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Preference Learning

I Learning to rank is an approach to preference learning where
the goal is to learn to order objects given pairwise examples of
a user’s preferences.

I For example, learning academic’s preferences about interview
scheduling.

1 2 3

M c1 c2 c2

T c2 c2 c2
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is preferred to
1 2 3

M c1 c2 c2
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W c2 c1 c2

Although traditional machine learning techniques can be used to
predict preferences, their reasoning is not easily human readable.
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Inductive Logic Programming

I Given a set of positive examples E+, negative examples E−

and a background knowledge B, the goal is to find a
hypothesis H such that:

I ∀e ∈ E+ : B ∪ H |= e
I ∀e ∈ E− : B ∪ H 6|= e

I The key advantages are that:
I The hypotheses are human readable.
I Can define useful concepts in the background knowledge.
I Can give a very structured language bias to guide the search.
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Learning from Answer Sets (ILPLAS)

I In ILPLAS (Law et al. 2014), examples are partial
interpretations.

I A partial interpretation e is a pair of sets of atoms 〈e inc , eexc〉.
I An answer set A extends e iff e inc ⊆ A and eexc ∩ A = ∅.

1 2 3
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Learning from Answer Sets (ILPLAS)

Definition 1

An ILPLAS task is a tuple T =〈B,SM ,E+,E−〉. A hypothesis
H ⊆ SM is in ILPLAS(T ), the set of all inductive solutions of T , if
and only if:

I ∀e+∈E+ ∃A∈AS(B ∪ H) such that A extends e+

I ∀e−∈E− @A∈AS(B ∪ H) such that A extends e−.

(Law et al. 2014)
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Weak Constraints in ASP

:∼ assign(D, S),type(D, S, c1).[1@2, D, S]

:∼ assign(D, S1),assign(D, S2),neq(S1, S2).[1@1, D, S1, S2]
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Learning from Ordered Answer Sets

I As previous ILP frameworks could only give examples of what
should (or shouldn’t) be an answer set of the program, no
existing framework could incentivise learning weak constraints.

I We now present an extension of ILPLAS (Law et al. 2014),
with a new type of example aimed at learning weak
constraints.
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Ordering Examples

Definition 3

An ordering example is a tuple o =〈e1, e2〉 where e1 and e2 are
partial interpretations.
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Brave Scheduling Example

:∼ assign(D, S1),assign(D, S2),neq(S1, S2).[1@1, D, S1, S2]

:∼ assign(D, S),type(D, S, c1).[1@2, D, S]

1 2 3

M c1 c2 c2

T c2 c2 c2

W c2 c1 c2

is sometimes
preferred to

1 2 3

M c1 c2 c2

T c2 c2 c2

W c2 c1 c2

Definition 3
I An ASP program P bravely respects o iff ∃A1,A2∈AS(P)

such that A1 extends e1, A2 extends e2 and A1 �P A2.
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Cautious Scheduling Example

:∼ assign(D, S1),assign(D, S2),neq(S1, S2).[1@1, D, S1, S2]

:∼ assign(D, S),type(D, S, c1).[1@2, D, S]

1 2 3

M c1 c2 c2

T c2 c2 c2

W c2 c1 c2

is always preferred to

1 2 3

M c1 c2 c2

T c2 c2 c2

W c2 c1 c2

Definition 3
I P cautiously respects o iff ∀A1,A2∈AS(P) such that A1

extends e1 and A2 extends e2, it is the case that A1 �P A2.
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Learning from Ordered Answer Sets (ILPLOAS)

Definition 4

An ILPLOAS task is a tuple T = 〈B, SM ,E+,E−,Ob,Oc〉.
A hypothesis H ⊆ SM is in ILPLOAS(T ), the inductive solutions of
T , if and only if:

1. ∀e+∈E+ ∃A∈AS(B ∪ H) such that A extends e+

2. ∀e−∈E− @A∈AS(B ∪ H) such that A extends e−.

3. ∀o ∈ Ob B ∪ H bravely respects o

4. ∀o ∈ Oc B ∪ H cautiously respects o
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Complexity

Theorem 3

Let T be any propositional ILPLAS or ILPLOAS task. Deciding
whether T has at least one inductive solution is NPNP -complete.
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Algorithm

I Our new algorithm ILASP2 (Inductive Learning of Answer Set
Programs) is sound and complete wrt the optimal (shortest)
solutions of any ILPLOAS task.

I It is available for download at
https://www.doc.ic.ac.uk/~ml1909/ILASP.

I It extends our previous ILASP1 algorithm for solving ILPLAS

tasks (Law et al. 2014).
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Positive and Violating Hypotheses

Definition 5/6

Let T = 〈B,SM , E+, E−〉 be an ILPLAS task. Any H ⊆ SM is a
positive hypothesis iff ∀e ∈ E+ ∃A ∈ AS(B ∪ H) such that A
extends e.

A positive hypothesis H is violating iff ∃e−∈E−, ∃A∈AS(B ∪ H)
such that A extends e−.

(Law et al. 2014)
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Positive and Violating Hypotheses

E+ =


1 2

M c1 c2

T c2 c2

 E− =


1 2

M c1 c2

T c2 c2

,

1 2

M c1 c2

T c2 c2



B =


slot(m, 1..2). slot(t, 1..2). type(m, 1, c1).

type(m, 2, c2). type(t, 1, c2). type(t, 2, c2).

0{assign(D, S)}1:-slot(D, S).


H = ∅

This is a positive hypothesis, but is also violating.
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Positive and Violating Hypotheses

E+ =


1 2

M c1 c2

T c2 c2

 E− =


1 2

M c1 c2

T c2 c2

,

1 2

M c1 c2

T c2 c2



B =


slot(m, 1..2). slot(t, 1..2). type(m, 1, c1).

type(m, 2, c2). type(t, 1, c2). type(t, 2, c2).

0{assign(D, S)}1:-slot(D, S).


H =

{
:-assign(m, S).

}
This is a positive hypothesis which is not violating. Hence, it is an
inductive solution.
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Positive and Violating Hypotheses

Definition 5/6

Let T = 〈B,SM , E+, E−,Ob,Oc〉 be an ILPLOAS task. Any
H ⊆ SM is a positive hypothesis iff ∀e ∈ E+ ∃A ∈ AS(B ∪H) such
that A extends e, and ∀o ∈ Ob B ∪ H bravely respects o.

A positive hypothesis H is violating iff at least one of the following
cases is true:

I ∃e−∈E−, ∃A∈AS(B ∪ H) such that A extends e−.

I ∃A1,A2∈AS(B ∪H) and ∃〈e1, e2〉 ∈ Oc such that A1 extends
e1, A2 extends e2 and A1 6�P A2 with respect to B ∪ H.
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ILASP1

procedure ILASP1(T )
solutions = []
n = 0
while solutions == [] do

V = violating hypotheses(T , n)
solutions = remaining positive hypothses(T , n,V )
n = n + 1

end while
return solutions

end procedure

(Law et al. 2014)
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Positive Hypotheses and Violating Reasons

Definition 5/6

Let T = 〈B,SM , E+, E−,Ob,Oc〉 be an ILPLOAS task. Any
H ⊆ SM is a positive hypothesis iff ∀e ∈ E+ ∃A ∈ AS(B ∪H) such
that A extends e, and ∀o ∈ Ob H ∪ B bravely respects o.

A positive hypothesis H is violating iff at least one of the following
cases is true:

I ∃e−∈E−, ∃A∈AS(B ∪ H) such that A extends e−.
In this case we call A a violating interpretation of T .

I ∃A1,A2∈AS(B ∪H) and ∃〈e1, e2〉 ∈ Oc such that A1 extends
e1, A2 extends e2 and A1 6�P A2 with respect to B ∪ H.
In this case, we call 〈A1,A2〉 a violating pair of T .
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Meta Representation: Properties

Given a task T and a set of violating reasons VR, we defined a
meta program M(T ,VR).

I The A’s ∈ AS(M(T ,VR)) map to the positive hypotheses
M−1hyp(A) which do not violate any vr ∈ VR.

I If H is violating, there is an A ∈ AS(M(T ,VR)) st
H =M−1hyp(A) and violating ∈ A.

I The optimality of each answer set A is 2|M−1hyp(A)| if

violating ∈ A and 2|M−1hyp(A)|+ 1 otherwise.
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ILASP2

procedure ILASP2(T )
VR = []
A = solve(M(T ,VR))
while A 6= nil && violating ∈ A do

VR += M−1
vr (A)

A = solve(M(T ,VR))
end while
return {M−1

hyp(A) | A∈AS∗(M(T ,VR))}
end procedure

I solve(P) returns an optimal answer set of P (it returns nil if AS(P) = ∅).
I M−1

hyp maps an answer set of M(T ,VR) to the corresponding hypothesis.
I M−1

vr maps an answer set of M(T ,VR) to the corresponding violating
reason.
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Soundness and Completeness

Theorem 5

Let T be an ILPLOAS task. If ILASP2(T ) terminates, then
ILASP2(T ) returns the set of optimal inductive solutions of
ILPLOAS(T ).
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Sudoku Experiment

I In (Law et al. 2014) we showed that ILASP1 could be used to
learn the rules of a 4x4 version of sudoku.

I This took 486.2s (over 8 minutes) to solve with ILASP1 as
there were 332437 violating hypotheses found before the first
inductive solution.

I ILASP2 only needs 9 violating reasons and so solves the same
task in 0.69s (less than 1 second).
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Experiments

Our main experiments were on the interview scheduling example.

I For each experiment, we randomly generated hypotheses H
with up to 3 weak constraints from SM .

I We used each H to randomly generate orderings.

I We then used ILASP2 to learn a hypothesis H ′ which covered
these examples.

I We checked the accuracy of H ′ at predicting the orderings of
the timetables given by H.
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Experiments
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Mark Law, Alessandra Russo and Krysia Broda
Learning Weak Constraints in Answer Set Programming



26/29

Experiments

 0

 200

 400

 600

 800

 1000

 1200

 0  20  40  60  80 100 120

R
u
n
n
in

g
 t
im

e
 (

s
)

Number of examples

3 day timetables

|SM| = 184

|SM| = 92

 0

 200

 400

 600

 800

 1000

 1200

 0  20  40  60  80 100 120

R
u
n
n
in

g
 t
im

e
 (

s
)

Number of examples

4 day timetables

|SM| = 184

|SM| = 92

 0

 200

 400

 600

 800

 1000

 1200

 0  20  40  60  80 100 120

R
u
n
n
in

g
 t
im

e
 (

s
)

Number of examples

5 day timetables

|SM| = 184

|SM| = 92

Figure : Average running time of ILASP2 with varying numbers of
examples

Mark Law, Alessandra Russo and Krysia Broda
Learning Weak Constraints in Answer Set Programming



27/29

Comparison of Non-monotonic ILP systems

Learning Task Normal 
Rules

Choice 
Rules Constraints Brave Cautious Weak 

Constraints
Algorithm for optimal 

solutions

Brave Induction 
[Sakama, Inoue 2009] ✔ ✔ ✖ ✔ ✖ ✖ ✖

Cautious Induction 
[Sakama, Inoue 2009] ✔ ✔ ✖ ✖ ✔ ✖ ✖

XHAIL [Ray 2009] 
& ASPAL 

[Corapi et al 2011]
✔ ✖ ✖ ✔ ✖ ✖ ✔

Induction of Stable Models 
[Otero 2001] ✔ ✖ ✖ ✔ ✖ ✖ ✖

Induction from 
Answer Sets 

[Sakama 2005]
✔ ✖ ✔ ✔ ✔ ✖ ✖

LAS 
[Law et al 2014] ✔ ✔ ✔ ✔ ✔ ✖ ✔

LOAS ✔ ✔ ✔ ✔ ✔ ✔ ✔
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Other Related Work in ILP

I ILP systems have previously been used for preference
learning (Dastani et al. 2001, Horváth 2012). This addressed
learning ratings, such as good , poor and bad , rather than
rankings over the examples.
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Summary

I Presented ILPLOAS , which is the first framework capable of
learning weak constraints.

I Presented ILASP2, which is sound and complete wrt ILPLOAS .
I Proved the complexity of deciding the existence of solutions for

ILPLAS and ILPLOAS .
I Showed that ILASP2 is more efficient than ILASP1 for the

previous ILPLAS task.
I Gave experimental results of ILASP2 in the setting of learning

accademic’s preferences for interview scheduling.

Future Work
I Support noisy examples.
I Improve the performance with larger numbers of examples.
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