longrightarrow \Diamond A$
Т.	$\Box A \longrightarrow A$
В.	$A \longrightarrow \Box \Diamond A$
4.	$\Box A \longrightarrow \Box \Box A$
5.	$\Diamond A \longrightarrow \Box \Diamond A$

are valid in classes of ν -models satisfying the following conditions (p), (d), (t), (b), (iv), and (v), respectively:

- (p) $\emptyset \notin \nu(w)$
- (d) $X \in \nu(w) \Rightarrow (W X) \notin \nu(w)$
- (t) $X \in \nu(w) \Rightarrow w \in X$
- (b) $w \in X \Rightarrow \{w' \in W : (W X) \notin \nu(w')\} \in \nu(w)$
- (iv) $X \in \nu(w) \Rightarrow \{w' \in W : X \in \nu(w')\} \in \nu(w)$
- $(\mathbf{v}) \quad X \notin \nu(w) \ \Rightarrow \ \{w' \in W : X \notin \nu(w')\} \in \nu(w)$
- Re-express the model conditions (p), (d), (t), (b), (iv), and (v) above in terms of the function f : ℘(W) → ℘(P) defined as w ∈ f(X) ⇔ X ∈ ν(w). Notice anything?
- 9. Identify a model condition on ν -models that makes the following schema valid:

G. $\Diamond \Box A \rightarrow \Box \Diamond A$

(Write out a guess based on the previous question, and then check it.)