
DOM: Towards a Formal Specification

Philippa Gardner Gareth Smith Mark Wheelhouse Uri Zarfaty
Imperial College

{pg,gds,mjw03,udz}@doc.ic.ac.uk

Abstract
The W3C Document Object Model (DOM) specifies an XML up-
date library. DOM is written in English, and is therefore not compo-
sitional and not complete. We provide a first step towards a compo-
sitional specification of DOM. Unlike DOM, we are able to work
with a minimal set of commands and obtain a complete reason-
ing for straight-line code. Our work transfers O’Hearn, Reynolds
and Yang’s local Hoare reasoning for analysing heaps to XML,
viewing XML as an in-place memory store as does DOM. In par-
ticular, we apply recent work by Calcagno, Gardner and Zarfaty
on local Hoare reasoning about a simple tree-update language to
DOM, showing that our reasoning scales to DOM. Our reasoning
not only formally specifies a significant subset of DOM Core Level
1, but can also be used to verify e.g. invariant properties of simple
Javascript programs.

General Terms XML, DOM, local Hoare reasoning, Context
Logic

Keywords XML, specification, logical reasoning, verification, lo-
cality

1. Introduction
The Document Object Model (DOM) [W3C00] specifies an XML
update library, and is maintained by the World Wide Web Consor-
tium (W3C). Its purpose is to be:

a platform- and language-neutral interface that will allow
programs and scripts to dynamically access and update the
content, structure and style of documents.

A DOM implementation exists in most popular high-level lan-
guages, and is used in many applications for accessing and updating
XML. For example, consider a webpage with a button labelled ‘to-
day’s weather’; click on the button and embedded Javascript (using
an implementation of DOM) puts ‘today’s weather’ in the tree.

DOM is written in English. It describes the behaviour of individ-
ual commands. DOM is not compositional, in the sense that a spec-
ification of a composite command cannot be determined directly
from the specification of its parts. This means that DOM specifies
some redundant composite commands, such as the replaceChild
command. In this paper, we provide a concise, compositional speci-
fication of DOM. Unlike DOM, we are able to work with a minimal
set of commands and obtain a complete reasoning for straight-line

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Plan-X ’08 9 January 2008, San Francisco.
Copyright c© 2008 ACM [to be supplied]. . . $5.00

code. Our work transfers pioneering techniques in local Hoare rea-
soning for analysing heaps [ORY01] to XML, viewing XML as
an in-place memory store as does DOM. In particular, we apply
recent work on local Hoare reasoning about a simple tree-update
language using Context Logic [CGZ05] to this DOM application,
showing that the Context-logic reasoning scales to DOM’s more
complicated tree structure and update language. Our reasoning not
only formally specifies DOM, but can also be used to verify, for
example, simple Javascript programs.

The Document Object Model
The documentation for DOM is substantial [W3C05]. DOM is di-
vided into a number of levels, of which the Level 1 is the most
fundamental. The Level 1 specification is itself separated into two
parts: Core, which ‘provides a low-level set of fundamental in-
terfaces that can represent any structured document’; and HTML,
which ‘provides additional, higher-level interfaces. . . to provide a
more convenient view of an HTML document’. We are only in-
terested in the fundamental interfaces in DOM Core Level 1. In
Section 1.1.4 of the DOM Specification, we read:

The DOM Core APIs present two somewhat different sets of
interfaces to an XML/HTML document; one presenting an
‘object-oriented’ approach with a hierarchy of inheritance,
and a ‘simplified’ view that allows all manipulation to be
done via the Node interface

We work with the Node interface. We make a further simplification,
concentrating on that part of DOM Core Level 1 which focuses on
the XML tree structure, rather than also working with the content
of the structure. The main conceptual difficulties lie with this tree
structure; in DOM, the other structures (attributes, text, etc) are
presented as tree nodes with simpler properties. We will extend our
specification to the full DOM Core Level 1 in future.

The fact that DOM is written in English means that understand-
ing the precise conditions under which a command applies is error
prone. This is significant, since the DOM approach only works if a
DOM implementation really does conform with the specification.
E.g., the command appendChild has the DOM specification

appendChild Adds the node newChild to the end of the list of
children to this node. If the newChild is already
in the tree, it is first removed.

....
Exceptions ...

HIERARCHY_REQUEST_ERR: Raised if this node is of a type
that does not allow children of type of the newChild node,
or if the node to append is one of this node’s ancestors.

This DOM specification first gives the intuition regarding the be-
haviour of the method, and then reinforces this intuition with de-
tails about when it does not work, such as when newChild is an
ancestor of the node in question. This fundamental safety condi-
tion is buried inside one of several exceptions associated with the
method, and is easy to miss.

We observed that this safety error condition had been missed
by the Python mini-DOM implementation [Smi06][Whe07]; Ja-
son Orendorff has recently provided a patch which corrects this
error [Ore07]. Section 8.7.3 of the documentation for Python mini-
DOM [Var06] states: ‘DOMException is currently not supported
in xml.dom.minidom. Instead, xml.dom.minidom uses standard
Python exceptions such as TypeError and AttributeError’. This is a
perfectly sensible design decision, especially since DOM actively
encourages this approach to reporting errors: ‘error conditions may
be indicated using native error reporting mechanisms’. However,
it meant that the programmers understandably did not pay close
attention to the HIERARCHY REQUEST ERR above: the part of the
error involving typing is covered by Python exceptions; the part
stating that newChild cannot be an ancestor is not covered by
Python exceptions and was ignored. This meant that the operation
silently went ahead, creating a structure with a loop. If the loop
structure was used subsequently by a program, then the program
would diverge. With our style of local reasoning, this fundamental
error in the basic behaviour of update would have been avoided.

Local Hoare Reasoning
We give a compositional specification of DOM, using local Hoare
reasoning which provides a recent breakthrough in reasoning about
the way programs manipulate the memory. Researchers previously
used Hoare reasoning based on First-order Logic to specify how
programs interacted with the whole memory. O’Hearn, Reynolds
and Yang instead introduced local Hoare reasoning based on Sepa-
ration Logic [ORY01]. The idea is to specify how programs interact
with a small part of the memory touched by a program. Their work
is proving to be essential for modular reasoning about large pro-
grams [BCC+07], and for reasoning about concurrent, distributed
programming [O’H05]. Inspired by this work, Calcagno, Gardner
and Zarfaty studied local Hoare reasoning about simple tree update
using Context Logic [CGZ05]. Local data update typically identi-
fies the portion of data to be replaced, removes it, and inserts new
data in the same place. Context Logic reasons about both data and
this place of insertion (contexts).

Consider the command ‘appendChild (parent, newChild)’,
which moves the tree at newChild to be the last child of parent.
The command only succeeds when the trees parent and newChild
are present in the store, and when newChild is not an ancestor of
parent. This safety property is expressible in Context Logic by

∃tag, tag’, fid, fid’. (∅F−◦(cg ◦T (tagparent[f]fid)))◦F
〈tag’newChild[f’]fid’〉F

This formula states that the data structure can be split into two dis-
joint parts: a subtree satisfying data formula 〈tag’newChild[f’]fid’〉F
stating that the top node is newChild, and a context satisfying con-
text formula ∅F−◦(cg ◦T (tagparent[f]fid)) stating that, when the
empty forest ∅F is put in the hole, then the store can be split into a
context and a subtree with top node parent. Thus, both newChild
and parent are in the tree, and newChild is not an ancestor of
parent. The corresponding post-condition is

∃tag, tag’, fid, fid’.cg◦T (tagparent[f⊗〈tag’newChild[f’]fid’〉F]fid)

This formula states that the resulting store has a changed subtree
parent, which now has the subtree 〈tag’newChild[f’]fid’〉F at the
end of its list of children.

The fact that our specification is compositional has significant
implications. We are able to focus on a minimal set of update com-
mands, whereas DOM has to specify all the update commands for
which a specification is useful. For example, the specification of
the command getPreviousSibling is derivable in our specifica-
tion, but is specified directly in DOM. We are able to show that our
specification is complete for straight-line code, using a standard
technique of deriving the weakest preconditions of our commands.

For example, the command insertAfter, which inserts a subtree
after a specific child node, is not specified in DOM, even though its
sister command insertBefore is. insertAfter can be imple-
mented using insertBefore, and hence can by specified by our
reasoning. Finally, we can verify invariant properties of Javascript
programs. For example, we show that a simple program for moving
a person to a new address in an address book satisfies an XML-
schema invariant specifying that an XML-document is an address
book.

2. Minimal DOM
We describe Minimal DOM, a language which captures the essence
of DOM for tree update. DOM is specified in an object-oriented
manner, and hence encapsulates data and behaviour into objects.
In this paper we separate the concerns, by presenting an abstract
data structure and a series of commands over that structure. This
approach is consistent with DOM’s “simplified’ view that allows
all manipulation to be done via the Node interface’.

2.1 The Tree Structure
Recall from the introduction that we focus on the fundamental
XML-tree structure, rather than the content of that structure (text,
attributes, etc). We present an abstract data structure consisting of
trees, forests and groves. Trees correspond to (part of) the Node
interface in DOM. Forests correspond to the sub-collections of the
NodeList interface in DOM, while complete forests with identifiers
correspond directly to the NodeList interface. Groves correspond
to the object store in which Nodes exist.

Definition 2.1 (Trees, forests and groves). Given an infinite set
TAG of node tags and ID of node identifiers, we define trees t ∈ T,
forests f ∈ F and groves g ∈ G by

trees t ::= tagid[f]fid

forests f ::= ∅F | 〈t〉F | f⊗ f
groves g ::= ∅G | 〈t〉G | g⊕ g

where tag ∈ TAG and id, fid ∈ ID. For well-formedness, the IDs
must be unique. There is also a structural congruence stating that
⊗ is associative with identity ∅F, and that ⊕ is associative and
commutative with identity ∅G. We write |f| and |g| for the length
of a forest or the size of a grove respectively.

Since we update our data in place (as does DOM), we must
refer to subdata directly. To this end, each node and list of children
has a unique identifier which may be directly referenced by a
program using program variables. For example, the XML structure
〈html〉〈head〉〈/head〉〈body〉〈/body〉〈/html〉 is given by the tree
htmlid1 [〈headid2 [∅F]fid2〉F ⊗ 〈bodyid3

[∅F]fid3〉F]fid1 . Notice that
we do not give identifiers to arbitrary forests f, only to complete
lists [f]fid, as in DOM.

We also define natural contexts associated with our abstract data
structures. Contexts are not used in DOM. They are however useful
for describing the formal operational semantics of our update com-
mands in Section 2.2, and are essential for the context reasoning
described in Section 3.

Definition 2.2 (Contexts). Given a infinite set TAG of node tags
and ID of node identifiers, we define tree contexts ct ∈ CT, forest
contexts cf ∈ CF and grove contexts cg ∈ CG by

tree contexts ct ::= −T | tagid[cf]fid

forest contexts cf ::= −F | 〈ct〉F | cf⊗ f | f⊗ cf
grove contexts cg ::= −G | 〈ct〉G | cg⊕ g

As in definition 2.1, the identifiers are unique and there is a natural
structural congruence on the contexts.

Given data types D1, D2 ∈ {T, F, G}, we sometimes write
cd:D1 → D2 to denote a context cd ∈ CD2 with hole −D1 . We
call D1 → D2 the context type of cd. The DOM context structure
is quite complex compared with our previous work on a simple tree
structure which had one hole type: tree and forest contexts have
tree and forest holes, while grove contexts have holes of arbitrary
type. Notice that a forest hole of a grove context must have a parent
node, whereas this is not the case for a tree or grove hole. The
distinction between the tree t, the forest 〈t〉F and the grove 〈t〉G is
thus important for our context reasoning.

We define the partial application function ap : (D1�D2) ×
D1 ⇀ D2, which returns a result if there is no clash of identifiers
between the arguments of the function.

Definition 2.3 (Context application). Given data types D1, D2 ∈
{T, F, G}, we define the partial application function ap : (D1�D2)×
D1 ⇀ D2, which is defined by induction on the structure of the
first argument:

ap(−T, t) , t
ap(tagid[cf]fid, d1) , tagid[ap(cf, d1)]fid if id, fid 6∈ d1

ap(−F, f) , f
ap(〈ct〉F, d1) , 〈ap(ct, d1)〉F
ap(cf⊗ f, d1) , ap(cf, d1)⊗ f
ap(f⊗ cf, d1) , f⊗ ap(cf, d1)

ap(−G, g) , g
ap(〈ct〉G, d1) , 〈ap(ct, d1)〉G
ap(cg⊕ g, d1) , ap(cg, d1)⊕ g

We use ap(cd2, d1)↓ to denote that ap(cd2, d1) is defined.

As normal for in-place update, our language depends on a vari-
able store and expressions. The store s includes variables of type
ID, TAG, Z and B. The expressions consist of variables and con-
stants, arithmetic operations on integers, and logical operations on
booleans. Variables of type ID also permit a null value, recording
the absence of a node (for example, the top node of a tree in the
grove has no parent node). Expressions of type ID only include
variables and the null value, since programs do not refer directly
to identifier constants, just as with standard imperative programs
which do not refer to literal heap addresses.

Definition 2.4 (Variable store). The variable store s is a total
function sending variables to their values. The store contains four
types of variable: id variables VarID = {id, fid, node, list, . . . },
tag variables VarTAG = {tag, . . . }, integer variables VarZ =
{int, length, . . . } and boolean variables VarB = {bool, . . . }:

s : (VarID → ID] {null})× (VarTAG → TAG)×
(VarZ → Z)× (VarB → B)

The notation VARSTORE denotes the set of store variables.

Definition 2.5 (Expressions). Id expressions ExpID = {Id, . . . },
tag expressions ExpTAG = {Tag, . . . }, integer expressions ExpZ =
{Int, . . . } and boolean expressions ExpB = {Bool, . . . } are
defined by:

Id ::= null | id
Tag ::= tag | tag
Int ::= n | int | Int + Int | Int− Int
Bool ::= false | bool | Bool⇒ Bool

| Id = Id | Tag = Tag | Int = Int | Int > Int

where tag ∈ TAG and n ∈ Z, int ∈ VarZ and bool ∈ VarB.
The evaluation JExpVKs of an expression ExpV on a store s, for
V ∈ {ID, TAG, Z, B}, is defined as expected.

2.2 The Language
We now introduce Minimal DOM, which represents the essence
of the Node interface view of the DOM API in a minimal and

sufficient update language. In the spirit of presenting an impera-
tive (‘flattened’) interface to the object-oriented library, we aban-
don object-oriented notation. Hence, we specify the methods of
the Node interface as imperative commands over a shared grove:
for example, the method call ‘p.appendChild(c)’ becomes the
command ‘appendChild(p, c)’. Similarly, we represent object at-
tributes as a pair of get and set commands, with the set com-
mand omitted if the attribute is read only. As it turns out, all
the relevant Node and NodeList attributes are read only: for ex-
ample, the ‘n.parentNode’ attribute can be represented by the
‘getParentNode(n)’ command alone. Some attributes and meth-
ods in the Node interface are omitted from Minimal DOM since
they are concerned with only the content of the tree and not the
tree structure itself. Others are omitted because they are redundant,
in that they may be expressed as the composition of other com-
mands. Finally, neither the Node nor the NodeList interface pro-
vide a means of introducing new Nodes into the grove. For this
functionality, we introduce the Minimal DOM command create-
Node, which performs the same function as the DOM Document
method createElement, in our minimal environment.

In order to reason about programs which use the Minimal DOM
library, we also require a Minimal DOM language for those pro-
grams to be written in. Our language is as simple and general as
possible, consisting only of imperative sequencing, conditionals,
while loops and the variables and expressions defined in Section
2.1. For convenience, we also implicitly assume procedural recur-
sion.

Definition 2.6 (Minimal DOM). The Minimal DOM commands are

C ::= appendChild(parent, newChild) append tree
| removeChild(parent, oldChild) remove child
| tag := getNodeName(node) get node name
| id := getParentNode(node) get parent node
| fid := getChildNodes(node) get child nodes
| node := createNode(Tag) create node
| node := item(list, Int) get forest node

| id :=Id |tag :=Tag |int :=Int |bool :=Bool assignment
| C ; C sequencing
| if Bool then C else C if-then-else
| while Bool do C while-do
| skip skip

The DOM commands have the following behaviour:

appendChild(parent, newChild) moves tree newChild from
its current position to the end of parent’s child list. Requires
that parent exists and that newChild exists and is not an an-
cestor of parent.

removeChild(parent, oldChild) removes the tree oldChild
from the tree parent’s child forest and re-inserts it at the root
of the grove. Requires that parent exists and oldChild is a
child of parent.

name := getNodeName(node) assigns to the variable name the
nodeName value of node.

id := getParentNode(node) assigns to the variable id the id of
the parent of node, if it exists, and null otherwise.

fid := getChildNodes(node) assigns to the variable fid the id
of the child forest of the element node.

node := createNode(Tag) creates a new element, with fresh id
and fid, at the root of the grove, with a name equal to Tag, and
records its id in the variable node.

g ≡ ap(cg’, 〈tag’s(newChild)[f’]fid’〉G)
ap(cg’, ∅G) ≡ ap(cg, tags(parent)[f]fid)

g’ ≡ ap(cg, tags(parent)[f⊗ 〈tag’s(newChild)[f’]fid’〉F]fid)

appendChild(parent, newChild), s, g s, g’

g ≡ ap(cg’, 〈tag’s(newChild)[f’]fid’〉F)
ap(cg’, ∅F) ≡ ap(cg, tags(parent)[f]fid)

g’ ≡ ap(cg, tags(parent)[f⊗ 〈tag’s(newChild)[f’]fid’〉F]fid)

appendChild(parent, newChild), s, g s, g’

g ≡ ap(cg, tags(parent)[f1 ⊗ 〈tag’s(oldChild)[f]fid〉F ⊗ f2]fid’) g’ ≡ ap(cg, tags(parent)[f1 ⊗ f2]fid’)⊕ 〈tag’s(oldChild)[f]fid〉G
removeChild(parent, oldChild), s, g s, g’

g ≡ ap(cg, tags(node)[f]fid)

tag := getNodeName(node), s, g [s|tag← tag], g

g ≡ ap(cg, tagid[f1 ⊗ 〈tag’s(node)[f]fid’〉F ⊗ f2]fid)

id := getParentNode(node), s, g [s|id← id], g
g ≡ ap(cg, 〈tag’s(node)[f]fid’〉G)

id := getParentNode(node), s, g [s|id← null], g

g ≡ ap(cg, tags(node)[f]fid)

fid := getChildNodes(node), s, g [s|fid← fid], g
JTagKs = tag g’ ≡ g⊕ 〈tagnode[∅F]fid〉G node,fid fresh
node := createNode(Tag), s, g [s|node← node], g’

g ≡ ap(cg, tagid[f1 ⊗ 〈tag’node[f]fid〉F ⊗ f2]s(list)) len(f1) = JIntKs
node := item(list, Int), s, g [s|node← node], g

g ≡ ap(cg, tagid[f]s(list)) JIntKs ≥ len(f) ∨ JIntKs < 0

node := item(list, Int), s, g [s|node← null], g

JIdKs = id
id:=Id, s, g [s|id←id], g

JTagKs = tag
tag:=Tag, s, g [s|tag←tag], g

JIntKs = n
int:=Int, s, g [s|int←n], g

JBoolKs = b
bool:=Bool, s, g [s|bool←b], g

C1, s, g C′, s′, g’
(C1 ; C2), s, g (C′ ; C2), s′, g’

C1, s, g s′, g’
(C1 ; C2), s, g C2, s′, g’

JBoolKs = true
if Bool then C1 else C2, s, g C1, s, g

JBoolKs = false
if Bool then C1 else C2, s, g C2, s, g

JBoolKs = true
while Bool do C, s, g (C ; while Bool do C), s, g

JBoolKs = false
while Bool do C, s, g s, g skip, s, g s, g

otherwise
C, s, g fault

Figure 1. Minimal DOM Operational Semantics

node := item(list, Int) sets the variable node to the Int + 1th
node in the list pointed to by list, setting it to null if Int
evaluates to an invalid index.

Notice that removeChild does not delete the tree identified
by oldChild; instead it moves it to the root level of the grove. In
fact, there is no way in Minimal DOM to delete data from the grove.
This follows the example of DOM, which deliberately declines to
specify any destructive memory management methods, so as to
leave open the question of whether memory should be manually
managed or garbage collected. It is natural therefore to think of
programs written in ‘pure’ Minimal DOM (without destructive
memory management extensions) as garbage collected programs.

DOM operations raise exceptions in ‘exceptional circumstances,
i.e., when an operation is impossible to perform’ [DOM Specifi-
cation, Section 1.2]. Examples include: trying to move a tree into
its own subtree (e.g. using appendChild); and attempting to use
removeChild to remove a non-existent subtree of a given tree.
Where DOM calls for a DOMException, we raise a fault. This is
compatible with the specification, which states that in languages
that do not support exceptions, ‘error conditions may be indicated
using native error reporting mechanisms’.

We now give the formal operational semantics, as well as proof
sketches for the minimality and sufficiency of Minimal DOM.

Definition 2.7 (Operational Semantics). The operational semantics
of Minimal DOM is given in Figure 1 by an evaluation relation
relating configuration triples C, s, g, terminal states s, g, and faults.
[s | x← v] means the partial function s overwritten with s(x) = v.

Theorem 2.8 (Minimality of Minimal DOM). There is no redun-
dancy in Minimal DOM – each command is necessary.

Sketch proof. The 7 Minimal DOM commands may be divided
into 2 groups: update commands (appendChild, removeChild,
createNode) and lookup commands (getParentNode, get-
ChildNodes, item, getNodeName). We justify each command
in each group in turn.

Update Commands Only appendChild, removeChild and
createNode change the state of the grove: appendChild and
removeChild move a tree from one place in the grove to another;
createNode introduces a new node into the grove. createNode
is necessary since it is the only command to introduce fresh nodes.
removeChild is necessary since it is the only command that can
move a tree to the top level of the grove (appendChild requires
that the programmer specify the parent node of the target location
and the top of the grove has no such parent). appendChild is nec-
essary since removeChild cannot move a tree to anywhere other
than the top level of the grove.

Lookup Commands Only getParentNode, getChildNodes,
item and getNodeName communicate information from the grove
to the variable store. getParentNode is the only command that
returns a node closer to the root of the tree. getChildNodes is the
only command that returns a nodeList. item is the only command
that returns a node further down the tree. getNodeName is the only
command that returns a tag.

Theorem 2.9 (Sufficiency of Minimal DOM). Minimal DOM is
sufficient to describe the structural kernel of DOM Core Level 1.

Sketch proof. The Node interface contains 9 relevant attributes and
methods which are not implemented in Minimal DOM, while
the NodeList interface is implemented completely. These miss-
ing attributes and methods correspond, in our imperative set-
ting, to the following commands: insertBefore, replaceChild,
cloneNode, hasChildNodes, getLength, getFirstChild, get-
LastChild, getPreviousSibling and getNextSibling. Im-
plementations of each of these commands are given in the full ver-
sion of this paper. the implementation of getPreviousSibling is
discussed in Section 5.1.

3. Context Logic
Context Logic was originally introduced to reason about tree up-
date [CGZ05]. Here we apply Context Logic to to our DOM data
structure, and in Section ?? give Local Hoare Reasoning about
Minimal DOM based on this Context Logic reasoning.

The Minimal DOM language provides us with integer, refer-
ence, boolean and tag variables. In addition to these, we will require
tree, forest, grove and context variables in our specifications. Our
logic therefore uses a logical environment e as well as the variable
store s of Minimal DOM.

Definition 3.1 (Logical environment). A logical environment e is
a total function sending data and context variables to their val-
ues. The environment contains the following types of environment
variable: tree variables VarT, forest variables VarF, grove variables
VarG, tree context variables VarR→T for R ∈ {T, F}, forest con-
text variables VarR→F for the same R and grove context variables
VarD→G for D ∈ {T, F, G}.

e :

(VarT→T) × (VarF→F) × (VarG→G) ×
(VarT�T→(T�T)) × (VarT�F→(T�F)) × (VarT�G→(T�G)) ×
(VarF�T→(F�T)) × (VarF�F→(F�F)) × (VarF�G→(F�G)) ×

× (VarG�G→(G�G))

The notation VARENV denotes the set of environment variables.

Context Logic consists of standard formulae constructed from
the connectives of first-order logic, variables, expression tests, and
quantification over variables. In addition, it has general structural
formulae and specific formulae applicable to DOM. The structural
formulae of Context Logic are constructed from an application
connective for analysing context application, and its two corre-
sponding right adjoints: for data types D1, D2 ∈ {T, F, G},

• the application formula P ◦D1 P1 describes data of e.g. type D2

that can be split into a context of type D1�D2 satisfying P
and disjoint subdata of type D1 satisfying P1; the application
connective is annotated with type information about the context
hole, since this cannot be determined from the given data;
• one right adjoint P◦−D2P2 describes data of e.g. type D1

which, whenever it is successfully placed in a context of type
D1 → D2 satisfying P , results in data of type D2 satisfying P2;
the adjoint is annotated with type information about the result-
ing data, since this cannot be determined from the hole type;
• the right adjoint P1−◦P2 describes a context of e.g. type D1 →

D2 which, whenever data of type D1 satisfying P1 is success-
fully inserted into it, results in data of type D2 satisfying P2;
there is no type annotation as it can be inferred from the type of
the given data.

Finally, we have model-specific formulae for analysing the tree,
forest and grove structure. These correspond directly to the data
structure definitions (Defns 2.1 and 2.2): for example, the tree
definition tagid[f]fid corresponds to a tree formula Tagid[P]fid,
which uses the tag expression Tag and id variables id and fid
to describe the node data, and a forest formula P to describe the
subforest.

Definition 3.2 (Formulae). Let A denote a data or context type of
the form D or D1 → D2 for D, D1, D2 ∈ {T, F, G}. The set of
formulae for DOM are defined by:

P ::=
P ⇒ P | falseA Boolean formulae
P◦D1P | P◦−D2P | P−◦P structural formulae
. . . (see below) . . . DOM-specific formulae
varE | ExpV = ExpV expression equality,

varE∈VARENV,V∈{ID,TAG,Z,B}
Int= len(f) | Int= len(s) length equality
∃var. P quantification,

var ∈ VARENV ∪ VARSTORE

The DOM-specific formulae are given by:

P ::= . . . | −T | Pid[P]fid
| ∅F | −F | 〈P 〉F | P ⊗ P
| ∅G | −G | 〈P 〉G | P ⊕ P

The type annotations on the formulae enable us to define a
simple typing relation P :A, where A is a data or context type,
by induction on the structure of formula P . The Boolean formulae
and quantified formulae inherit their types from the subformulae.
The equalities satisfy arbitrary A, since they are really outside the
typing system as they test the store rather than the data and context
structures. We give the cases for the structural formulae and for
the DOM-specific formulae for trees, and give one forest case; the
cases for the other DOM-specific formulae are similar:

(P1 ◦D1 P2):D2 ⇔ P1:D1�D2 ∧ P2:D1

(P1◦−D2P2):D1 ⇔ P1:D1�D2 ∧ P2:D2

(P1−◦P2):D1�D2 ⇔ P1:D1 ∧ P2:D2

−T:T�T
Pid[P

′]fid:T ⇔ P :S ∧ P ′:F
Pid[P

′]fid:R�T ⇔ P :S ∧ P ′:R�F

(P1 ⊗ P2):F ⇔ P1:F ∧ P2:F
(P1 ⊗ P2):R�F ⇔ (P1:R�F∧P2:F) ∨ (P1:F∧P2:R�F)

where R ∈ {T, F} denotes the possible tree or forest holes. The
formula Pid[P

′]fid has two typings, depending on whether it de-
scribes a tree or tree context. The formula P1⊗P2 also has the two
typings; since the forest context case has two options for typing the
subformulae, depending on which one describes the forest context.

Definition 3.3 (Satisfaction Relation). The satisfaction relation
e, s, a |=A P is defined on environment e, variable store s, datum
or context a of type A, and formula P of type A by induction on
the structure of P :

e, s, a |=A P ⇒ P ′ ⇔ e, s, a |=A P ⇒ e, s, a |=A P ′

e, s, a |=A falseA never

e, s, a |=A varE ⇔ a ≡ e(varE)

e, s, a |=A ExpV = Exp’V ⇔ JExpVKs = JExp’VKs
e, s, a |=A ∃varE. P ⇔ ∃b. (e[varE 7→ b], s, a |=A P)

e, s, a |=A ∃varV. P ⇔ ∃v. (e, s[varV 7→ v], a |=A P)

e, s, a |=A Int = len(f) ⇔ JIntKs = |e(f)|

for the structural formulae, we have
e,s,d2 |=D2P1 ◦D1 P2 ⇔ ∃cd:(D1�D2), d1:D1. d2 = ap(cd, d1)

∧ e, s, cd |=D1�D2 P1 ∧ e, s, d1 |=D1 P2

e,s,d1 |=D1 P1◦−D2P2 ⇔ ∀cd:(D1�D2). (e, s, cd |=D1�D2 P1 ∧
ap(cd, d1)↓)⇒ e, s, ap(cd, d1) |=D2 P2

e,s,cd2|=D1�D2P1−◦P2⇔ ∀d1:D1. e, s, d1 |=D1 P1 ∧ ap(cd2, d1)↓
⇒ e, s, ap(cd2, d1) |=D2 P2

and for the model-specific formulae, we have
e, s, t |=T Tagid[P

′]fid ⇔ ∃f:F. (t ≡ Tags(id)[f]s(fid)) ∧
e, s, f |=F P ′

e, s, ct |=T�T −T ⇔ ct ≡ −T
e, s, ct |=R�T tagid[P

′]fid ⇔ ∃cf:(R�F). (ct≡Tags(id)[cf]s(fid)) ∧
e, s, cf |=R�F P ′

e, s, f |=F ∅F ⇔ f ≡ ∅F
e, s, cf |=F�F −F ⇔ cf ≡ −F
e, s, f |=F 〈P 〉F ⇔ ∃t:T. (f ≡ 〈t〉F) ∧ e, s, t |=T P

e, s, cf |=R�F 〈P 〉F ⇔ ∃ct:(R�T). (cf≡〈ct〉F) ∧ e, s, ct|=R�TP

e, s, f |=F P1 ⊗ P2 ⇔ ∃f1:F, f2:F. (f ≡ f1 ⊗ f2) ∧
e, s, f1 |=F P1 ∧ e, s, f2 |=F P2

e, s, cf |=R�F P1⊗P2 ⇔ ∃cf′:(R�F), f′:F.„
(cf ≡ cf′⊗f′) ∧
e, s, cf′ |=R�F P1 ∧ e, s, f′ |=F P2

«
∨„

(cf ≡ f′⊗cf′) ∧
e, s, f′ |=F P1 ∧ e, s, cf′ |=R�F P2

«
e, s, g |=G ∅G ⇔ g ≡ ∅G
e, s, cg |=G�G −G ⇔ cg ≡ −G
e, s, g |=G 〈P 〉G ⇔ ∃t:T. (g ≡ 〈t〉G) ∧ e, s, t |=T P

e, s, cg |=R�G 〈P 〉G ⇔ ∃ct:(R�T). (cg≡〈ct〉G) ∧ e, s, ct|=R�TPCT
e, s, g |=G P1 ⊕ P2 ⇔ ∃g1:G, g2:G. (g ≡ g1 ⊕ g2) ∧

e, s, g1 |=G P1 ∧ e, s, g2 |=G P2

e,s,cg |=D�G P1⊕P2 ⇔ ∃cg′:(D�G), g:G. (cg ≡ cg′ ⊕ g) ∧
e, s, cg′ |=CG P1 ∧ e, s, g |=G P2

The standard classical connectives are derivable: true,∧,∨,¬, ∀.
We introduce notation for expressing ‘somewhere (potentially
deep down)’ (♦D1�D2P) and everywhere’ (�D1�D2P), where
D1, D2 ∈ {T, F, G}. Similarly, we define the related concept of
‘somewhere at this forest-level’ (♦⊗P) and ‘everywhere at this
forest-level’ (�⊗P):

♦D1�D2P , trueD1�D2◦D1P ♦⊗P , (trueF⊗−F⊗trueF)◦FP

�D1�D2P , ¬♦D1�D2¬P �⊗P , ¬♦⊗¬P

We write Bool for Bool = true and derive:

Tagid[P] , ∃fid. Tagid[P]fid Tag[P] , ∃id. Tagid[P]

The order of binding precedence is: ¬, ◦,∧,∨, {◦−,−◦} and ⇒,
with no precedence between the elements in {◦−,−◦}.
Example 3.4 (Context Logic examples). To demonstrate the ex-
pressive power of our logic we give some examples:

(a) Two equivalent ways of specifying a tree containing a node with
name a, but otherwise unconstrained:

∃id, fid. trueT�T ◦T (aid[trueF]fid) ≡ ♦T�T(a[trueF])

(b) A tree consisting of a body node with 0 or more paragraph
nodes underneath:

body[�⊗(〈trueT〉F ⇒ 〈paragraph[trueF]〉F)]
The �⊗ constraint on the forest underneath body specifies
that all its subforests that satisfy 〈trueT〉F (in other words, all
its subtrees) must also satisfy 〈paragraph[trueF]〉F. This sort
of formula turns out to be particularly useful when describing
XML schema invariants in Section 5.3.

(c) A grove:
cg ◦T (tagid[f]fid)

containing a node tagid[]fid (described by the store variables
tag, id and fid), inside a context cg and with a subforest f
(described by the environment variables cg and f). We use this
form of exact specification to specify that certain parts of the
tree remain unchanged by a command.

(d) A grove:

∃cg, tag, tag’. (∅X−◦cg ◦T (tagnode2[trueF]))◦X
〈tag’node1[trueF]〉X

containing the nodes node1 and node2, where the node node1
is not an ancestor of the node node2. This is parameterised by
X ∈ {F, G} to cover both the case in which node1 is a root
level node (X = G) and that in which it is the child of some
other node (X = F). This sort of formula occurs in the axiom
of appendChild.

(e) The weakest precondition of the appendChild command:

∃tag, tag’, fid, fid’, f, f’, cg.`
(cg ◦T (tagparent[f⊗ 〈tag’newChild[f’]fid’〉F]fid))−◦P

´
◦G`

(∅X−◦(cg ◦T (tagparent[f]fid)))〈tag’newChild[f’]fid’〉X
´

This formula states that the node newChild is not an ancestor
of the node parent, and that if the node newChild is moved to
the end of parent’s list of children then some postcondition P
will hold.

4. Local Hoare Reasoning
We use Context Logic applied to our DOM tree structure to pro-
vide local Hoare reasoning about Minimal DOM programs. This is
possible because all Minimal DOM commands are local. A com-
mand is local if it satisfies two natural properties [IO01]: the safety-
monotonicity property specifying that, if a command is safe in a
given state (i.e., it does not fault), then it is safe in a larger state;
and the frame property specifying that, if a command is safe in a
given state, then any execution of the command on a larger state
can be tracked to an execution on the smaller state.

With Minimal DOM, the formal operational semantics for the
commands is defined on groves. The commands appendChild,
removeChild, createNode do act at the grove level: append-
Child potentially takes a subtree from one grove tree and appends
it to a subtree from another grove tree; the other commands result
in new grove trees. However, the commands getNodeName, get-
ChildNodes, item essentially act on specific subtrees identified by
the command, rather than at the grove level, and the command get-
ParentNode is a hybrid, having different behaviour at the subtree
level (where it returns the parent) and the grove level (where it
returns null). We therefore provide two forms of Hoare triple,
depending on whether we are reasoning about trees or groves. We
use O’Hearn’s fault-avoiding partial correctness interpretation of
our local Hoare Triples on groves and trees, which says that if a
state satisfies a precondition, then the command cannot fault and
the resulting state must satisfy the postcondition.

Definition 4.1 (Local Hoare Triples). Recall the evaluation rela-
tion relating configuration triples C, s, g, terminal states s, g, and
faults. The fault-avoiding partial correctness interpretation of local
Hoare Triples is given by:

{P} C {Q} ⇔ (P :G ∧Q:G∧
∀e, s, g. e, s, g |=G P ⇒
C, s, g 6 fault ∧
∀s′, g′. C, s, g s′, g′ ⇒ e, s′, g′ |=G Q)

∨ (P :T ∧Q:T∧
∀e, s, g. e, s, g |=G 〈P 〉G ⇒
C, s, g 6 fault ∧
∀s′, g′. C, s, g s′, g′ ⇒ e, s′, g′ |=G 〈Q〉G)

Our interpretation of the local Hoare Triples on trees coerces
those trees to groves using 〈〉G. This is necessary since is defined
over configuration triples containing groves.

˘
(∅X−◦(cg ◦T (tagparent[f]fid))) ◦X 〈tag’newChild[f’]fid’〉X

¯
appendChild(parent, newChild)

˘
cg ◦T (tagparent[f⊗ 〈tag’newChild[f’]fid’〉F]fid)

¯˘
〈ct ◦T (tagparent[f1 ⊗ 〈tag’oldChild[f]fid’〉F ⊗ f2]fid)〉G

¯
removeChild(parent, oldChild)

˘
〈ct ◦T (tagparent[f1 ⊗ f2]fid)〉G ⊕ 〈tag’oldChild[f]fid’〉G

¯˘
tag’node[f]fid

¯
tag := getNodeName(node)

˘
tag’node[f]fid ∧ (tag = tag’)

¯˘
tagnode’’[f1 ⊗ 〈tag’node[f]fid’〉F ⊗ f2]fid

¯
id := getParentNode(node)

˘
tagnode’’[f1 ⊗ 〈tag’node[f]fid’〉F ⊗ f2]fid ∧ (id=node’’)

¯˘
〈tag’node[f]fid’〉G

¯
id := getParentNode(node)

˘
〈tag’node[f]fid’〉G ∧ (id = null)

¯˘
tagnode[f]fid’

¯
fid := getChildNodes(node)

˘
tagnode[f]fid’ ∧ (fid = fid’)

¯˘
∅G
¯

node := createNode(Tag)
˘
〈Tagnode[∅F]fid〉G

¯˘
tagid[f1 ⊗ 〈tag’id’[f]fid’〉F ⊗ f2]list ∧ (Int= len(f1))

¯
node := item(list, Int)

˘
tagid[f1 ⊗ 〈tag’id’[f]fid’〉F ⊗ f2]list ∧ (node = id’)

¯˘
tagid[f]list ∧ (Int < 0 ∨ Int ≥ len(f))

¯
node := item(list, Int)

˘
tagid[f]list ∧ (node=null)

¯
Figure 2. Minimal DOM Axioms

∃tag, tag’, fid, fid’, f, f’, cg.

((cg ◦T (tagparent[f⊗ 〈tag’newChild[f’]fid’〉F]fid))−◦P)◦G

((∅X−◦(cg ◦T (tagparent[f]fid))) ◦X 〈tag’newChild[f’]fid’〉X)

ff
appendChild(parent, newChild)

˘
P
¯

∃tag, tag’, fid, fid’, f, f1, f2, ct.

((〈ct ◦T (tagparent[f1 ⊗ f2]fid)〉G ⊕ 〈tag’oldChild[f]fid’〉G)−◦P)◦G

(〈ct ◦T (tagparent[f1 ⊗ 〈tag’oldChild[f]fid’〉F ⊗ f2]fid)〉G)

ff
removeChild(parent, oldChild)

˘
P
¯˘

∃tag’.♦T�G(tag’node[trueF]) ∧ P [tag’/tag]
¯

tag := getNodeName(node)
˘

P
¯

∃tag’. (∃tag, node’’.♦T�G(tagnode’’[trueF ⊗ 〈tag’node[trueF]〉F ⊗ trueF]) ∧ P [node’’/id])
∨ (♦G�G(〈tag’node[trueF]〉G) ∧ P [null/id])

ff
id := getParentNode(node)

˘
P
¯

˘
∃tag, fid’.♦T�G(tagnode[trueF]fid’) ∧ P [fid’/fid]

¯
fid := getChildNodes(node)

˘
P
¯˘

(∀node’, fid. 〈Tagnode’[∅F]fid〉G−◦P [node’/node]) ◦G (∅G)
¯

node := createNode(Tag)
˘

P
¯

∃tag, id.∃tag’, id’, f1.♦T�G(tagid[f1 ⊗ 〈tag’id’[trueF]〉F ⊗ trueF]list) ∧ (Int = len(f1)) ∧ P [id’/node]
∨ ∃f.♦T�G(tagid[f]list) ∧ (Int < 0 ∨ Int ≥ len(f)) ∧ P [null/node]

ff
node := item(list, Int)

˘
P
¯

Figure 3. Minimal DOM Weakest Preconditions

Definition 4.2 (Command Axioms). In Figure 2 we give the ax-
ioms for the Minimal DOM commands described in Section 2. In
addition, we have the following axioms for assignment˘

d ∧ (var’V = ExpV)
¯
varV := ExpV

˘
d ∧ (varV = var’V)

¯˘
d

¯
skip

˘
d

¯
where d ∈ {VarT, VarG}.

The appendChild command has two axioms parameterised by
X ∈ {F, G}, corresponding to when newChild has a parent node
and when it does not since it is at the top of the grove. getParent-
Node also has two axioms, returning the parent node when it exists
and null when it does not. Similarly, the item command has two
axioms, for the cases when the indices are within range or not. The
axioms for assignment and skip are standard, and do not change the
grove.

Definition 4.3 (Local Hoare Reasoning). The local Hoare reason-
ing framework consists of the command axioms given in Defini-
tion 4.2 and seven general inference rules: the Rules of Sequenc-
ing, If-Then-Else, While, Consequence, Disjunction1 and Auxil-
iary Variable Elimination, which are standard, and the Frame Rule,
which permits local reasoning by allowing the inference of invari-
ant properties implied by locality, and which is presented here in
terms of context application:

SEQUENCING:

˘
P

¯
C1

˘
Q

¯ ˘
Q

¯
C2

˘
R

¯˘
P

¯
C1 ; C2

˘
R

¯
IF-THEN-ELSE:

˘
Bool ∧ P

¯
C1

˘
Q

¯ ˘
¬Bool ∧ P

¯
C2

˘
Q

¯˘
P

¯
if Bool then C1 else C2

˘
Q

¯
WHILE:

˘
Bool ∧ P

¯
C

˘
P

¯˘
P

¯
while Bool do C

˘
¬Bool ∧ P

¯
1 The Disjunction Rule is required for the commands with two axioms; the
Conjunction Rule, meanwhile, is admissible.

CONSEQUENCE:
P ′ ⇒ P

˘
P

¯
C

˘
Q

¯
Q⇒ Q′˘

P ′
¯
C

˘
Q′

¯
DISJUNCTION:

˘
P

¯
C

˘
Q

¯ ˘
P ′

¯
C

˘
Q′

¯˘
P ∨ P ′

¯
C

˘
Q ∨Q′

¯
AUX VAR ELIM:

˘
P

¯
C

˘
Q

¯˘
∃var. P

¯
C

˘
∃var. Q

¯ var /∈ free(C)

FRAME RULE:

˘
P

¯
C

˘
Q

¯˘
K ◦D P

¯
C

˘
K ◦D Q

¯ mod(C) ∩
free(K) = ∅

where P, Q : D, K : D�D′ for D, D′ ∈ {T, G}, and var is either
an environment or a store variable. The set of free variables is
standard and mod(C) is the set of all variables assigned to by C.

We conclude this section with a brief sanity check, showing
that the weakest preconditions of the Minimal DOM commands are
derivable in the logic. This means that our local Hoare reasoning is
complete for straight line code.

Theorem 4.4 (Weakest Preconditions). The weakest preconditions
of the Minimal DOM commands are derivable in the logic.

Proof. The weakest preconditions for the commands are given in
Figure 3. The derivations are provided in the full version of this
paper.

5. Examples
We present a number of examples of Minimal DOM reasoning. We
illustrate the minimality of Minimal DOM by giving a represen-
tative example of a derivation of a DOM Core Level 1 command
which is not included in Minimal DOM. We demonstrate the mod-
ular nature of Context Logic reasoning by giving a simple, con-
cise derivation of a command which is not included in DOM. Fi-
nally, we demonstrate the potential applicability of the framework
to real-world problems by proving that an example program will al-
ways maintain the properties specified by its accompanying XML
schema.

getIndex derivation˘
tagid[f⊗ 〈tag’node[f’’]fid’〉F ⊗ f’]nodeList

¯
n := 0 ; current := item(nodeList, n) ;8<:
∃tag’’, f1, f2. (n = len(f1))

∧ tagid

»„
(f⊗ 〈tag’node[f’’]fid’〉F) ∧
(f1 ⊗ 〈tag’’current[trueF]〉F ⊗ f2)

«
⊗ f’

–
nodeList

9=;
while (current 6= node ∧ current 6= null) do8>><>>:

∃tag’’, tag’’’, id’’’, f1, f’2. (n = len(f1))

∧ tagid

240@(f⊗ 〈tag’node[f’’]fid’〉F) ∧„
f1 ⊗ 〈tag’’current[trueF]〉F ⊗
〈tag’’’id’’’[trueF]〉F ⊗ f’2

«1A⊗ f’

35
nodeList

9>>=>>;
n := n + 1 ; current := item(nodelist, n)8<:
∃tag’’’, f’1, f’2. (n = len(f’1))

∧ tagid

»„
(f⊗ 〈tag’node[f’’]fid’〉F) ∧
(f’1 ⊗ 〈tag’’’current[trueF]〉F ⊗ f’2)

«
⊗ f’

–
nodeList

9=;
8<:
∃tag’’, f1, f2. (n = len(f1)) ∧ (current = node)

∧ tagid

»„
(f⊗ 〈tag’node[f’’]fid’〉F) ∧
(f1 ⊗ 〈tag’’current[trueF]〉F ⊗ f2)

«
⊗ f’

–
nodeList

9=;˘
tagid[f⊗ 〈tag’node[f’’]fid’〉F ⊗ f’]nodeList ∧ (n = len(f))

¯

getPreviousSibling derivation˘
〈tagnode[f]fid〉G

¯
parent := getParentNode(node) ;˘
〈tagnode[f]fid〉G ∧ (parent = null)

¯
if parent := null then sibling := null else . . .˘
〈tagnode[f]fid〉G ∧ (sibling = null)

¯
˘
tagid[〈tag’’node[f’’]fid’’〉F ⊗ f2]fid

¯
parent := getParentNode(node) ; if parent := null then . . . else˘
tagid[〈tag’’node[f’’]fid’’〉F ⊗ f2]fid ∧ (parent = id)

¯
children := getChildNodes(parent) ; n := getIndex(children, node) ;˘
tagid[〈tag’’node[f’’]fid’’〉F ⊗ f2]fid∧(parent=id)∧(children=fid)∧(n=0)

¯
sibling := item(nodelist, n− 1)˘
tagid[〈tag’’node[f’’]fid’’〉F ⊗ f2]fid ∧ (sibling = null)

¯
˘
tagid[f1 ⊗ 〈tag’id’[f’]fid’〉F ⊗ 〈tag’’node[f’’]fid’’〉F ⊗ f2]fid

¯
parent := getParentNode(node) ; if parent := null then . . . else˘
tagid[f1 ⊗ 〈tag’id’[f’]fid’〉F ⊗ 〈tag’’node[f’’]fid’’〉F ⊗ f2]fid∧(parent=id)

¯
children := getChildNodes(parent) ; n := getIndex(children, node) ;
tagid[f1 ⊗ 〈tag’id’[f’]fid’〉F ⊗ 〈tag’’node[f’’]fid’’〉F ⊗ f2]fid
∧ (parent = id) ∧ (children = fid) ∧ (n− 1 = len(f1))

ff
sibling := item(nodelist, n− 1)˘
tagid[f1⊗〈tag’id’[f’]fid’〉F⊗〈tag’’node[f’’]fid’’〉F⊗f2]fid∧(sibling=id’)

¯
Figure 4. getIndex and getPreviousSibling Derivations

5.1 GetPreviousSibling
We define the DOM command getPreviousSibling. In doing
so, we define the auxiliary command getIndex, which is not in
DOM Core Level 1. The purpose of getIndex is to return the index
of a given node in a given list. Here, we demonstrate the derivation
of a specification for getPreviousSibling, and by necessity
therefore also a derivation of getIndex. The implementations of
getPreviousSibling and the auxiliary command getIndex are:

n := getIndex(nodeList, node) ,
n := 0 ; current := item(nodeList, n) ;
while (current 6= node ∧ current 6= null) do

n := n + 1 ; current := item(nodelist, n)

sibling := getPreviousSibling(node) ,
parent := getParentNode(node) ;
if parent = null then sibling := null else

children := getChildNodes(parent) ;
n := getIndex(children, node) ;
sibling := item(nodelist, n− 1)

The getIndex command uses a simple while loop to do a
linear search of the nodes in the parameter nodeList, counting the
elements in turn until the target node is found. It then returns the
position of that node. The getPreviousSibling command uses
getParentNode and getChildNodes to obtain the list of siblings
of the parameter node. It then uses getIndex to find the position
of node in that list, and item to return the previous one if it exists,
or null otherwise. If node is a root level node and therefore has no
siblings, getPreviousSibling returns null.

getIndex has the following specification when node is an
element of nodeList:˘

tagid[f⊗ 〈tag’node[f’’]fid’〉F ⊗ f’]nodeList
¯

n := getIndex(nodeList, node)˘
tagid[f⊗ 〈tag’node[f’’]fid’〉F ⊗ f’]nodeList ∧ (n = len(f))

¯
The precondition states that a tree identified by node is a child of
a tree with a child list identified by nodeList. The postcondition
states that the tree has remained the same, and that the store now
records the position of the tree node in the variable n.

getPreviousSibling, meanwhile, can be best described us-
ing three complementary specifications, corresponding to when the
node is at the grove level, the beginning of the nodeList, or else-
where.

˘
〈tagnode[f]fid〉G

¯
sibling := getPreviousSibling(node)˘
〈tagnode[f]fid〉G ∧ (sibling = null)

¯
˘
tagid[〈tag’’node[f’’]fid’’〉F ⊗ f2]fid

¯
sibling := getPreviousSibling(node)˘
tagid[〈tag’’node[f’’]fid’’〉F ⊗ f2]fid ∧ (sibling = null)

¯
˘
tagid[f1⊗〈tag’id’[f’]fid’〉F⊗〈tag’’node[f’’]fid’’〉F⊗f2]fid

¯
sibling := getPreviousSibling(node)
tagid[f1⊗〈tag’id’[f’]fid’〉F⊗〈tag’’node[f’’]fid’’〉F⊗f2]fid
∧ (sibling = id’)

ff

The derivations for these specifications are given in Figure 4.

5.2 InsertAfter
In a similar fashion to getPreviousSibling, we can use Minimal
DOM to implement the DOM Core Level 1 command insert-
Before which inserts a newChild into a parent’s list of children,
immediately before some refNode:

insertBefore(parent, newChild, refNode) ,
appendChild(parent, newChild) ;
if refNode = null then skip else

children := getChildNodes(parent) ;
position := getIndex(children, refNode) ;
current := item(children, position) ;
while current 6= newChild do

appendChild(parent, current) ;
current := item(children, position)

The specification for this command has two cases: one in which the
argument refNode is null; and another in which it is not. The case
in which refNode is not null is as follows (where X ∈ {F, G} as

in Example 3.5d):
(∅X−◦(cg ◦T (tagparent[f1 ⊗ 〈tag’refNode[f]fid’〉F ⊗ f2]fid)))

◦X(〈tag’’newChild[f’]fid’’〉X)

ff
insertBefore(parent, newChild, refNode)
cg ◦T (tagparent

»
f1 ⊗ 〈tag’’newChild[f’]fid’’〉F
⊗ 〈tag’refNode[f]fid’〉F ⊗ f2

–
fid

)

ff
Using insertBefore, one can implement another command,

insertAfter (whose behaviour is as expected), which is not in
DOM Core Level 1. In the case where refNode is not null, this
simply corresponds to using two calls to insertBefore:

insertAfter(parent, newChild, refNode) ,
insertBefore(parent, newChild, refNode) ;
insertBefore(parent, refNode, newChild)

In this case, insertAfter has the specification:
(∅X−◦(cg ◦T (tagparent[f1 ⊗ 〈tag’refNode[f]fid’〉F ⊗ f2]fid)))

◦X(〈tag’’newChild[f’]fid’’〉X)

ff
insertAfter(parent, newChild, refNode);
cg ◦T (tagparent

»
f1 ⊗ 〈tag’refNode[f]fid’〉F
⊗ 〈tag’’newChild[f’]fid’’〉F ⊗ f2

–
fid

)

ff
which we can derive compositionally from the non-null case of the
specification of insertBefore:

(∅X−◦(cg◦T(tagparent[f1 ⊗ 〈tag’refNode[f]fid’〉F ⊗ f2]fid)))

◦X(〈tag’’newChild[f’]fid’’〉X)

ff
insertBefore(parent, newChild, refNode);
cg◦T(tagparent

»
f1 ⊗ 〈tag’’newChild[f’]fid’’〉F
⊗ 〈tag’refNode[f]fid’〉F ⊗ f2

–
fid

)

ff

(∅F−◦(cg◦T(tagparent[f1 ⊗ 〈tag’’newChild[f’]fid’’〉F ⊗∅F ⊗ f2]fid)))

◦F(〈tag’refNode[f]fid’〉F)

ff

(∅F−◦(cg◦T(tagparent[f1 ⊗ 〈tag’’newChild[f’]fid’’〉F ⊗ f2]fid)))

◦F(〈tag’refNode[f]fid’〉F)

ff
insertBefore(parent, refNode, newChild);
cg◦T(tagparent

»
f1 ⊗ 〈tag’refNode[f]fid’〉F
⊗ 〈tag’’newChild[f’]fid’’〉F ⊗ f2

–
fid

)

ff

This example serves as a good illustration of the modular-
ity of our reasoning. The specification of the composite com-
mand is of the same form as the specifications of each of the
individual commands, and does not refer to any other specifi-
cation. The nearest DOM equivalent would be an English lan-
guage statement declaring that, where ‘a 6= null’, the command
‘p.insertAfter(a, b)’ is equivalent to the sequence of commands
‘p.insertBefore(a, b); p.insertBefore(b, a)’. This would re-
quire that the reader refer to the specification of insertBefore in
order to understand that of insertAfter.

5.3 Proving Schema Invariants
When reasoning about programs, it is often desirable to prove a
particular property about a program, rather than proving the whole
(very complex) specification. One example of this involves proving
XML schema invariants. For example, consider writing a program
to update an XML document which complies with the following
schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="addressBook">

<xs:element name="household" minOccurs="0"
maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="person" maxOccurs="unbounded"/>
</xs:element>
<xs:element name="address" type="string"/>
<xs:element name="phone" type="string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:element>

This schema asserts that the root element of the document
should be an ‘addressBook’ node. That node may have zero or
more children so long as they are ‘household’ nodes. Those nodes
must contain one or more ‘person’ nodes, one ‘address’ node
and one ‘phone’ node. Each of these third-level nodes have no
children. In practice, these childless nodes should contain data of
type ‘string’. As stated in Section 2, Minimal DOM concentrates
on the fundamental tree structure of XML, and not on the content
of that structure, so we ignore this text data.

We specify that a tree consists of a valid addressBook document
using a tree formula S, corresponding to the schema above:

S , 〈addressBook[households]〉G

households , �⊗(〈trueT〉F ⇒ 〈household[
〈person[∅F]〉F⊗people⊗〈address[∅F]〉F⊗〈phone[∅F]〉F]〉F)

people , �⊗(〈trueT〉F ⇒ 〈person[∅F]〉F)
Consider a program which updates the addressBook document

when a specified person leaves of a given household. We give an
implementation of this program in Minimal DOM which requires
that the supplied parameter house refers to a ‘household’ node
in the addressBook, and that leaver refers to a ‘person’ in that
household. It moves leaver out of house, into a newly created
house; checks if house is now empty; and, if it is, deletes it from
the address book.

moveOut(house, leaver) ,

// Move leaver into a new house.
book := getParentNode(house);
newHouse := createNode(‘household’);
newAddr := createNode(‘address’);
newPhone := createNode(‘phone’);
appendChild(newHouse, leaver);
appendChild(newHouse, newAddr);
appendChild(newHouse, newPhone);
appendChild(book, newHouse);

// Check if old household is empty...
kids := getChildNodes(house);
firstChild := item(kids, 0);
firstName := getNodeName(firstChild);
if firstName = ‘person’ then skip else

// ...and if so, remove it.
removeChild(book, house);

Since Minimal DOM makes no attempt to store the data content
of the XML structure, we do not require that the user of the program
to specify address and phone data for the new house. In a language
which did handle such data, to do so would be trivial.

The safety condition that leaver refers to a person within a
household house can be expressed by the formula

P , ♦T�Ghouseholdhouse[♦⊗〈personleaver[∅F]〉F]
Given this precondition, we can show that moveOut maintains the
schema predicate:˘

(S ∧ P)⊕ trueG
¯
moveOut(house, leaver)

˘
S ⊕ trueG

¯
As explained in Section 2.2, we treat Minimal DOM as a garbage
collected language. We therefore use true in the specification (in
addition to, and disjoint from, our schema invariant) to refer to

˘
(S ∧ P)⊕ trueG

¯˘
〈addressBook

ˆ
households⊗ 〈householdhouse

ˆ
people⊗ 〈personleaver[∅F]〉F ⊗ people⊗ 〈address[∅F]〉F ⊗ 〈phone[∅F]〉F

˜
〉F ⊗ households

˜
〉G ⊕ trueG

¯
moveOut(house, leaver) ,

// Move leaver into a new house.
addr := getParentNode(house); newHouse := createNode(household); newAddr := createNode(address); newPhone := createNode(phone);
〈addressBookaddr

ˆ
households⊗ 〈householdhouse

ˆ
people⊗ 〈personleaver[∅F]〉F ⊗ people⊗ 〈address[∅F]〉F ⊗ 〈phone[∅F]〉F

˜
〉F ⊗ households

˜
〉G

⊕ 〈householdnewHouse[∅F]〉G ⊕ 〈addressnewAddr[∅F]〉G ⊕ 〈phonenewPhone[∅F]〉G ⊕ trueG

ff
appendChild(newHouse, leaver); appendChild(newHouse, newAddr); appendChild(newHouse, newPhone); appendChild(addr, newHouse);fi

addressBookaddr

»
households⊗ 〈householdhouse

ˆ
people⊗ people⊗ 〈address[∅F]〉F ⊗ 〈phone[∅F]〉F

˜
〉F ⊗

households⊗ 〈householdnewHouse

ˆ
〈personleaver[∅F]〉F ⊗ 〈address[∅F]〉F ⊗ 〈phone[∅F]〉F

˜
〉F

–fl
G
⊕ trueG

ff
// Check if old household is empty...
kids := getChildNodes(house); firstChild := item(kids, 0); firstName := getNodeName(firstChild);
if firstName = person then skipfi

addressBookaddr

»
households⊗ 〈householdhouse

ˆ
〈person[∅F]〉F ⊗ people⊗ 〈address[∅F]〉F ⊗ 〈phone[∅F]〉F

˜
〉F ⊗

households⊗ 〈householdnewHouse

ˆ
〈person[∅F]〉F ⊗ 〈address[∅F]〉F ⊗ 〈phone[∅F]〉F

˜
〉F

–fl
G
⊕ trueG

ff
⇒
˘

S ⊕ trueG
¯

else removeChild(addr, house);˘
〈addressBookaddr

ˆ
households⊗ households⊗ 〈householdnewHouse

ˆ
〈person[∅F]〉F ⊗ 〈address[∅F]〉F ⊗ 〈phone[∅F]〉F

˜
〉F
˜
〉G ⊕ trueG

¯
⇒
˘

S ⊕ trueG
¯

Figure 5. Schema Preservation Derivation

uncollected garbage which may safely be ignored. The proof for
the specification is given in Figure 5.

6. Conclusion
Using Context Logic, we have developed local Hoare reasoning
about Minimal DOM. Our reasoning is compositional and complete
for straight-line code, which means that we can focus on a minimal
set of DOM commands and prove invariant properties about simple
programs.

We made the deliberate choice to work with the DOM tree struc-
ture (the trees, forests and groves), rather than the full DOM struc-
ture which also consists of text, attributes, etc. The tree structure
is fundamental to DOM, since DOM views the other structures as
nodes with simpler properties than tree nodes. We took the view
that it was important to understand the reasoning of the fundamen-
tal tree structure first. We will extend our reasoning to full DOM
in future, although we conjecture that there will be little additional
conceptual reasoning in this extension.

We are at the beginning of our DOM project. We also aim to
prove that an implementation of Minimal DOM is correct. A DOM
implementation should have the same behaviour as other DOM
implementations on different distributed sites. This only works
if the implementation really does conform with DOM. We ob-
served that, until recently [Ore07], Python mini-DOM was incor-
rect [Smi06][Whe07]. Since DOM is written in English, it is under-
standable that such errors occur. However, with our formal specifi-
cation it is possible to prove that an implementation is correct. We
are currently working on a DOM library for Smallfoot [BCO06],
the verification tool for reasoning about C-programs using Separa-
tion Logic. In future, we aim to integrate our high-level reasoning
about Minimal DOM with this low-level DOM library.

We will also explore a prototype verification tool for reasoning
initially about Minimal DOM, and then about full DOM. The last
example in Section 5.3, which verifies that an XML schema for
describing an address book is an invariant of a simple Javascript
program which moves a person to a new address, is particularly
enticing. We would like to discover whether it is possible to provide
a ‘one-click’ tool that checks if embedded Javascript in a web page
can ever violate the schema assertions on that web page. We will
first assess the expressivity of XML schema on the basic XML-
tree structure with the Context-logic reasoning described here, and
fully assess what sort of reasoning about Minimal DOM is possible
by hand. We will then search for a decidable fragment of Context
Logic, which hopefully captures enough of the schema reasoning,

taking inspiration from the Smallfoot tool which verifies invariant
properties of C-programs for manipulating lists.

References
[BCC+07] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino

Distefano, Peter O’Hearn, Thomas Wies, and Hongseok Yang.
Shape analysis for composite data structures. In CAV, 2007.

[BCO06] J. Berdine, C. Calcagno, and P.W. O’Hearn. Smallfoot:
Modular automatic assertion checking with separation logic.
In Proceedings of FMCO, volume 4111 of LNCS, pages 115–
137. Springer-Verlag, 2006.

[CGZ05] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic & tree
update. In Proceedings of POPL, pages 271–282. ACM Press,
2005.

[IO01] S. Isthiaq and P.W. O’Hearn. BI as an assertion language
for mutable data structures. In Proceedings of POPL, pages
14–26. ACM Press, 2001.

[O’H05] Peter W. O’Hearn. Resources, concurrency and local
reasoning. Theoretical Computer Science, 2005.

[Ore07] Jason Orendorff. Compliance Patches for minidom. Included
with Python, April 2007. Patches documented in the issue
tracker at http://bugs.python.org/issue1704134.

[ORY01] P.W. O’Hearn, J. Reynolds, and H. Yang. Local reasoning
about programs that alter data structures. In Proceedings of
CSL, volume 2142 of LNCS, pages 1–19. Springer-Verlag,
2001.

[Smi06] Gareth Smith. A context logic approach to analysis and
specification of xml update. PhD first year report, 2006.

[Var06] Various. Python: xml.dom.minidom. Included with Python,
Documentation last updated September 2006. Docu-
mentation available at http://docs.python.org/lib/
module-xml.dom.minidom.html.

[W3C00] W3C. Document Object Model (DOM) Level 1 Spec-
ification (2nd Edition). W3C working draft, Septem-
ber 2000. Available at http://www.w3.org/TR/2000/
WD-DOM-Level-1-20000929/.

[W3C05] W3C. DOM: Document Object Model. W3C recommen-
dation, Janurary 2005. Available at http://www.w3.org/
DOM/.

[Whe07] Mark Wheelhouse. Dom: Towards a formal specification.
Master’s thesis, Imperial College, 2007.

