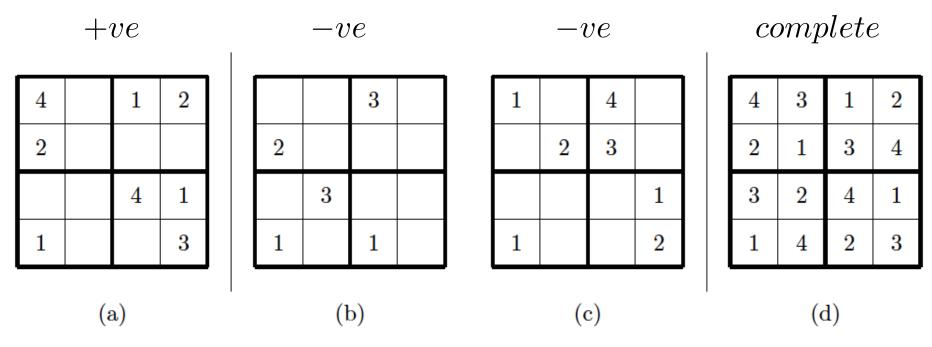
Inductive Learning of Answer Set Programs

Mark Law, Alessandra Russo and Krysia Broda


Inductive Logic Programming

The task of Inductive Logic Programming (ILP) is to find a hypothesis H which "explains" a set of positive and negative examples (E^+ and E^-) with respect to a background knowledge B.

The work on nonmonotonic ILP under the Answer Set/Stable Model semantics has mostly been limited to learning normal logic programs and is usually restricted to **either** brave **or** cautious reasoning.

Our new learning task, Learning from Answer Sets, incorporates **both** brave **and** cautious reasoning with the aim of learning Answer Set Programs containing normal rules, choice rules and constraints.

Sudoku Example

1 { value(1, C), value(2, C), value(3, C), value(4, C) } 1 :- cell(C). :- value(V, C1), value(V, C2), same_row(C1, C2). :- value(V, C1), value(V, C2), same_block(C1, C2). :- value(V, C1), value(V, C2), same_col(C1, C2).

Comparison with related works under the Answer Set semantics

Learning Task	Normal Rules	Choice Rules	Constraints	Classical negation	Brave	Cautious	Algorithm for optimal solutions
Brave Induction [Sakama, Inoue 2009]	~	~	×	~	~	×	×
Cautious Induction [Sakama, Inoue 2009]	~	~	×	~	×	v	*
XHAIL [Ray 2009] & ASPAL [Corapi, Russo, Lupu 2011]	V	×	×	×	~	*	~
Induction of Stable Models [Otero 2001]	~	×	×	×	~	×	*
Induction from Answer Sets [Sakama 2005]	V	*	~	~	~	~	*
LAS	~	~	~	×	~	 Image: A start of the start of	

Learning from Answer Sets

A partial interpretation E is a pair of sets of atoms $\langle E^{inc}, E^{exc} \rangle$ called the *inclusions* and *exclusions* respectively.

An Answer Set A extends $\langle E^{inc}, E^{exc} \rangle$ if and only if: $E^{inc} \subseteq A$ and $E^{exc} \cap A = \emptyset$.

A Learning from Answer Sets task is a tuple $T = \langle B, S_M, E^+, E^- \rangle$ where B is an ASP program, S_M is the search space defined by a language bias M, E^+ and E^- are sets of partial interpretations.

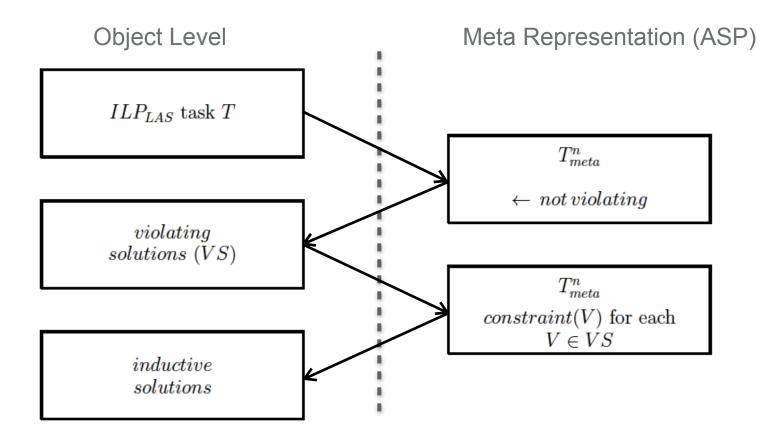
A hypothesis $H \in ILP_{LAS}\langle B, S_M, E^+, E^- \rangle$ if and only if:

1. $H \subseteq S_M$

2. $\forall e^+ \in E^+ \exists A \in AS(B \cup H) \text{ st } A \text{ extends } e^+$

3. $\forall e^- \in E^- \not\exists A \in AS(B \cup H)$ st A extends e^-

Inductive Learning of Answer Set Programs


- A hypothesis $H \in positive_solutions\langle B, S_M, E^+, E^- \rangle$ if and only if:
 - 1. $H \subseteq S_M$
 - **2.** $\forall e^+ \in E^+ \exists A \in AS(B \cup H) \text{ st } A \text{ extends } e^+$

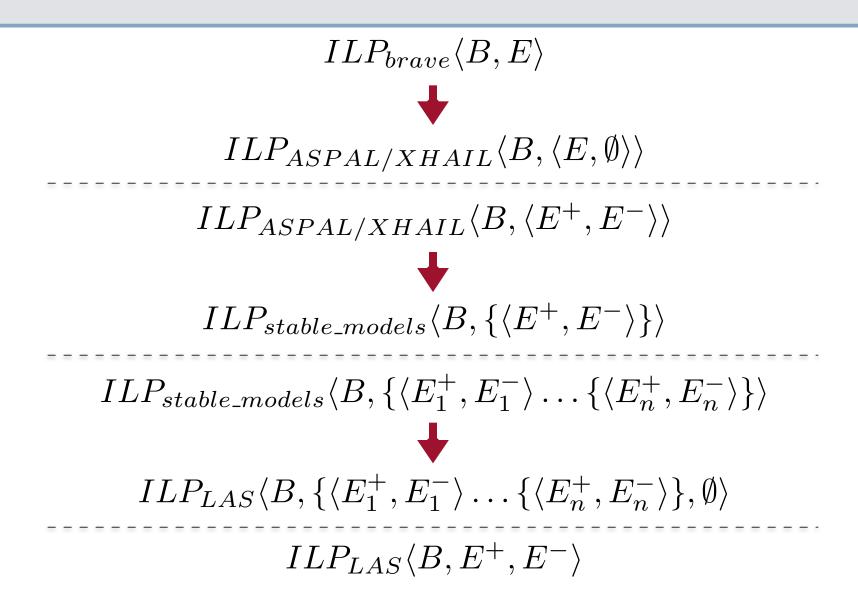
A hypothesis $H \in violating_solutions\langle B, S_M, E^+, E^- \rangle$ if and only if:

- 1. $H \subseteq S_M$
- **2.** $\forall e^+ \in E^+ \exists A \in AS(B \cup H) \text{ st } A \text{ extends } e^+$
- **3.** $\exists e^- \in E^- \ \exists A \in AS(B \cup H) \text{ st } A \text{ extends } e^-$

 $ILP_{LAS}\langle B, S_M, E^+, E^- \rangle$ = positive_solutions $\langle B, S_M, E^+, E^- \rangle \backslash violating_solutions \langle B, S_M, E^+, E^- \rangle$

Inductive Learning of Answer Sets

n: a given hypothesis length T_{meta}^n : ASP task program (a meta representation of the task T)


Inductive Learning of Answer Sets

Algorithm 1 ILASP

procedure ILASP(T) solutions = [] for n = 0; solutions.empty; n++ do $vs = AS(T_{meta}^n \cup \{\leftarrow \text{ not violating}; ex(negative).\})$ $ps = AS(T_{meta}^n \cup \{constraint(meta^{-1}(V)) : V \in vs\})$ solutions = $\{meta^{-1}(A) : A \in ps\}$ end for return solutions end procedure

 T_{meta}^n : ASP task program (a meta representation of the task T) vs: violating solutions ps: positive solutions

Comparison with related works

Comparison with related works

 $ILP_{cautious}\langle B, \{e_1, \ldots, e_n\}\rangle$

 $ILP_{LAS}\langle B, \emptyset, \{\langle \emptyset, \{e_1\} \rangle \dots \langle \emptyset, \{e_n\} \rangle\} \rangle$

Current work: modification of ILASP

- For some classes of problem there could be many violating solutions before we find an inductive solution.
- The sudoku example is one such problem, with 413044 before the first inductive solution it takes over 14 minutes to solve with ILASP.
- In fact, many of these are violating for the same reason (they share Answer Sets which extend negative examples).
- With our new system based on ruling out classes of hypothesis, we need only 7 classes and the problem is solved in less than a second.

Other current work

- Expand the subset of ASP that we can learn
 - conditions, weighted aggregates etc.
 - weak constraints/optimisation statements
- Real applications
 - Ideally not achievable by other ILP tasks
 - Will motivate the work from a practical point of view
 - Measure the accuracy of the learning task