
Context Logic

Specifying DOM – Core Level 1

Tree Structure Local Hoare Reasoning

Decidability

Tree T⠭= ∅ n[T] T|T

Context C⠭= _ n[C] C|T T|C

node identifiers n are unique
| is ordered with identity ∅

Part of DOM Core
Level 1 covered:

K

P

K = P Q—

Whenever we put tree P into
context K then we have tree Q

Whenever we put context K
around tree P then we have tree Q

DOM Data Structure:
trees t⠭= sid[f]fid #textid[s]

Fforests f⠭= ∅F 〈t〉 f ⊗ f

groves g⠭= ∅G〈t〉 g ⊕ gG

strings s⠭= ∅S c s · s
node and forest identifiers id and fid
are unique

Example DOM Command
and Reasoning:

t

c

f1 f2

t

c

p

ct

f1 f2

p

ct

⊕
removeChild(p, c)

Thomas Dinsdale-Young td202@doc.ic.ac.uk Philippa Gardner pg@doc.ic.ac.uk
Gareth Smith gds@doc.ic.ac.uk Mark Wheelhouse mjw03@doc.ic.ac.uk

Hoare Triples:
{P} C {Q}

pre post

If P holds before we run command C
then the command will not fault and,
if the command terminates, then Q
will hold when C is finished.

Frame Rule:

where variables in C do not clash with
those in K.

Structural Connectives - Context Application and Adjoints:

Tree Q can be split into
context K applied to tree P

K

P

Q = K P

Left to Right
Bottom Up

Key

K1 K2x

Finite tree automata
can implement (multi-holed)
Context Logic, giving us a way
to decide whether a tree
satisfies a formula
(model checking), or if
there is any tree that satisfies
a formula (satisfiability).

Context Logic for Trees
Classical Connectives + Structural Connectives

+ Tree-Specific Connectives

P

K

P

C
Q

K

Q

C

P = K Q—

K

P

K

Verification Tool

Related logics Ambient Logic and Separation Logic (without quantifiers) are decidable
by the size argument. This doesn’t work for Context Logic, because of application, but
we can use automata:

K1 = a[x] K2 = ¬(True|¬(¬0∧¬(¬0|¬0)⇒b[0])|True)

Our next step is to find an appropriate
decidable fragment of Context Logic
with quantification for automating
program verification. For example one
could verify that Javascript programs
never violate schema invariants.

single root

list of trees

set of trees

mailto:td202@doc.ic.ac.uk
mailto:td202@doc.ic.ac.uk
mailto:pg@doc.ic.ac.uk
mailto:pg@doc.ic.ac.uk
mailto:gds@doc.ic.ac.uk
mailto:gds@doc.ic.ac.uk
mailto:mjw03@doc.ic.ac.uk
mailto:mjw03@doc.ic.ac.uk

