Tutorial Exercises 4 (mjs)

(ν-models for classical systems)

1. Show that each of the following can be falsified in ν-models:
M.
$\square(A \wedge B) \rightarrow(\square A \wedge \square B)$
C.
$(\square A \wedge \square B) \rightarrow \square(A \wedge B)$
N.
$\square \top$
2. Consider the following conditions on a model $\mathcal{M}=\langle W, \nu, h\rangle$, for every world w and propositions (i.e. sets of worlds) X and Y :
(m) if $X \cap Y \in \nu(w)$ then $X \in \nu(w)$ and $Y \in \nu(w)$
(c) if $X \in \nu(w)$ and $Y \in \nu(w)$ then $X \cap Y \in \nu(w)$
(n) $W \in \nu(w)$

Prove that the schemas M, C, and N are valid in classes of ν-models satisfying conditions (m), (c), and (n), respectively.
3. Prove that condition (m) is equivalently expressed as follows:
$(\mathrm{rm}) \quad$ if $X \subseteq Y, X \in \nu(w) \Rightarrow Y \in \nu(w)$.
4. Prove that for any ν-model satisfying (m) or (rm)

$$
\nu(w) \neq \emptyset \Leftrightarrow W \in \nu(w)
$$

5. Re-express the model conditions (m), (c), (n), (rm) above in terms of the function $f: \wp(W) \rightarrow \wp(P)$ defined as $w \in f(X) \Leftrightarrow X \in \nu(w)$.
6. Every normal system contains D if and only if it contains P.

$$
\begin{array}{lc}
\text { P. } & \neg \square \perp \\
\text { D. } & \square A \rightarrow \diamond A
\end{array}
$$

Show that in a classical system P and D can be independent, in the sense that a classical system can contain P without containing D , and can contain D without containing P .
Now show that every classical EMD system contains P but not every EMP system contains D.
Finally, prove the assertion at the top of this question, that every normal system contains D if and only if it contains P.
7. Show that the schemas

P.	$\neg \square \perp$
D.	$\square A \rightarrow \diamond A$
T.	$\square A \rightarrow A$
B.	$A \rightarrow \square \diamond A$
4.	$\square A \rightarrow \square \square A$
5.	$\diamond A \rightarrow \square \diamond A$

are valid in classes of ν-models satisfying the following conditions (p), (d), (t), (b), (iv), and (v), respectively:
(p) $\emptyset \notin \nu(w)$
(d) $X \in \nu(w) \Rightarrow(W-X) \notin \nu(w)$
(t) $X \in \nu(w) \Rightarrow w \in X$
(b) $w \in X \Rightarrow\left\{w^{\prime} \in W:(W-X) \notin \nu\left(w^{\prime}\right)\right\} \in \nu(w)$
(iv) $X \in \nu(w) \Rightarrow\left\{w^{\prime} \in W: X \in \nu\left(w^{\prime}\right)\right\} \in \nu(w)$
(v) $X \notin \nu(w) \Rightarrow\left\{w^{\prime} \in W: X \notin \nu\left(w^{\prime}\right)\right\} \in \nu(w)$
8. Re-express the model conditions (p), (d), (t), (b), (iv), and (v) above in terms of the function $f: \wp(W) \rightarrow \wp(P)$ defined as $w \in f(X) \Leftrightarrow X \in \nu(w)$.
Notice anything?
9. Identify a model condition on ν-models that makes the following schema valid:

> G.

$$
\diamond \square A \rightarrow \square \diamond A
$$

(Write out a guess based on the previous question, and then check it.)

