
FastLAS: Scalable Inductive Logic Programming incorporating Domain-specific
Optimisation Criteria

Mark Law
Imperial College London, UK
mark.law09@imperial.ac.uk

Alessandra Russo
Imperial College London, UK

a.russo@imperial.ac.uk

Elisa Bertino
Purdue University, USA

bertino@purdue.edu

Krysia Broda
Imperial College London, UK

k.broda@imperial.ac.uk

Jorge Lobo
ICREA - Universitat Pompeu Fabra

jorge.lobo@upf.edu

Abstract

Inductive Logic Programming (ILP) systems aim to find a set
of logical rules, called a hypothesis, that explain a set of ex-
amples. In cases where many such hypotheses exist, ILP sys-
tems often bias towards shorter solutions, leading to highly
general rules being learned. In some application domains like
security and access control policies, this bias may not be de-
sirable, as when data is sparse more specific rules that guaran-
tee tighter security should be preferred. This paper presents a
new general notion of a scoring function over hypotheses that
allows a user to express domain-specific optimisation criteria.
This is incorporated into a new ILP system, called FastLAS,
that takes as input a learning task and a customised scoring
function, and computes an optimal solution with respect to
the given scoring function. We evaluate the accuracy of Fast-
LAS over real-world datasets for access control policies and
show that varying the scoring function allows a user to tar-
get domain-specific performance metrics. We also compare
FastLAS to state-of-the-art ILP systems, using the standard
ILP bias for shorter solutions, and demonstrate that FastLAS
is significantly faster and more scalable.

Introduction
Inductive Logic Programming (ILP) (Muggleton 1991) sys-
tems aim to find a set of logical rules, called a hypothesis,
that, together with some existing background knowledge,
explain a set of examples. Often, many alternative hypothe-
ses can explain the examples, and most systems employ a
bias towards shorter solutions, based on Occam’s razor (the
solution with the fewest assumptions is the most likely).

Choosing the shortest hypothesis often leads to very gen-
eral hypotheses being learned from relatively few examples.
While this can be a huge advantage of ILP over other ma-
chine learning approaches that need larger quantities of data,
learning such general rules without sufficient quantities of
data to justify them may not be desirable in every applica-
tion domain. For example, in access control, wrongly al-
lowing access to a resource may be far more dangerous than
wrongly denying access. So, learning a more general hy-
pothesis, representing a more permissive policy, would be
more dangerous than a specific hypothesis, representing a
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more conservative policy. Equally, for access control where
the need for resources is time critical, wrongly denying ac-
cess could be more dangerous than wrongly allowing access.
When learning such policies, and choosing between alterna-
tive hypotheses, it would be useful to specify whether the
search should be biased towards more or less general hy-
potheses.

In this paper, we introduce a new ILP system, called Fast-
LAS, for learning Answer Set Programs (ASP) (Gelfond and
Lifschitz 1988; Brewka, Eiter, and Truszczyński 2011), tar-
geted at solving a restricted version of the context-dependent
learning from answer sets tasks defined in (Law, Russo, and
Broda 2016), in which tasks require only observational pred-
icate learning. The FastLAS system has two main advan-
tages. Firstly, it takes as input a learning task and a (domain-
specific) scoring function for hypotheses. The idea is that if
there are alternative hypotheses that explain the examples,
the hypothesis with the lowest score is preferred. This gen-
eralises the standard ILP approach, where hypotheses with
the lowest number of literals are normally assumed to be
preferred. Secondly, it is specifically designed to be scal-
able with respect to the hypothesis space – the set of all rules
which can appear in a hypothesis. The FastLAS algorithm
uses the novel approach of computing a smaller subset of
the hypothesis space, called an OPT-sufficient subset, that
is guaranteed to contain at least one optimal solution with
respect to the given scoring function. This smaller search
space can be orders of magnitude smaller than the full hy-
pothesis space of a given learning task. We have shown that
FastLAS is guaranteed to return an optimal solution w.r.t. a
given scoring function.

We evaluated the effect of domain-specific scoring func-
tions by applying FastLAS to real-world datasets for access
control policies. Results show that domain-specific scor-
ing functions lead to higher accuracy than the standard ILP
bias. We evaluated the scalability of FastLAS against ex-
isting state-of-the-art ASP-based ILP systems on real-world
datasets, showing that FastLAS is significantly faster than
these systems. FastLAS achieves the same if not higher ac-
curacy by exploring, for the same dataset, a much larger hy-
pothesis space.

The next section reviews the necessary background and
notation for the paper. In the next sections, (domain-



specific) scoring functions and the FastLAS algorithm are
presented, followed by an evaluation of the approach. The
paper concludes with discussions of related and future work.

Background
This section introduces basic notions used throughout
the paper. Given any (first-order logic) atoms h,
b1, . . . , bn, c1, . . . , cm, a normal rule is h : - b1, . . . , bn,
not c1, . . . , not cm, where h is the head, b1, . . . , bn,
not c1, . . . , not cm (collectively) is the body of the rule,

and “not” represents negation as failure. Rules of the form
: - b1, . . . , bn, not c1, . . . , not cm are called constraints.
The head (resp. body) of a rule R is denoted head(R)
(resp. body(R)) and body+(R) and body−(R) denote the
positive and negative body literals in R, respectively. A
rule R is said to be a subrule of a rule R′ if and only if
head(R) = head(R′) and body(R) ⊆ body(R′) (we call
R a strict-subrule if R 6= R′). In this paper, unless stated
otherwise, we assume an ASP program to be a set of nor-
mal rules and constraints. The Herbrand Base of a program
P , denoted HBP , is the set of variable free (ground) atoms
that can be formed from predicates and constants in P . The
subsets of HBP are called the (Herbrand) interpretations of
P . Given a program P and an interpretation I ⊆ HBP , the
reduct P I is constructed from the grounding of P in 3 steps:
firstly, remove rules whose bodies contain the negation of an
atom in I; secondly, remove all negative literals from the re-
maining rules; and finally, replace the head of any constraint
with ⊥ (where ⊥ /∈ HBP ). Any I ⊆ HBP is an answer set
of P iff it is the minimal model of P I . The set of answer sets
of a program P is denoted AS(P ). Programs is the set of
all ASP programs and Rules is the set of all ASP rules. For
an introduction to ASP, please see (Gelfond and Kahl 2014).

We now present the form of examples used in this pa-
per, which were first formalised in (Law, Russo, and Broda
2018b). A partial interpretation e is a pair of sets of ground
atoms 〈einc, eexc〉; we refer to einc and eexc as the inclu-
sions and exclusions respectively. An interpretation I is said
to extend e iff einc ⊆ I and eexc ∩ I = ∅. A weighted
context-dependent partial interpretation (WCDPI) is a tuple
e = 〈eid, epen, epi, ectx〉, where eid is an identifier for e,
epen is either a positive integer or∞, called a penalty, epi is
a partial interpretation and ectx is an ASP program called a
context. A WCDPI e is accepted by a program P if and only
if there is an answer set of P ∪ ectx that extends epi.

Hypothesis Spaces
Many ILP systems (e.g. (Muggleton 1995; Ray 2009; Srini-
vasan 2001; Kazmi, Schüller, and Saygın 2017)) use mode
declarations as a form of language bias to specify hypoth-
esis spaces. In this paper, we follow a similar approach.
A mode bias is defined as a pair of sets of mode declara-
tions 〈Mh,Mb〉, where Mh (resp. Mb) are called the head
(resp. body) mode declarations. Each mode declaration is
a literal whose abstracted arguments are either var(t) or
const(t), for some constant t (called a type). Informally, a
literal is compatible with a mode declaration m if it can be
constructed by replacing every instance of var(t) in m with

a variable of type t, and every const(t) with a constant of
type t.1

Definition 1. Given a mode bias M = 〈Mh,Mb〉, a normal
rule R is in the search space SM if and only if (i) the head
of R is compatible with a mode declaration in Mh; (ii) each
body literal of R is compatible with a mode declaration in
Mb; and (iii) no variable occurs with two different types.

Scoring Functions
This section presents the new notion of a scoring function
and formalises the learning task targeted by FastLAS. This
new learning task is based on the Learning from Answer
Sets tasks used by the ILASP (Inductive Learning of An-
swer Set Programs) systems (Law, Russo, and Broda 2014;
2015a; Law 2018). Specifically, Definition 2 of Observa-
tional Predicate Learning from Answer Sets tasks is a re-
striction of Learning from Answer Sets tasks, allowing only
Observational Predicate Learning (where the predicates in
the examples coincide with the predicates defined by the hy-
pothesis), non-recursive hypotheses, and programs with ex-
actly one answer set.
Definition 2. An Observational Predicate Learning from
Answer Sets (ILPOPL

LAS ) task is a tuple T = 〈B,M,E+〉
where B is an ASP program called background knowledge,
M is a mode bias, and E+ is a set of WCDPIs such that
∀e ∈ E+, |AS(B ∪ ectx)| = 1, and no predicate in Mh

occurs in Mb or in the body of any rule in T .

• A hypothesis H ⊆ SM covers an example e ∈ E+ iff
B ∪H accepts e.

• H is an inductive solution of T (written H ∈
ILPOPL

LAS (T )) iff ∀e ∈ E+ s.t. epen =∞, H covers e.
• T is satisfiable iff ILPOPL

LAS (T ) 6= ∅. TOPL is the set of
all ILPOPL

LAS tasks.

Given any task T , we say that an example in E+ is uncov-
ered by a hypothesis H if and only if it is not covered, and
use UNCOV (H,T ) to denote the set of all such examples.
Definition 3. A scoring function is a function S :
Programs × TOPL → R≥0. A hypothesis H ∈ Programs
is said to be an optimal solution of a task T ∈ TOPL w.r.t.
a scoring function S iff H ∈ ILPOPL

LAS (T ) and there is no
H ′ ∈ ILPOPL

LAS (T ) such that S(H ′, T ) < S(H,T ).

The addition of two scoring functions S1 and S2 is denoted
(S1 + S2), i.e. (S1 + S2)(H,T ) = S1(H,T ) + S2(H,T ).
Definition 4. Let S be a scoring function. A function Srule :
Rules × TOPL → R≥0 is a decomposition of S iff for each
P ∈ Programs and T ∈ TOPL, S(P, T ) =

∑
r∈P
Srule(r, T ).

Example 1. Not all scoring functions have decomposi-
tions. For instance, consider the scoring function Snoise =
Slen + Spen, where Slen(H,T ) = |H| and Spen(H,T ) =

1The set of constants of each type is assumed to be given with
a task, together with the maximum number of variables in a rule,
giving a set of variables V1, . . . , Vmax that can occur in a hypothesis.
Whenever a variable V of type t occurs in a rule, the atom t(V) is
added to the body of the rule to enforce the type.



∑
e∈UNCOV (H,T )

epen. There is clearly a decomposition of

Slen, Srulelen (h, T ) = |h|; however, Spen is not decompos-
able. To see this, consider the ILPOPL

LAS task with an empty
background knowledge, the hypothesis space {p., q.} and a
single example 〈eg1, 1, 〈{p, q}, ∅〉, ∅〉. Assume there is such
a decomposition Srulepen . Srulepen (p., T ) must be Spen({p.}, T )
which is 1. Similarly, Srulepen (q., T ) must also be 1. This
would imply that Spen({p, q}, T ) should be 2, but it is 0.
Hence Spen, and similarly Snoise, are not decomposable.

The FastLAS algorithm presented in the next section sup-
ports scoring functions that are either decomposable, or of
the form (S + Spen) where S is decomposable.

Algorithm
This section presents the FastLAS algorithm, which is guar-
anteed to return an optimal solution of any ILPOPL

LAS task
with respect to any scoring function decomposition. Fast-
LAS consists of four main steps: (1) initial construction;
(2) generalisation; (3) optimisation; and (4) solving. Dur-
ing the initial construction phase, a subset S1

M of the given
hypothesis space is constructed, which is guaranteed to con-
tain at least one solution of the task if the task is satisfi-
able. S1

M is likely to contain very specific rules, each of
which has been computed to cover only a single example.
The generalisation phase searches for rules that are subrules
of one or more rules in S1

M , which can cover multiple ex-
amples leading to a larger hypothesis space S2

M . The opti-
misation phase takes each rule R in S2

M and computes an
optimal subrule R′, with respect to the scoring function,
that is consistent with the exclusions in all examples. The
resulting hypothesis space S3

M is guaranteed to contain an
optimal inductive solution of the task (if the task is satis-
fiable). In the final solving phase, the FastLAS algorithm
searches for a subset of S3

M that covers all the examples
and which is guaranteed to be an optimal solution of the
full task. For the remainder of this section, let T be the
ILPOPL

LAS task 〈B,M,E+〉. Details on how to download and
use the FastLAS system, together with all datasets in this
paper, are available from the FastLAS webpage, https:
//spike-imperial.github.io/FastLAS/. Due
to space restrictions, most proofs are omitted from this pa-
per, but are available in a document on this webpage.

Initial Construction
We say that a subset of the hypothesis space of a task is SAT-
sufficient if and only if it either contains at least one solution
of the task or the original task is unsatisfiable. This section
presents a method for computing a SAT-sufficient subset of
a hypothesis space.

Definition 5. Let e ∈ E+ and a be a ground atom. A rule
R is in the characteristic ruleset of T w.r.t. a and e (writ-
ten C(T, a, e)) if and only if: (i) R ∈ SM ; (ii) there is at
least one ground instance Rg of R s.t. a = head(Rg) and
body(Rg) is satisfied by the unique answer set of B ∪ ectx;
and (iii) there is no rule R′ that satisfies (i) and (ii) s.t. R is
a strict subrule of R′.

Example 2. Consider a (propositional) task T with an
empty background knowledge, mode declarations M =
〈{p, q}, {r, not r, s, not s}〉 and two examples e1 =
〈1,∞, 〈{p}, {q}〉, {r.}〉 and e2 = 〈2,∞, 〈{q}, {p}〉, ∅〉.

For each atom a, and each example e, C(T, a, e) contains
the set of all maximal rules that (combined with B and ectx)
prove a. So, for the atoms p and q, and the two examples,
the characteristic rulesets are as follows.

• C(T, p, e1) = {p : - r, not s.}.
• C(T, q, e1) = {q : - r, not s.}.
• C(T, p, e2) = {p : - not r, not s.}.
• C(T, q, e2) = {q : - not r, not s.}.
Proposition 1. Let e be an example in E+ and H ⊆ SM .
B ∪H accepts e if and only if (1) for each a ∈ einc there is
at least one rule in H that is a subrule of a rule in C(T, a, e);
and (2) for each a ∈ eexc, no rule in H is a subrule of any
rule in C(T, a, e).

Proposition 1 shows that the characteristic rulesets can
be used to check whether a hypothesis (combined with the
background knowledge) accepts an example. This leads to
the definition of the characterisation of an example.

Definition 6. The characterisation of an example e ∈
E+ (written C(T, e)) is the pair 〈eI , eV 〉, where eI =⋃
a∈einc

C(T, a, e) and eV =
⋃

a∈eexc

C(T, a, e).

Theorem 1 shows that the characterisations of examples in T
can be used to construct a SAT-sufficient subset of a hypoth-
esis space called the characterisation of T (written C(T )).
Theorem 1. Let C(T ) = {R | e ∈ E+, R ∈ eI}. T is
satisfiable if and only if C(T ) contains an inductive solution
of T .

Note that the eV sets are not used when constructing C(T ).
The intuition is that the union of all eI sets contains any
maximal rule that proves at least one inclusion, and therefore
any maximal rule that could possibly be useful for covering
an example. The eV sets, on the other hand, are the sets of
all maximal rules that prove at least one exclusion, and so
these are the rules that can not be in any inductive solution.
The eV sets are therefore not important when constructing
a SAT-sufficient subset of the hypothesis space. They are,
however, crucial in the optimisation phase of the algorithm,
when the maximal rules in C(T ) are optimised according to
the scoring function. The eV sets give a boundary to this
optimisation to prevent exclusions from being proved.

Example 3. Reconsider the task T from Example 2.

• C(T, e1)=〈{p : - r, not s.}, {q : - r, not s.}〉.
• C(T, e2)=〈{q : - not r, not s.}, {p : - not r, not s.}〉.
• C(T ) = {p : - r, not s. q : - not r, not s.}
C(T ) is SAT-sufficient, as C(T ) itself is a solution. The

rules in the eV sets give a boundary for optimising the rules
in C(T ) (which takes place in a later phase of the FastLAS
algorithm). In this case, they show that neither rule can have
their first body literal removed without causing one of the
exclusions to be proved.



The characterisation of an example can be computed
using ASP. FastLAS uses a meta-level ASP encoding
M(T, a, e) for which there is a one-to-one mapping between
the subset-maximal2 answer sets ofM(T, a, e) and the rules
in C(T, a, e). The Clingo5 (Gebser et al. 2016) ASP solver
can be used to efficiently compute the subset-maximal an-
swer sets of a program. The first step of the FastLAS algo-
rithm is to compute the characterisations of each example.
As characterisations of examples are independent from each
other, they can be computed in parallel.

Generalisation
Characterisations of examples contain extremely specific
rules. It is necessary to consider rules that are subrules of
multiple rules in the characterisations. Definition 7 gener-
alises the characteristic hypothesis space.

Definition 7. For any rule R ∈ SM , let cR be the set of all
rules R′ in C(T ) s.t. R is a subrule of R′. The generalised
characteristic hypothesis space of T , written G(T ), is the set
containing every rule R for which cR 6= ∅ and there is no
rule R′ ∈ SM s.t. R is a strict subrule of R′ and cR = cR′ .

Example 4. Let T be a task such that C(T ) = {R1, R2},
where R1 = p : - q, r and R2 = p : - q, s.

• R1, R2 ∈ G(T ).
• R3 = p : - q ∈ G(T ) as cR3 = {R1, R2} (and clearly any

rule of which R3 is a strict subrule could not be a subrule
of both R1 and R2).

• No other rule is in G(T ). For example, the fact R4 = p is
not in G(T ), as it is a strict subrule of R3, and cR3

= cR4
.

Note that R4 is more general than R3, and may have a
lower score, depending on the scoring function. This is
not important when constructing G(T ). Further generali-
sations, taking into account the scoring function, are de-
scribed in the next section.

The second step of FastLAS is to compute G(T ) from
C(T ). This is done by taking each rule R in C(T ) (in paral-
lel) and searching for subrules which are in G(T ).

Optimisation
We say that a subset of the hypothesis space of a task is
OPT-sufficient (w.r.t. a scoring function) if and only if it ei-
ther contains at least one optimal solution of the task or the
original task is unsatisfiable. The generalised characteristic
hypothesis space contains rules that have been generalised,
but only for cases where it is possible to combine multiple
rules. In many cases, it is also necessary to generalise rules
in order to optimise with respect to the scoring function. As
we only focus on decomposable scoring functions in this pa-
per, this computation can be done independently for each
rule in G(T ). Definition 8 formalises the notion of an opti-
mised characteristic hypothesis space.

2Given a program P . A is a subset-maximal answer set of P
if and only if A ∈ AS(P ) and A is not a subset of any other
answer set in P . Note that as the meta-level encoding contains
choice rules, it does have some non-subset-maximal answer sets.

Definition 8. Let R ∈ SM and S be a decomposable scor-
ing function. R′ is an optimisation of R iff: (i) R′ is a sub-
rule of R; (ii) @e ∈ E+ s.t. epen = ∞ and R′ is a subrule
of a rule in eV ; and (iii) there is no R′′ satisfying (i)-(ii) s.t.
Srule(R′′, T ) < Srule(R′, T ). R is optimisable iff it has at
least one optimisation. An optimised characteristic hypoth-
esis space of T w.r.t. S is a set of rules containing at least
one optimisation of each optimisable rule in G(T ).
Example 5. Reconsider the task T from Example 2, for
which C(T ) is given in Example 3, and the scoring func-
tion Slen. First note that G(T ) = C(T ). The subrules of the
rule p : - r, not s are itself, p : - r, p : - not s and p. The
last two rules are subrules of p : - not r, not s, which is
in (e2)V , and so cannot be optimisations by point (ii) of
Definition 8. Clearly the score of the first rule is higher
than the second; hence, the only optimisation of the origi-
nal rule is p : - r. A similar argument shows that q : - not r
is the only optimisation of q : - not r, not s. So the only
optimised characteristic hypothesis space of T w.r.t. Slen is
{p : - r. q : - not r.}.

Theorem 2 shows that optimised characteristic hypothesis
spaces are guaranteed to be OPT-sufficient.

Theorem 2. Let O be an optimised characteristic hypothe-
sis space of T w.r.t. to a decomposable scoring function S.
If T is satisfiable, then O contains at least one optimal in-
ductive solution of T w.r.t. S.

Proof. If T is satisfiable then it has at least one optimal in-
ductive solution. Let H∗ be an arbitrary such solution. By
the definition of G(T ), for each h ∈ H∗, there must be a
rule Rh ∈ G(T ) such that ch = cRh

and h is a subrule of
Rh. As each h ∈ H∗ is part of an optimal inductive solution
of T and is a subrule of Rh, it must be an optimisation of
Rh,3 which shows that Rh is optimisable. Hence, for each
h ∈ H∗, there is at least one rule h′ ∈ O such that ch = ch′ ,
Srule(h, T ) = Srule(h′, T ) and h′ is not a subrule of any
rule in Ve for any e ∈ E+ st epen = ∞. Pick an arbitrary
H ′ ⊆ O that contains one such rule for each h ∈ H∗ (and no
other rules). S(H ′, T ) = S(H,T ), and H ′ ∈ ILPOPL

LAS (T ).
Hence, H ′ is an optimal inductive solution of T w.r.t. S.

Computing Optimised Characteristic Hypothesis Spaces
Given a rule R ∈ G(T ) it is possible to compute an opti-
misation of R using ASP, provided that the decomposition
of the scoring function is expressed in ASP, using a predi-
cate penalty/2. The first argument of penalty is an in-
teger, representing the value of the penalty, and the second
is a term, associating a unique identifier with each penalty.
These identifiers are important, as answer sets do not con-
tain repeated elements, meaning that to pay two penalties of
1, there must be two distinct penalty atoms with value 1.

Our ASP representation relies on the following nota-
tion. Given an atom a, rv(a) denotes the atom constructed
by replacing each variable V in a with the ground term

3Point (i) of the definition of an optimisation is met because h
is a subrule of Rh; point (ii) must be met, or H∗ would not be an
inductive solution of T ; and (iii) must also be met, or H∗ would
not be an optimal solution of T .



var(“V”). For any rule R, M(R) is the set of facts
{head(rv(a)). | a = head(R)}∪{in body(pos(rv(a))). |
a = body+(R)} ∪ {in body(neg(rv(a))). | a =
body−(R)}.
Definition 9. Let P be an ASP program, which de-
fines the predicate penalty/2. The scoring function
S[P ] is defined in terms of its decomposition. For
any h ∈ Rules and T ∈ TOPL, S[P ]rule(h, T ) =

min
A∈AS(M(h)∪P )

∑
penalty(x, y)∈A x.

Example 6. To express the Slen scoring function in Fast-
LAS, we can use the ASP program Plen. Slen = S[Plen].

Plen =

{
penalty(1, head) : - head( ).
penalty(1, body(X)) : - in body(X).

}
Note that the second rule has a variable X in the head so

a penalty of 1 is paid per body literal. Without this variable
the penalty paid for the body of a rule could only be 0 or 1.
For any ASP-based decomposition, we compute the optimi-
sation of a rule R using the ASP encoding in Definition 10.4

Definition 10. Let S[P ] be a scoring function and R be a
rule.Mopt(P,R, T ) is the program containing:

1. P .
2. M(R), where all in body facts “a.” have been replaced

with choices “0{a}1.”.
3. The weak constraint :∼ penalty(X, Y).[X@1, Y].
4. For each e ∈ E+ and R′ ∈ eV s.t. head(R) =

head(R′), the rule v(eid) : - not in body(a1), . . . ,
not in body(an). where {a1, . . . , an} are the literals5 in
the body of R that do not occur in the body of R′.

5. For each e ∈ E+ s.t. epen =∞, the constraint : - v(eid).
Any answer set A ofMopt(P,R, T ) can be mapped back

into an ASP rule, by interpreting the head and in body

atoms in A.M−1rule(A) denotes the rule extracted from A.
Theorem 3. Let S[P ] be a scoring function and R be a
rule. Let AS be the optimal answer sets ofMopt(P,R, T ).
{M−1rule(A) | A ∈ AS} is the set of all optimisations of R.

FastLAS computes an optimisation of each optimisable
rule in G(T ) using the Mopt encoding, the correctness of
which is proved by Theorem 3. By Theorem 2, this set of
optimisations is guaranteed to be OPT-sufficient.

Noise. Point (ii) of Definition 8 means that no optimisa-
tion of any rule can prove an exclusion of an example with
an infinite penalty. This is because no such rule could ever
appear in an inductive solution of the task. However, we
must consider such rules for examples with finite penalties

4This uses a wider subset of ASP than other programs in
this paper. Roughly speaking, a choice rule “0{a}1.” is equiv-
alent to “a : - not â. â : - not a.” (where for any atom a, â
is a new atom, representing the complement of a) and gener-
ates two answer sets, one with and one without a. The weak
constraint :∼ penalty(X, Y).[X@1, Y] creates a preference or-
dering over answer sets, s.t. optimal answer sets A minimise∑

penalty(x, y)∈A x.
5Positive literals a are replaced with pos(rv(a)) and negative

literals not a are replaced with neg(rv(a)).

(which can be left uncovered). In this setting we use an it-
erative method, formalised by Algorithm 1. opt(P,R, T )
iteratively constructs a set of rules RS such that in each iter-
ation, the new rule Rnew added to RS satisfies the following
properties: (1) Rnew is a subrule of R; (2) Rnew is not a sub-
rule of R′ ∈ eV for any e ∈ E+ such that epen = ∞; (3)
for each R′ ∈ RS there is at least one example e ∈ E+ for
which R′ is a subrule of at least one rule in eV and Rnew

is not a subrule of any rule in eV ; and (4) Rnew is opti-
mal w.r.t. S[P ]. Conditions (1), (2) and (4) are enforced by
Mopt. Condition (3) is enforced by the constraints in CS.
Theorem 4 shows that Algorithm 1 can be used to compute
an OPT-sufficient subset of the hypothesis space.

Algorithm 1 opt(P,R, T )

procedure OPT(P,R, T )
CS = ∅; RS = ∅;
while AS(Mopt(P,R, T ) ∪ CS) 6= ∅ do

Fix A to be an optimal answer set of the program
Rnew =M−1rule(A);
RS = RS ∪ {Rnew};

CS = CS ∪

{
: -

∧
v(idi)∈A

v(idi).

}
;

end while
returnRS;

end procedure

Theorem 4. Let S[P ] be a scoring function.⋃
R∈G(T )

opt(P,R, T ) is OPT-sufficient w.r.t. (S[P ] + Spen).

Solving
Once an OPT-sufficient subset of the hypothesis space has
been computed, it is possible to pass the task, along with
this hypothesis space to an off-the-shelf ILP system, such as
ILASP (Law, Russo, and Broda 2015a), which can find an
optimal solution of the task. In fact, as the learning tasks that
FastLAS solves are a simplification of the full ILP context

LAS
tasks solved by ILASP, it is more efficient to use a spe-
cialised ASP encoding to find the optimal inductive solution.
This ASP encoding is given in the proofs document on the
FastLAS webpage, together with a proof of its correctness.

FastLAS is sound and complete w.r.t. the optimal induc-
tive solutions of any ILPOPL

LAS task under any decompos-
able scoring function (or any decomposable scoring function
added to Spen), meaning that if FastLAS is used to solve
an ILPOPL

LAS task with the scoring function (Slen + Spen),
then it has exactly the same guarantees as the state-of-the-art
ILASP systems. However, we show in our evaluation that
FastLAS is significantly faster than ILASP on these tasks.

Evaluation
This section contains an evaluation of the FastLAS ap-
proach. The aim of the evaluation is to answer two ques-
tions: firstly, if we use standard scoring functions, is the
FastLAS algorithm faster than state-of-the-art approaches
that use the same standard scoring function; and secondly,



System F1 Running Time
INSPIRE 0.733 / 0.712 – / –
ILASP3 0.757 / 0.777 210.4s / 1051.4s
FastLAS 0.751 / 0.768 0.909s / 4.5s

Table 1: Results for INSPIRE, ILASP3 and FastLAS on the
sentence chunking dataset. Each entry is of the form a /
b, where a and b are the results for tasks with 100 and 500
examples, respectively.

in cases where we have a domain-specific notion of perfor-
mance, can we use domain-specific scoring functions to im-
prove performance w.r.t. this measure.

Comparison of FastLAS with the state-of-the-art
FastLAS was evaluated on two datasets that have previ-
ously been used to evaluate the state-of-the-art ASP-based
ILP systems: OLED (Katzouris, Artikis, and Paliouras
2016), INSPIRE (Kazmi, Schüller, and Saygın 2017) and
ILASP3 (Law, Russo, and Broda 2018b).6

INSPIRE (Kazmi, Schüller, and Saygın 2017) has been
evaluated using a sentence chunking (Tjong Kim Sang and
Buchholz 2000) dataset (Agirre et al. 2016), where the
goal is to learn to split a sentence into short phrases called
chunks. (Kazmi, Schüller, and Saygın 2017) describes how
to transform each sentence into a set of facts consisting of
part of speech (POS) tags, forming a pre-processing step.
We ran FastLAS on the processed version of the dataset us-
ing each of these sets of facts as an example, learning rules
for whether to split the sentence between each pair of tags.
Both FastLAS and ILASP3 outperformed INSPIRE in terms
of the average F1 score. FastLAS and ILASP3 achieved
similar scores.7 INSPIRE is an approximate system that,
although using the same scoring function as FastLAS and
ILASP3, does not guarantee optimality. This explains the
significantly better F1 scores of FastLAS and ILASP3. One
might expect that this would mean that INSPIRE would be
faster than FastLAS and ILASP3. This does not seem to
be the case – running times are not reported in (Kazmi,
Schüller, and Saygın 2017), but a timeout of 30 minutes is
used, after which the best solution computed so far was re-
turned, which would indicate that at least some of the exper-
iments did not complete in 30 minutes. On the other hand,

6The FastLAS and ILASP experiments were run on an Ubuntu
18.04 desktop machine with a 3.6 GHz Intel R© CoreTM i7-4790 pro-
cessor and with 16GB RAM. For a fair comparison, the final ASP
program in the FastLAS solving phase was solved using Clingo
5.3.0 with the same arguments as in the similar phase for ILASP3
(the arguments were --opt-strat=usc,stratify). The re-
sults for INSPIRE and OLED are quoted from (Kazmi, Schüller,
and Saygın 2017) and (Katzouris, Artikis, and Paliouras 2016).

7The small differences between these scores is due to FastLAS
finding a different optimal solution to the one found by ILASP3.
Starting with a null hypothesis that there is no difference between
FastLAS and ILASP3’s mean F1 scores and testing with a paired
two-tailed t-test yields a p-value of .072, meaning that at p < .05
the difference is not statistically significant, whereas a similar com-
parison of FastLAS and INSPIRE yields a p-value of .0001, mean-
ing that at p < .05 the difference is statistically significant.

System F1 Running Time
OLED 0.792 107s
ILASP3 0.837 523.3s
FastLAS 0.907 263.8s

Table 2: Results for OLED, ILASP3 and FastLAS on the
CAVIAR dataset.

every experiment for FastLAS and ILASP3 completed in-
side 30 minutes. Furthermore, FastLAS is over two orders
of magnitude faster than ILASP3.

We compared FastLAS to OLED (Katzouris, Artikis, and
Paliouras 2016) and ILASP3 on a dataset containing data
gathered from a video stream (Fisher, Santos-Victor, and
Crowley 2004). Information such as the positions of peo-
ple has been extracted from the stream, and humans have
annotated the data to specify when any two people are inter-
acting. Specifically, we consider a task from (Katzouris, Ar-
tikis, and Paliouras 2016), in which the aim is to learn rules
to define initiating and terminating conditions for two peo-
ple meeting. As ILASP3 enumerates the hypothesis space
in full, it is not able to use large hypothesis spaces. A
small subset of the hypothesis space used by OLED was
used in the ILASP3 experiments, restricting the number of
literals in the body, employing several “common sense” con-
straints, such as a person cannot be walking and running at
the same time, and forbidding multiple uses of the same
predicate in the body of a single rule. As this is real data,
not constructed with a target hypothesis in mind, there may
be better hypotheses outside this restricted subset. In the
FastLAS experiments, we allowed a much larger hypothesis
space without these restrictions, containing over 244 non-
isomorphic rules, compared with the hypothesis space used
in the ILASP3 experiment, which had only 3370. Even so,
the average running time for FastLAS is faster. The average
F1 is also significantly higher. The hypotheses learned by
FastLAS are outside the restricted space used by ILASP3,
indicating that the larger hypothesis space contains better
quality solutions. OLED is significantly faster than both
ILASP3 and FastLAS on this dataset; however, as it is an
approximate system that does not guarantee optimality, this
is unsurprising. OLED’s average F1 score is significantly
lower than both ILASP3’s and FastLAS’s.

Domain-specific scoring functions
We experimented with three scoring functions (each added
to Spen to account for noise), aimed at encouraging pro-
gressively more generalisation. Their decompositions were
Srulelen , Srulecov (h, T ) = 1000

COV (h,T ) , where COV (h, T ) is the
number of inclusions of examples in T which are covered
by h, and Sruleuni (h, T ) = −1.8 We considered two datasets:

8Note that the last scoring function is technically not a valid
scoring function, as it returns a negative integer. This means that
FastLAS is not guaranteed to return the optimal solution in this
case. In fact, rather than returning the hypothesis with the most
rules, FastLAS returns the hypothesis with the most rules which
prove at least one inclusion of an example (the rules which do not
satisfy this criterion are not considered by FastLAS).



Scoring
function

Recall Precision F1

Slen 0.782 / 0.976 0.957 / 0.948 0.861 / 0.962
Scov 0.792 / 0.972 0.956 / 0.949 0.867 / 0.960
Suni 0.820 / 0.973 0.955 / 0.949 0.882 / 0.961

Table 3: Results for the Amazon dataset, both for learn-
ing accept and reject rules. Each entry is of the form
(accept / reject).

Scoring
function

Recall Precision F1

Slen 0.905 / 0.974 0.951 / 0.935 0.928 / 0.954
Scov 0.892 / 0.969 0.949 / 0.941 0.919 / 0.955
Suni 0.991 / 0.966 0.917 / 0.965 0.952 / 0.966

Table 4: Results for the Project Management dataset, both
for learning accept and reject rules. Each entry is of
the form (accept / reject).

Amazon (Amazon 2013) and Project Management (Xu and
Stoller 2014). Both datasets are based on access logs, where
many requests are made by various users to access various
resources, based on the attributes of the requester and the
resource. The only attribute of resources in the Amazon
dataset is the resource id, whereas the Project Management
dataset also includes attributes such as the resource type.
The goal of this task was to learn rules for each resource to
determine whether a user should be allowed access to differ-
ent resources. We performed 10-fold cross validation, exper-
imenting with learning accept and assuming that a request
should be rejected if our learned rules do not say it should
be accepted, and learning reject, assuming a default of
accept.

The results show that for both datasets there is an order-
ing Slen, Scov , Suni, in terms of the recall when learning
accept rules. This indicates that Suni encourages learning
more general hypotheses, which allow more requests. There
is a corresponding reverse ordering for the precision. In-
terestingly, although the differences are less significant, the
orderings in both cases are reversed when learning reject
rules, as a more general hypothesis for reject denies more
requests and therefore accepts fewer. The ability of these
scoring functions to encourage or discourage generalisation
has the potential to make a significant impact. In security do-
mains, where false positives are potentially more dangerous
than false negatives, a scoring function which optimises the
precision should be preferred, whereas in healthcare, where
false negatives may be more dangerous, the reverse is true.

Universal F1 In (Cotrini, Weghorn, and Basin 2018) it
was argued that standard evaluation measures such as ac-
curacy and the F1 score may be misleading when evaluating
a learner in an access control setting. This is because cer-
tain types of request may not be likely to appear in the train-
ing/test data, meaning that, although they should be rejected,
there are no negative instances in the data. The standard
quality measures would not penalise overly permissive rules
that accept these missing requests. A new method of uni-

versal cross validation was proposed in (Cotrini, Weghorn,
and Basin 2018), which is based on a modification of the F1

score. We refer to it as the universal F1 or UF1 score.
When using an access control log for learning a policy for

accepting a particular resource r, we construct the examples
as follows. The positive and negative examples are as nor-
mal (the accepted and rejected requests, respectively). Ad-
ditionally, there is a third set of examples of “unlabelled” re-
quests, which consists of every person that occurs in the log,
but does not request access to r (they have requested access
to other resources). The implicit assumption behind univer-
sal F1 is that it is safer to treat these as negative instances,
and therefore when measuring the quality of a hypothesis,
it should be penalised for any of the unlabelled examples
that it says should be accepted. The definition of precision
is therefore altered to universal precision: UP = tp

tp+fp+u ,
where tp and fn is the number of true positives and false
negative, as usual, and u is the number of unlabelled exam-
ples predicted by the hypothesis. UF1 is then defined simi-
larly to F1, but using UP rather than standard precision.9 As
the number of unlabelled examples tends to be much higher
than the number of examples in the logs, and some of the
unlabelled examples are likely to be requests that should be
accepted, even the best algorithms in (Cotrini, Weghorn, and
Basin 2018) had relatively low UF1 scores.

We compared FastLAS against the two best performing
methods from (Cotrini, Weghorn, and Basin 2018) using the
UF1 score, learning rules for accept on the same four re-
sources. The three scoring functions used earlier in this sec-
tion perform poorer than the two previous methods, because
they each encourage generalisation. In (Cotrini, Weghorn,
and Basin 2018), the full set of users in the log is assumed
to be given to the algorithms, and is used when selecting
rules. We took a similar approach, defining a new scoring
function to penalise overly general rules: SruleUF1

(h, T ) =

1+ |Predicted(h)|√
|PosUsers∩Predicted(h)|

, where PosUsers is the set of users

who appear as an accept request in the training data and
Predicted(h) is the set of users who are predicted as accept
by h. The intuition of this scoring function is as follows: the
1 term is to make this a valid scoring function, which always
returns a positive integer; we multiply by the total number
of predicted users to penalise for generality; the number of
predicted positive instances is in the denominator to encour-
age these cases. There may be scoring functions with better
performance; however, on this dataset, compared with the
two previous methods, FastLAS with SruleUF1

(h, T ) performs
as well as the two previous methods.

We make no claims about the legitimacy of universal F1

as a statistical measure, although we agree with its motiva-
tion. The experiments in this section were designed to show
that, if the goal of a learner is to maximise UF1, standard
scoring functions in ILP perform poorly, as they encourage
generalisation. If we instead use a specialised scoring func-
tion that discourages over-generalisation, we can increase
the UF1 score. This demonstrates that we can inject domain-

9The standard definition of precision is Pr = tp
tp+fp

, recall is
Re = tp

tp+fn
and F1 is the harmonic mean of Pr and Re.



Method Resource 25993 Resource 4675 Resource 75078 Resource 79092
Rhapsody 0.04 0.10 0.10 0.04
CTA 0.04 0.12 0.10 0.04
FastLAS: Slen 0.02 0.04 0.02 0.02
FastLAS: Scov 0.02 0.04 0.02 0.02
FastLAS: Suni 0.01 0.04 0.02 0.02
FastLAS: SUF1 0.07 0.10 0.11 0.05

Table 5: Universal F1 scores for the four resources in the Amazon dataset, learning accept rules.

specific preferences over the properties of hypotheses in or-
der to maximise a domain-specific notion of performance.

Related Work
The construction phase of the FastLAS algorithm is very
similar to early bottom clause ILP approaches used by Pro-
gol (Muggleton 1995), Aleph (Srinivasan 2001) and later
generalised by HAIL (Ray, Broda, and Russo 2003). A key
difference is that these early systems all used iterative cover
loop approaches to construct a hypothesis. A single positive
example (corresponding to a single inclusion in this paper) is
considered in each iteration. The systems compute the best
rule (or rules in the case of HAIL) that covers the example,
and add it to the hypothesis. This means that none of these
cover loop systems guarantee finding an optimal solution, as
although each iteration might find an optimal rule to add to
the hypothesis, the final hypothesis may still be sub-optimal.

The ILASP (Law, Russo, and Broda 2015a) systems also
learn ASP programs. Our evaluation shows that FastLAS is
significantly faster than ILASP when applied on the same
learning tasks. This increase in speed is for two main rea-
sons: (1) ILASP3 starts by constructing the hypothesis space
in full, whereas FastLAS constructs a small OPT-sufficient
subset of the hypothesis space; and (2) ILASP3 translates
each example into a set of structural constraints on hy-
potheses and processes a single example at a time, whereas
FastLAS processes the examples in parallel. On the other
hand, ILASP is much more general as it can (resources per-
mitting) learn any ASP program (Law, Russo, and Broda
2018a), including programs with choice rules and weak con-
straints (Law, Russo, and Broda 2015b), and supports recur-
sion and predicate invention (Law 2018). In future work, we
intend to lift some of FastLAS’s current restrictions, in order
to support more of the applications supported by ILASP.

The idea of allowing customised scoring functions has
been considered before. Aleph has nine built-in evaluation
functions, which are evaluated over single rules and mostly
defined over the coverage of the examples, but with some
also involving the length of the rule. Aleph also allows a
user defined evaluation function to be given, but the Aleph
manual (Srinivasan 2001) notes that it is usually not pos-
sible to define admissible pruning strategies for an arbitrary
evaluation function, so when using this feature the user must
also give an admissible pruning strategy. On the other hand,
FastLAS can solve a task with any ASP-decomposition of a
scoring function. A key difference between the approaches
is that Aleph’s evaluation function gives a measure of the
utility of a rule, whereas FastLAS’s scoring functions define

the cost of a rule. As noted above Aleph is not guaranteed
to find an optimal solution w.r.t. a given scoring function.

The variation of the INSPIRE system in (Schüller and
Benz 2018) used a scoring function with many parame-
ters, such as a cost for each variable, a cost for each posi-
tive/negative body literal, a cost for each variable that occurs
only in the head of the rule (and many others). The total cost
of a rule is the sum of its values for these costs. Each of the
cost parameters used by INSPIRE could be implemented in
FastLAS scoring functions. The flexibility of INSPIRE is
that a user can set the values for these costs, whereas the
flexibility in FastLAS is that a user can write a completely
new scoring function, defining their own parameters.

Metaopt (Cropper and Muggleton 2019) aims to learn the
most efficient Prolog program that covers a set of exam-
ples. Metaopt uses a program cost function, which measures
the cost of proving each positive example (atom), given the
learned program. Metaopt guarantees to find the program
which minimises the maximum program cost over the pos-
itive examples. The program cost function can be used to
represent computational efficiency, and Metaopt guarantees
finding the program that optimises the worst-case efficiency
over the examples. Our abstract notion of scoring function
is more general, and does not need to be defined in terms
of the costs of positive examples, although it can be; how-
ever, the current version of FastLAS would not be able to
support the program cost functions, as they are not decom-
posable. Furthermore, there are fundamental differences
between Metaopt, which learns definite clauses, but sup-
ports recursion and predicate invention, and FastLAS, which
learns ASP programs, including negation as failure, but does
not support recursion or predicate invention. A further fun-
damental difference is that FastLAS supports learning in the
presence of noise, whereas Metaopt does not, and can only
find hypotheses which cover all of the examples.

Conclusion and Future Work
The FastLAS algorithm presented in this paper solves a re-
stricted form of an ILP context

LAS task with either a purely de-
composable scoring function or the combination of a decom-
posable scoring function with the Spen function to allow for
noisy examples. The evaluation showed that even with these
restrictions, FastLAS shows significant improvements over
the state-of-the-art, both by improving scalability w.r.t. the
size of the hypothesis space and by allowing domain-specific
biases to be incorporated into the learning process.

The first step of future work is to lift the restrictions to
allow full ILP context

LAS tasks to be solved, allowing general



ASP programs, with multiple answer sets, to be learned.
This would immediately widen the scope of scoring func-
tions that could be defined; for example, cycles in the de-
pendency graph of the program impact the number of an-
swer sets of a program, and scoring functions could be de-
signed to minimise/maximise the number of cycles, or other
similar properties. Such scoring functions will necessitate
a generalisation of FastLAS for non-decomposable scoring
functions, which is being developed in current work.

In future work, it would also be interesting to further
investigate scoring functions whose decompositions return
negative integers, such as Sunirule. These scoring functions
can represent the utility, rather than the cost, of rules.
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