
Representing and Learning Grammars in Answer Set Programming: Proofs
Mark Law

Imperial College London, UK
mark.law09@imperial.ac.uk

Alessandra Russo
Imperial College London, UK

a.russo@imperial.ac.uk

Elisa Bertino
Purdue University, USA

bertino@purdue.edu

Krysia Broda
Imperial College London, UK

k.broda@imperial.ac.uk

Jorge Lobo
ICREA - Universitat Pompeo Fabra

jorge.lobo@upf.edu

Theorem 2. For any fragment F of ASP that contains con-
straints and negation as failure, F BAM reduces to F BAS.

Proof. Let G be an ASG in ASGF and s be the string
s1 . . . s|s|. To prove the theorem, we show that deciding
whether s ∈ Ld(G) reduces to F BAS. Let G′ be the gram-
mar constructed by extending G in the following way:

• Replace GS with a new start terminal
start, and adding a single production rule
start→ start′ {: - not yields(1, |s|)@1.} to
GPR (where start′ is the original start node of G).

• For each production rule n → n1 . . . nkP in GPR, add
the following rules to P :
– For each X ∈ [1, |s|], the fact yields(X, X, 0).

– For each i ∈ [1, k] such that ni ∈ GT , for
each X,Y ∈ [1, |s|] such that sY = ni, the rule
yields(X, Y, i) : - yields(X, Y− 1, i− 1).

– For each i ∈ [1, k] such that ni ∈ GN , for
each X,Y, Z ∈ [1, |s|], the rule yields(X, Z, i) : -
yields(X, Y, i− 1), yields(Y, Z)@i.

– The rule yields(X, Y) : - yields(X, Y, k).

The extra ASP rules in the grammar restrict G so that the
only possible string inLd(G′) is s. This means thatL(G′) 6=
∅ iff s ∈ Ld(G). Hence F BAM reduces to F BAS.

We say that an annotated ASP program is groundly anno-
tated if all its annotations are ground.

Lemma 1. Deciding the satisfiability of a groundly anno-
tated ASP program reduces to deciding satisfiability of an
unannotated ASP program using the same fragment of ASP.

Proof. Let P be an annotated program. Let P ′

be the program constructed by replacing each an-
notated atom p(t1, . . . , tn)@[a1, . . . , am] with the
atom p(t1, . . . , tn, annotations, a1, . . . , am), where
annotations is a new constant symbol (required to differ-
entiate p(1, 1)@[1] from p(1)@[1, 1], which will be replaced
by p(1, 1, annotations, 1) and p(1, annotations, 1, 1),
respectively).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

P ′ is isomorphic to P , and is therefore satisfiable iff P is
satisfiable. P ′ also uses the same fragment of ASP. Hence,
deciding the satisfiability of an groundly annotated ASP pro-
gram reduces to deciding satisfiability of an unannotated
ASP program using the same fragment of ASP (note that
in the propositional case P ′ will be ground, and so it is iso-
morphic to a propositional program).

Theorem 4. Propositional unstratified BAS is in NP.

Proof. LetG be a propositional unstratified ASG. Let max k
be the number of nodes in the body of the longest production
rule in GPR. Let Π be the following ASP program:

• node(GS)@[].

• For each D ∈ [1, .., d], for each X1, X2, . . . , XD ∈
[1, max k]:

– If D = max k for each production PR with a non-
empty body, the rule:
: - pr(PRID)@[X1, X2, . . . , XD].

– For each production rule PR = n→ n1 . . . nk P , for
each i ∈ [1, k]:

∗ The rule:
node(ni)@[X1, X2, . . . , XD−1, i] : -

pr(PRID)@[X1, X2, . . . , XD−1].

∗ For each rule h@a0 : - b1@a1, . . . , bi@ai,
not bi+1@ai+1, . . . , not bj@aj in P:
h@[X1, X2, . . . , XD, a0] : -

b1@[X1, X2, . . . , XD, a1],
. . . ,
bi@[X1, X2, . . . , XD, ai],
not bi+1@[X1, X2, . . . , XD, ai+1],
. . . ,
not bj@[X1, X2, . . . , XD, aj].

– Let PR1, . . . , PRm be the set of production rules in
GPR for n.
For each node n ∈ GN , for each i ∈ [1,m], the rule:

pr(PRiID)@[X1, X2, . . . , XD] : -
node(n)@[X1, X2, . . . , XD]
not pr(PR1ID)@[X1, X2, . . . , XD],
. . .
not pr(PRi−1ID)@[X1, X2, . . . , XD],
not pr(PRi+1

ID)@[X1, X2, . . . , XD],
. . .
not pr(PRmID)@[X1, X2, . . . , XD].

For each node n ∈ GN , the rule:
: - node(n)@[X1, X2, . . . , XD]

not pr(PR1ID)@[X1, X2, . . . , XD],
. . .
not pr(PRmID)@[X1, X2, . . . , XD].

Π is satisfiable iff Ld(G) 6= ∅. Hence, deciding whether
Ld(G) 6= ∅ reduces to the NP problem of deciding the sat-
isfiability of a propositional ASP program consisting of nor-
mal rules and constraints. Hence, propositional unstratified
BAS is a member of NP.

Theorem 7. First order stratified BAS is in EXP.

Proof. Let G be a first order stratified ASG.
Let max k be the number of nodes in the body of

the longest production rule in GPR. Let pt size =
Σd

i=0max k
i. Note that this is polynomial in the size of G

(the value of d is constant).
A parse tree PT is represented as an atom

pt(pr1id, . . . , pr
pt size
id), where for each node n ∈ PT ,

pr
f(trace(n))
id = rule(n)id, where f([t1, . . . , tm]) =

1 + Σm
i=1max k

m−iti. For any trace t not present in the
parse tree prf(t)id = 0.

Let for each D ∈ [0, d], let traces(D) be the set of lists
{[t1, . . . , tD]|∀i ∈ [1, D], ti ∈ [1, max k]}

Let C be the following set of rules:

• For each m ∈ [0, d− 1], each trace T = [t1, . . . , tm] such
that ∀i ∈ [1,m] : ti ∈ [1, max k], and each j ∈ [1, max k],
the rule:
vio(X1, . . . , Xpt size) : -

p(X1, . . . , Xpt size),
Xf(T) = 0,
Xf(T++[j]) 6= 0.

• For each m ∈ [0, d − 1], each production rule n →
n1 . . . nk P ∈ GPR with id prid, and each T =
[t1, . . . , tm] such that ∀i ∈ [1,m] : ti ∈ [1, max k]:
– For each j ∈ [k + 1, max k], the rule:

vio(X1, . . . , Xpt size) : -
p(X1, . . . , Xpt size),
Xf(T) = prid,
Xf(T++[j]) 6= 0.

– For each i ∈ [1, k], and production rule n′ →
n′1 . . . n

′
k′ P

′ ∈ GPR with id pr′id such that n′ 6= ni,
the rule:
vio(X1, . . . , Xpt size) : -

p(X1, . . . , Xpt size),
Xf(T) = prid,
Xf(T++[i]) = pr′id.

Consider the program Pi ∪ C ∪
{p(X1, . . . , Xpt size) : - index(X1), . . . , index(Xpt size).} ∪
{index(i). | i ∈ [0, max k]}. The program has a single
answer set which contains vio(X1, . . . , Xpt size) for each
X1, . . . , Xpt size iff the corresponding parse tree is not a
valid parse tree for GCFG.

Let Π2 be the program consisting of Π and the following
extra rules:

• For each production rule n → n1 . . . nk P ∈ GPR with
id prid, each m ∈ [1, d], each T = [t1, . . . , tm] such that
∀i ∈ [1,m] : ti ∈ [1, max k], and each rule R ∈ P : the
rule constructed by appending p(X1, . . . , Xpt size) to the
body of R@[X1, . . . , Xpt size] + +T , and replacing the
head of any constraints with vio(X1, . . . , Xpt size).

• The rule:
non empty : -

p(X1, . . . , Xpt size),
not vio(X1, . . . , Xpt size).

The resulting program is stratified, and bravely entails
non empty iff Ld(G) is non-empty – there must be at least
one parse tree that is both valid and whose resulting ASP
program is satisfiable. Thus, as the program is polynomial in
the size of G, we have shown a polynomial reduction from
first order BAS to anEXP -complete problem. Hence, strat-
ified first order BAS is a member of EXP .

Theorem 8. First order unstratified BAS in NEXP.

Proof. We prove the theorem by showing that an ASG G
can be mapped to an ASP program P which is satisfiable iff
Ld(G) 6= ∅.

Let G be a first order unstratified ASG. Let Π be the fol-
lowing ASP program:

• node(GS)@[].

• For each D ∈ [1, .., d], for each X1, X2, . . . , XD ∈
[1, max k]:
– If D = max k for each production PR with a non-

empty body, the rule:
: - pr(PRID)@[X1, X2, . . . , XD].

– For each production rule PR = n→ n1 . . . nk P , for
each i ∈ [1, k]:
∗ The rule:

node(ni)@[X1, X2, . . . XD−1, i] : -
pr(PRID)@[X1, X2, . . . XD−1].

∗ For each rule h@a0 : - b1@a1, . . . , bi@a1,
not bi+1@ai+1, . . . , not bj@aj in P:
h@[X1, X2, . . . , XD, a0] : -

b1@[X1, X2, . . . , XD, a1],
. . . ,
bi@[X1, X2, . . . , XD, ai],
not bi+1@[X1, X2, . . . , XD, ai+1],
. . . ,
not bj@[X1, X2, . . . , XD, aj].

– Let PR1, . . . , PRm be the set of production rules in
GPR for n.
For each node n ∈ GN , for each i ∈ [1,m], the rule:

pr(PRiID)@[X1, X2, . . . , XD] : -
node(n)@[X1, X2, . . . , XD]
not pr(PR1ID)@[X1, X2, . . . , XD],
. . .
not pr(PRi−1ID)@[X1, X2, . . . , XD],
not pr(PRi+1

ID)@[X1, X2, . . . , XD],
. . .
not pr(PRmID)@[X1, X2, . . . , XD].

For each node n ∈ GN , the rule:
: - node(n)@[X1, X2, . . . , XD]

not pr(PR1ID)@[X1, X2, . . . , XD],
. . .
not pr(PRmID)@[X1, X2, . . . , XD].

Π is satisfiable iff Ld(G) 6= ∅. Hence, deciding whether
Ld(G) 6= ∅ reduces to the NEXP problem of deciding the
satisfiability of a first order ASP program consisting of nor-
mal rules and constraints. Hence, first order unstratified BAS
is a member of NEXP.

Theorem 9. Horn BV is DP-hard.

Proof. Let D be a decision problem in DP . There is a pair
of decision problems D1 and D2 such that D1 is in NP and
D2 is in coNP . There is a mapping from D1 to deciding
whether a set of propositional clauses C1 is satisfiable and
from D2 to deciding whether a set of propositional clauses
C2 is unsatisifiable.

Let V1 = {v11 , . . . , v1n} be the set of atoms inC1 and V2 =
{v22 , . . . , v2m} be the set of atoms in C2. For any clause c ∈
C1 ∪ C2, constraint(c) represents an annotated constraint
form of c. For example, v11 ∨ ¬v12 ∨ ¬v13 is represented as
: - not v1@1, v1@2, v1@3.

Consider the ASG learning task T =
〈G, ∅, {“pos′′}, {“neg′′}〉, where G is the following
propositional Horn ASG:

start→ “pos” a1 . . . an {constraint(c)|c ∈ C1}
start→ “neg” b1 . . . bm {constraint(c)|c ∈ C2}
% for each i ∈ [1, n]
ai →{v1.}
ai →{not v1.}
% for each i ∈ [1, m]
bi →{v2.}
bi →{not v2.}

Note that C1 is satisfiable iff there is an interpreta-
tion I of the atoms in V1 such that {v@i.|vi ∈ I} ∪
{not v@i.|vi 6∈ I} {constraint(c)|c ∈ C1} is satisfiable.
This is the case iff there is an interpretation I of the atoms
in V1 such that I is a model of C1. The parse trees of G
for the string “pos” generate the full set of interpretations
of the atoms in V1, and hence there is a parse tree PT of G
for “pos” such that G[PT] is satisfiable iff C1 is satisfiable.
Similarly, there is a parse tree PT of G for “neg” such that
G[PT] is satisfiable iff C2 is satisfiable.

Hence, the hypothesis H = ∅ is a solution of the learning
task T iff the decision problem D returns true. Hence, any
decision problem inDP can be polynomially reduced to BV.
Hence, BV is DP -hard.

Theorem 10. Unstratified BV is in DP.

Proof. Checking whether H is a solution of a given learn-
ing task T = 〈G,SM , E

+, E−〉 at depth d corresponds to
checking that for each positive example s ∈ E+, s ∈ Ld(G)
and for each negative example s ∈ E−, s 6∈ Ld(G). As
propositional unstratified BAM is in NP, this means that
there is a pair of sets of decision problems (each in NP)
D+ = {D+

1 , . . . D
+
|E+|} and D− = {D−1 , . . . D

−
|E−|} such

that H ∈ ILP d
ASG(T) iff each problem in D+ returns yes

and each problem in D− returns no.
Each decision problem Di

j can be mapped to a set of
propositional clauses Ci

j such that Ci
j is satisfiable iff Di

j
returns yes. Without loss of generality, we can assume that
the atoms used in each set of clauses are disjoint. Hence,
H ∈ ILP d

ASG iff C+
1 ∪ . . . ∪ C

+
|E+| is satisfiable and for

each i ∈ [1, |E−|], C−i is unsatisfiable. This is the case iff
C+

1 ∪ . . . ∪ C
+
|E+| is satisfiable and {v1 ∨ . . . ∨ v|E−|} ∪{

c ∨ ¬vi
∣∣i ∈ [1, |E−|], c ∈ C−i

}
is unsatisfiable (where the

vi’s are new atoms). Hence, deciding BV can be reduced to
deciding one problem in NP and one problem in coNP .
Hence, BV is a member of DP .

Theorem 11. Horn BTS is ΣP
2 -hard.

Proof. We prove this by reducing the ΣP
2 -complete prob-

lem of deciding whether Φ ∈ QBF2,∃, where Φ =
∃x1, . . . ,∃xm,∀xm+1, . . . ,∀xnE, where E is a disjunction
C1 ∨ . . .∨Ck of conjunctions of length 3 over the atoms (or
negations of atoms) in {x1, . . . , xm, xm+1, . . . , xn}.

Let constraint(Cj) be a denial representation of Cj us-
ing annotations. So, for example, x1∧¬x3∧x5 is represented
as : - v@1, not v@3, v@5.

Consider the ASG learning task T =
〈G,SM , {“pos′′}, {“neg′′}〉, where G is the following
propositional Horn ASG:

1 : start→ x1 . . . xm “pos” {}
2 : start→ x1 . . . xn “neg” {constraint(Cj)|j ∈ [1, k]}

% for each i ∈ [1, m]
ai : start→ xi “neg” {

: - v@1.
: - not v@1.

}
bi : xi →{

: - v, not v.
}

% for each i ∈ [m + 1, n]
ci : xi →{v.}
di : xi →{not v.}

The hypothesis space of the task, SM =
{〈v., i〉, 〈not v., bi〉|bi ∈ [1,m]}, means that each hy-
pothesis represents an assignment to the existential
variables in Φ. Note that the ai rules mean that in order
to cover the negative example, every inductive solution
must contain at least one of the facts v or not v in each
production rule bi. The constraint in each production rule bi
means that none of the bi production rules can contain both
v and not v. Hence the only possible inductive solutions

contain exactly one of 〈v., bi〉 or 〈not v., bi〉 for each
i ∈ [1,m].

Let θ be an assignment to {x1, . . . , xm} such that
∀xm+1, . . . ,∀xnE. Then the hypothesis corresponding to
θ cannot accept the negative example with the second pro-
duction rule (as every assignment to {xm+1, . . . , xn} must
violate at least one of the constraints in the ASP of the sec-
ond production rule). Conversely let θ be an assignment to
{x1, . . . , xm} such that ¬∀xm+1, . . . ,∀xnE. Then the hy-
pothesis corresponding to θ accepts the negative example
with the second production rule (as there is at least one as-
signment to {xm+1, . . . , xn} which does not satisfy any of
the conjunctions in E, and thus does not violate any of the
constraints in the ASP of the second production rule).

Hence, T is satisfiable at depth d (for any d ≥ 1) iff Φ is
valid (i.e. iff Φ ∈ QBF2,∃). Hence, as deciding whether Φ ∈
QBF2,∃ is ΣP

2 -complete, deciding BTS is ΣP
2 -hard.

Theorem 13. Let T be an ASG learning task.
ILP d

ASG(T) =
{
HASG | H ∈ ILP context

LAS (LAS(T, d))
}

Proof. Let T be the ASG learning task 〈G,SM , E
+, E−〉.

Let LAS(T, d) = 〈BLAS , S
LAS
M , E+

LAS , E
−
LAS〉. Given

any hypothesis H ⊆ SM , we write HLAS to denote the
hypothesis {〈RX(PRid) ∈ H|PRid, R〉 ∈ SM}.

(∗) First note that for any parse tree PT of (G : H)CF

of depth d, (for any H ⊆ SM) (G : H)[PT] is satis-

fiable iff

{
RX(PRid)

∣∣∣∣∣ PR ∈ (G : H)PR,
PR = n→ n1 . . . nk P,

R ∈ P

}
∪

{pr(rule(n)id, trace(n)).|n ∈ PT} is satisfi-
able, which is the case iff B ∪ HLAS accepts
〈〈∅, ∅〉, {pr(rule(n)id, trace(n)).|n ∈ PT}〉.
Assume that H ∈ ILP d

ASG(T)

⇔ H ⊆ SM , ∀s ∈ E+, s ∈ Ld(G : H) and ∀s ∈ E−, s 6∈
Ld(G : H).

⇔ H ⊆ SM , ∀s ∈ E+,∃PT st PT is a parse tree of s for
(G : H)CF at depth d and (G : H)[PT] is satisfiable and
∀s ∈ E−,∀PT st PT is a parse tree of s for (G : H)CF

at depth d, (G : H)[PT] is unsatisfiable.
⇔ H ⊆ SM , ∀s ∈ E+ st {PT1, . . . , PTm}

is the set of all parse trees of s for (G :
H)CF at depth d, ∃i ∈ [1,m] st B ∪ HLAS

accepts 〈〈∅, ∅〉, {pr(rule(n)id, trace(n)).|n ∈ PTi}〉
and ∀s ∈ E−,∀PT st PT is a parse tree of s for
(G : H)CF at depth d, (G : H)[PT] is unsatisfiable.
(by (∗)).

⇔ H ⊆ SM , ∀s ∈ E+ st {PT1, . . . , PTm} is the
set of all parse trees of s for (G : H)CF at depth
d, B ∪ HLAS accepts 〈〈∅, ∅〉, {1{pt1, . . . , ptm}1.} ∪
{pr(rule(n)id, trace(n)) : - pti.|i ∈ [1,m], n ∈ PTi}〉
and ∀s ∈ E−,∀PT st PT is a parse tree of s for
(G : H)CF at depth d, (G : H)[PT] is unsatisfiable.

⇔ H ⊆ SM , ∀e+ ∈ E+
LAS , B ∪ HLAS accepts e+ and

∀s ∈ E−,∀PT st PT is a parse tree of s for (G : H)CF

at depth d, (G : H)[PT] is unsatisfiable.
⇔ H ⊆ SM , ∀e+ ∈ E+

LAS , B ∪ HLAS accepts e+
and ∀s ∈ E−,∀PT st PT is a parse tree of s for

(G : H)CF at depth d, B ∪ HLAS does not accept
〈〈∅, ∅〉, {pr(rule(n)id, trace(n)).|n ∈ PTi}〉. (by (∗)).

⇔ H ⊆ SM , ∀e+ ∈ E+
LAS , B ∪ HLAS accepts e+ and

∀e− ∈ E−LAS , B ∪HLAS does not accept e−.
⇔ HLAS ∈ ILP context

LAS (LAS(T)).
⇔ H ∈

{
HASG

∣∣H ∈ ILP context
LAS (LAS(T, d))

}

