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Inductive Logic Programming

I Given a set of positive examples E+, negative examples E−

and a background knowledge B, the goal is to find a
hypothesis H such that:

I ∀e ∈ E+ : B ∪ H |= e
I ∀e ∈ E− : B ∪ H 6|= e

I The key advantages are that:
I The hypotheses are human readable.
I Can define useful concepts in the background knowledge.
I Can give a very structured language bias to guide the search.
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Learning from Answer Sets (ILPLAS)

I In ILPLAS (Law et al. 2014), examples are partial
interpretations.

I A partial interpretation e is a set of pairs of atoms 〈e inc , eexc〉.

1 2

3 4

〈
size(4)
edge(1, 2)
edge(2, 3)
edge(3, 4)
edge(4, 1)

 ,


edge(1, 1)
edge(1, 3)
edge(1, 4)

. . .


〉

I An answer set A extends e iff e inc ⊆ A and eexc ∩ A = ∅.
I A positive (resp. negative) example e is covered if at least one

(resp. no) answer set of B ∪ H extends e.
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ILPLAS Encoding of the Hamiltonian Example

1 2

3 4

〈
size(4)
edge(1, 2)
edge(2, 3)
edge(3, 4)
edge(4, 1)

 ,


edge(1, 1)
edge(1, 3)
edge(1, 4)

. . .


〉

B :
1{size(1..4)}1.
node(1..N):-size(N).
0{edge(V0, V1)}1:-node(V0),

node(V1).

H :
reach(V0):-in(1, V0).
reach(V1):-in(V0, V1), reach(V0).
0{in(V0, V1)}1:-edge(V0, V1).
:-node(V0), not reach(V0).
:-in(V0, V1), in(V0, V2), V1 6= V2.
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ILPLOAS

ILPLOAS (Law et al. 2015) is a generalisation of ILPLAS which
enables the learning of weak constraints.

Definition

An ordering example o is a pair 〈e1, e2〉. A program P is said to
bravely (resp. cautiously) respect o if for at least one (resp. every)
pair 〈A1,A2〉 such that A1,A2 ∈ AS(P), A1 extends e1 and A2

extends e2, it is the case that A1 ≺P A2.
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ILPLOAS

Definition

An ILPLOAS task is a tuple T =〈B,SM ,E+,E−,Ob,Oc〉.
A hypothesis H ⊆ SM is in ILPLOAS(T ), the set of all inductive
solutions of T , if and only if:

I ∀e ∈ E+ ∃A ∈ AS(B ∪ H) such that A extends e

I ∀e ∈ E− @A ∈ AS(B ∪ H) such that A extends e

I ∀o ∈ Ob B ∪ H bravely respects o

I ∀o ∈ Oc B ∪ H cautiously respects o
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Journey Preferences :∼ mode(L, walk), crime rating(L, R), R > 3.[1@3, L, R]
:∼ mode(L, bus).[1@2, L]
:∼ mode(L, walk), distance(L, D).[D@1, L, D]
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Learning Journey Preferences
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Learning Journey Preferences

I Given examples of this form, we can learn:

H =

 :∼ mode(L, walk), crime rating(L, R), R > 3.[1@3, L, R]
:∼ mode(L, bus).[1@2, L]
:∼ mode(L, walk), distance(L, D).[D@1, L, D]
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Journey Preferences in ILPLOAS

H =


:∼ mode(L, walk), crime rating(L, R), R > 3.[1@3, L, R]

:∼ mode(L, bus).[1@2, L]

:∼ mode(L, walk), distance(L, D).[D@1, L, D]

B =


1{choose(j1), . . . , choose(jn)}1.
mode(leg1, walk):-choose(j1).
crime rating(leg1, 2):-choose(j1).
distance(leg1, 1000):-choose(j1).

. . .

e1 = 〈{choose(j1)}, ∅〉, e2 = 〈{choose(j2)}, ∅〉, . . .

Ob =

{
〈e1, e2〉
. . .

}
Mark Law, Alessandra Russo and Krysia Broda
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Journey Preference Experiments

Figure: (a) the average computation time and (b) the memory usage of
ILASP2 for learning journey preferences.
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Reason for Scalability Issues

I The background knowledge contains all the attributes of each
journey

I Can we divide this background knowledge into pieces that
only apply for particular examples?
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Context-dependent examples

I In standard ILP, we search for hypotheses H such that:

I ∀e ∈ E+ B ∪ H |= e
I ∀e ∈ E− B ∪ H 6|= e

I Given context-dependent examples, it must be the case that:

I ∀〈e,C 〉 ∈ E+ B ∪ H ∪ C |= e
I ∀〈e,C 〉 ∈ E− B ∪ H ∪ C 6|= e.
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I ∀〈e,C 〉 ∈ E+ B ∪ H ∪ C |= e
I ∀〈e,C 〉 ∈ E− B ∪ H ∪ C 6|= e.

For example, we may wish to learn that when it is raining a user
prefers to take the bus; otherwise, they prefer to walk.

E+ =

{
〈〈{bus}, ∅〉, {rain.}〉,
〈〈{walk}, ∅〉, {}〉 E− =

{
〈〈{walk}, ∅〉, {rain.}〉,
〈〈{bus}, ∅〉, {}〉
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ILPLAS Encoding of the Hamiltonian Example

1 2

3 4

〈
size(4)
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 ,
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edge(1, 4)

. . .


〉
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Context-dependent Hamiltonian Example

1 2

3 4

〈
〈∅, ∅〉 ,


node(1..4).
edge(1, 2).
edge(2, 3).
edge(3, 4).
edge(4, 1).


〉

B :
None!

H :
reach(V0):-in(1, V0).
reach(V1):-in(V0, V1), reach(V0).
0{in(V0, V1)}1:-edge(V0, V1).
:-node(V0), not reach(V0).
:-in(V0, V1), in(V0, V2), V1 6= V2.
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Journey Preferences in ILPLOAS
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Journey Preferences in ILPcontext
LOAS

H =

 :∼ mode(L, walk), crime rating(L, R), R > 3.[1@3, L, R]
:∼ mode(L, bus).[1@2, L]
:∼ mode(L, walk), distance(L, D).[D@1, L, D]

B =
{

None!

e1 = 〈〈∅, ∅〉,

{
mode(leg1, walk).
crime rating(leg1, 2).
distance(leg1, 1000).

}
〉 . . .

Ob =

{
〈e1, e2〉
. . .

}
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Complexity

I In the paper, we present a mapping TLOAS from any ILPcontext
LOAS

task to an ILPLOAS task.

Theorem 1

For any ILPcontext
LOAS task T , ILPLOAS(TLOAS(T )) = ILPcontext

LOAS (T ).

Theorem 2

The complexity of deciding whether an ILPcontext
LOAS task is satisfiable

is ΣP
2 -complete.
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ILASP2i
I The mapping TLOAS means that we can use ILASP2 to

compute solutions for any context dependent task:
I This would be by calling ILASP2(TLOAS(〈B,SM ,E 〉)).
I However, ILASP2 is known to scale poorly wrt the number of

examples.

I Our new algorithm, ILASP2i, iteratively computes a subset of
the examples Rel , called relevant examples.

I In each iteration, we call ILASP2(TLOAS(〈B,SM ,Rel〉)).

Mark Law, Alessandra Russo and Krysia Broda
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ILASP2i pt
1: procedure ILASP2i pt(〈B,SM ,E 〉)
2: 〈B ′,S ′M ,E ′〉 = TLOAS(〈B,SM ,E 〉);
3: Relevant = 〈∅, ∅, ∅, ∅〉; H = ∅;
4: re = findRelevantExample(〈B ′,S ′M ,E ′〉,H);
5: while re 6= nil do
6: Relevant << re;
7: H = ILASP2(〈B ′,S ′M ,Relevant〉);
8: if(H == nil) return UNSATISFIABLE;
9: else re = findRelevantExample(〈B ′,S ′M ,E 〉,H);

10: end while
11: returnH;
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ILASP2i pt
1: procedure ILASP2i pt(〈B,SM ,E 〉)
2: 〈B ′,S ′M ,E ′〉 = TLOAS(〈B,SM ,E 〉);
3: Relevant = 〈∅, ∅, ∅, ∅〉; H = ∅;
4: re = findRelevantExample(〈B ′,S ′M ,E ′〉,H);
5: while re 6= nil do
6: Relevant << re;
7: H = ILASP2(〈B ′,S ′M ,Relevant〉);
8: if(H == nil) return UNSATISFIABLE;
9: else re = findRelevantExample(〈B ′,S ′M ,E 〉,H);

10: end while
11: returnH;

Translation occurs once, at the start of the algorithm.
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Journey Preference Experiments

Figure: (a) the average computation time and (b) the memory usage of
ILASP2 and ILASP2i pt for learning journey preferences.
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ILASP2i
1: procedure ILASP2i(〈B,SM ,E 〉)
2: Relevant = 〈∅, ∅, ∅, ∅〉; H = ∅;
3: re = findRelevantExample(〈B,SM ,E 〉,H);
4: while re 6= nil do
5: Relevant << re;
6: H = ILASP2(TLOAS(〈B,SM ,Relevant〉));
7: if(H == nil) return UNSATISFIABLE;
8: else re = findRelevantExample(〈B,SM ,E 〉,H);
9: end while

10: returnH;

Translation occurs in each iteration, using only the relevant
contexts.
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ILASP2i
1: procedure ILASP2i(〈B,SM ,E 〉)
2: Relevant = 〈∅, ∅, ∅, ∅〉; H = ∅;
3: re = findRelevantExample(〈B,SM ,E 〉,H);
4: while re 6= nil do
5: Relevant << re;
6: H = ILASP2(TLOAS(〈B,SM ,Relevant〉));
7: if(H == nil) return UNSATISFIABLE;
8: else re = findRelevantExample(〈B,SM ,E 〉,H);
9: end while

10: returnH;

Theorem 4

ILASP2i is sound for any well defined ILPcontext
LOAS task, and returns

an optimal solution if one exists.
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Journey Preference Experiments

Figure: (a) the average computation time and (b) the memory usage of
ILASP2, ILASP2i and ILASP2i pt for learning journey preferences.
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Journey Preference Experiments

Figure: average accuracy of ILASP2i

Mark Law, Alessandra Russo and Krysia Broda
Iterative Learning of ASP Programs from Context Dependent Examples



23/26

Experiments

Learning #examples time/s Memory/kB

task E+ E− Ob Oc 2 2i pt 2i 2 2i pt 2i

Hamilton A 100 100 0 0 10.3 4.2 4.3 9.7×104 1.2×104 1.2×104

(no context)

Hamilton B 100 100 0 0 32.0 84.9 3.6 3.6×105 2.7×105 1.4×104

(context dep.)

Journeys 386 0 200 0 1031.4 45.2 5.0 1.4×107 1.1×106 3.4×104

(context dep.)

I ILASP2 runs the automatic translation (TLOAS) of context
dependent tasks.

I TLOAS(Hamilton B) is less efficient than Hamilton A.

I TLOAS(Journeys) is the same as the non-context dependent
Journey task.
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Related work under the answer set semantics
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Related Incremental Learner

I ILASP2i incrementally constructs the set of relevant examples,
learning a new hypothesis each time.

I ILASP2i’s relevant example set could become very large.

I ILASP2i is guaranteed to find an optimal solution.

I ILED (Katzouris et al. 2015) is an incremental extension of
XHAIL, which is targeted at learning event definitions.

I ILED incrementally learns a hypothesis through theory revision.

I ILED is not guaranteed to find an optimal solution.

Mark Law, Alessandra Russo and Krysia Broda
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Current Work

I Improve the scalability of ILASP for tasks with:

I Noisy examples
I Large hypothesis spaces
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Current Work

I Improve the scalability of ILASP for tasks with:

I Noisy examples
I Large hypothesis spaces

I ILASP2 and ILASP2i are available to download from
https://www.doc.ic.ac.uk/~ml1909/ILASP

Mark Law, Alessandra Russo and Krysia Broda
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Hamilton Experiment

Maximum graph size
Maximum graph size

Figure: (a) the average computation time and (b) the memory usage of
ILASP2, ILASP2i and ILASP2i pt for Hamilton A and B.
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ILPLAS

Definition

An ILPLAS task is a tuple T =〈B,SM ,E+,E−〉.
A hypothesis H ⊆ SM is in ILPLAS(T ), the set of all inductive
solutions of T , if and only if:

I ∀e ∈ E+ ∃A ∈ AS(B ∪ H) such that A extends e

I ∀e ∈ E− @A ∈ AS(B ∪ H) such that A extends e.
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Context-dependent ILPLAS

Definition

An ILPcontext
LAS task is a tuple T =〈B, SM ,E+,E−〉.

A hypothesis H ⊆ SM is in ILPcontext
LAS (T ), the set of all inductive

solutions of T , if and only if:

I ∀〈e,C 〉 ∈ E+ ∃A ∈ AS(B ∪ C ∪ H) such that A extends e

I ∀〈e,C 〉 ∈ E− @A ∈ AS(B ∪ C ∪ H) such that A extends e.

Mark Law, Alessandra Russo and Krysia Broda
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ILPcontext
LOAS

Definition

A context-dependent ordering example o is a pair
〈〈e1,C1〉, 〈e2,C2〉〉. A program P is said to bravely (resp.
cautiously) respect o if for at least one (resp. every) pair 〈A1,A2〉
such that A1 ∈ AS(P ∪ C1), A2 ∈ AS(P ∪ C2), A1 extends e1 and
A2 extends e2, it is the case that A1 ≺P A2.
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Context-dependent examples

I In standard ILP, we search for hypotheses H such that:

I ∀e ∈ E+ B ∪ H |= e
I ∀e ∈ E− B ∪ H 6|= e

I Given context-dependent examples, it must be the case that:

I ∀〈e,C 〉 ∈ E+ B ∪ H ∪ C |= e
I ∀〈e,C 〉 ∈ E− B ∪ H ∪ C 6|= e.

For example, we may wish to learn that when it is raining a user
prefers to take the bus; otherwise, they prefer to walk.

E+ =

{
〈“take bus”, {1{rain, snow}1.}〉,
〈“walk”, {}〉

E− =

{
〈“walk”, {rain.}〉,
〈“take bus”, {}〉

Mark Law, Alessandra Russo and Krysia Broda
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