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Overview

• Introduction, motivating example and state of the art 
!
• Our learning task  (Learning from Answer Sets) 
!
• Our learning algorithm  (ILASP) 
!
• Comparison to related work 
!
• Application to learning while planning 
!
• Current and future work 
!
!



Inductive Logic Programming

The task of Inductive Logic Programming (ILP) is to find a hypothesis H  
which, with respect to a background knowledge B, entails a set of positive 
examples E+ and does not entail any negative examples E-. 
!
!
!
!
!
!
!
Most of the previous work on ILP has addressed the learning of monotonic 
(definite) logic programs where entailment is defined in terms of the least 
Herbrand model. 
!

8e+ 2 E+ : B [H |= e+

8e� 2 E� : B [H 6|= e�



Inductive Logic Programming

Under the Answer Set (or stable model) semantics a set of normal clauses      
can have one, many or even no Answer Sets.  
!
We say that a formula is bravely entailed by a program P if it is true in at 
least one Answer Set of P. Conversely a formula is cautiously entailed by 
a program P if it is true in all Answer Sets of P. 
!
!
Previous work on nonmonotonic ILP under the Answer Set/Stable Model 
semantics has mostly been restricted to either brave or cautious reasoning. 
!
Our new learning task, Learning from Answer Sets, incorporates both 
brave and cautious reasoning with the aim of learning Answer Set 
Programs containing normal rules, choice rules and constraints.



Sudoku Example

The background knowledge contains definitions of cell, same_row, same_col 
and same_block. One possible hypothesis is: 
!
1 { value(1, C), value(2, C), value(3, C), value(4, C) } 1 :- cell(C). 
:- value(V, C1), value(V, C2), same_row(C1, C2). 
:- value(V, C1), value(V, C2), same_block(C1, C2). 
:- value(V, C1), value(V, C2), same_col(C1, C2).

+ve �ve �ve complete



Comparison with related works under the Answer Set semantics

Learning Task Normal 
Rules

Choice 
Rules Constraints Classical 

negation Brave Cautious Algorithm for 
optimal solutions

Brave Induction 
[Sakama, Inoue 2009] ✔ ✔ ✖ ✔ ✔ ✖ ✖

Cautious Induction 
[Sakama, Inoue 2009] ✔ ✔ ✖ ✔ ✖ ✔ ✖

XHAIL [Ray 2009] 
& ASPAL 

[Corapi, Russo, Lupu 2011]
✔ ✖ ✖ ✖ ✔ ✖ ✔

Induction of Stable Models 
[Otero 2001] ✔ ✖ ✖ ✖ ✔ ✖ ✖

Induction from 
Answer Sets 

[Sakama 2005]
✔ ✖ ✔ ✔ ✔ ✔ ✖

LAS ✔ ✔ ✔ ✖ ✔ ✔ ✔



Learning from Answer Sets

A partial interpretation E is a pair of sets of atoms hEinc, Eexci called

the inclusions and exclusions respectively.

An Answer Set A extends hEinc, Eexci if and only if: Einc ✓ A and Eexc\A = ;.

A Learning from Answer Sets task is a tuple T = hB,S
M

, E+, E�i where B is

an ASP program, S
M

is the search space defined by a language bias M , E+

and E�
are sets of partial interpretations.

A hypothesis H 2 ILP
LAS

hB,S
M

, E+, E�i if and only if:

1. H ✓ S
M

2. 8e+ 2 E+ 9A 2 AS(B [H) st A extends e+

3. 8e� 2 E� 6 9A 2 AS(B [H) st A extends e�



What is an Optimal Hypothesis?

Previous algorithms for ILP have searched for optimal  hypotheses which are 
inductive solutions of the task. 
!
This is usually (but not always) defined in terms of the length of the   
hypothesis. 
!
For normal rules, this is obvious: we just count the number of literals in the 
hypothesis. 
!
!
!
!
!
!
The length of H is 5.

H =

⇢
p q, not s.
q  r.



What is an Optimal Hypothesis?

But what about the hypotheses: 
!
!
!
Both have 2 literals, but the first generates twice as many Answer Sets as the 
second. 
!
To calculate the length of a hypothesis with choice rules, we first 
convert the aggregates into disjunctive normal form: 
!
!
!
!
!
!
This gives the first hypothesis length 8 and the second length 4.

H1 = 0{p, q}2. H2 = 1{p, q}1.

H1 = (p ^ q) _ (p ^ not q) _ (not p ^ q) _ (not p ^ not q).

H2 = (p ^ not q) _ (not p ^ q).



Inductive Learning of Answer Set Programs

A hypothesis H 2 positive solutionshB,SM , E+, E�i if and only if:

1. H ✓ SM

2. 8e+ 2 E+ 9A 2 AS(B [H) st A extends e+

A hypothesis H 2 violating solutionshB,SM , E+, E�i if and only if:

1. H ✓ SM

2. 8e+ 2 E+ 9A 2 AS(B [H) st A extends e+

3. 9e� 2 E� 9A 2 AS(B [H) st A extends e�

ILPLAShB,SM , E+, E�i
= positive solutionshB,SM , E+, E�i\violating solutionshB,SM , E+, E�i



Inductive Learning of Answer Set Programs

Meta Representation (ASP)Object Level

n a given hypothesis length

Tn
meta: ASP task program (a meta representation of the task T )



Constructing the task program  Tmeta 

B = p not q

SM =

⇢
q  
q  not p

E+
=

⇢
h{p}, {q}i
h{q}, {p}i

E�
=

⇢
h;, {p, q}i
h{p, q}, ;i



Constructing the task program  Tmeta 

B = p not q

SM =

⇢
q  active(1)
q  not p, active(2)

E+
=

⇢
h{p}, {q}i
h{q}, {p}i

E�
=

⇢
h;, {p, q}i
h{p, q}, ;i

n{active(R) = X : length(R,X)}n; length(1, 1); length(2, 2)

Each rule R is given a unique identifier Rid.

active(Rid) means that R is in our hypothesis.



Constructing the task program  Tmeta 

B = e(p,X) ex(X), not e(q,X)

SM =

⇢
e(q,X) ex(X), active(1)
e(q,X) ex(X), not e(p,X), active(2)

E+
=

⇢
ex(1); covered(1) e(p, 1), not e(q, 1);  not covered(1)
ex(2); covered(2) e(q, 2), not e(p, 2);  not covered(2)

E�
=

⇢
ex(negative); violating  not e(p, negative), not e(q, negative)

violating  e(p, negative), e(q, negative)

n{active(R) = X : length(R,X)}n; length(1, 1); length(2, 2)

Each Answer Set of Tn
meta has many ex(X) atoms. Each X is “assigned” an

Answer Set of B [H. e(A,X) means A is in the Answer Set “assigned” to X.



Constructing the task program  Tmeta 

B = p not q

SM =

⇢
q  
q  not p

E+
=

⇢
h{p}, {q}i
h{q}, {p}i E�

=

⇢
h;, {p, q}i
h{p, q}, ;i

When n = 1, we must choose the first rule as our hypothesis H.

B [H has one Answer Set: {q}.



Constructing the task program  Tmeta 

The only Answer Set of B [H is {q}.

E+
=

⇢
ex(1); covered(1) e(p, 1), not e(q, 1);  not covered(1)
ex(2); covered(2) e(q, 2), not e(p, 2);  not covered(2)

E�
=

⇢
ex(negative); violating  not e(p, negative), not e(q, negative)

violating  e(p, negative), e(q, negative)

We must “assign” all of ex(1), ex(2) and ex(negative) to {q}.



Constructing the task program  Tmeta 

B = p not q

SM =

⇢
q  
q  not p

E+
=

⇢
h{p}, {q}i
h{q}, {p}i E�

=

⇢
h;, {p, q}i
h{p, q}, ;i

When n = 1, we must choose the first rule as our hypothesis H.

B [H has one Answer Set: {q}.

There are no Answer Sets of Tn
meta as H is not a positive solution.



Constructing the task program  Tmeta 

B = p not q

SM =

⇢
q  
q  not p

E+
=

⇢
h{p}, {q}i
h{q}, {p}i E�

=

⇢
h;, {p, q}i
h{p, q}, ;i

When n = 2, we must choose the second rule as our hypothesis H.

B [H now has two Answer Sets: {p} and {q}.



Constructing the task program  Tmeta 

The Answer Sets of B [H are {p} and {q}.

E+
=

⇢
ex(1); covered(1) e(p, 1), not e(q, 1);  not covered(1)
ex(2); covered(2) e(q, 2), not e(p, 2);  not covered(2)

E�
=

⇢
ex(negative); violating  not e(p, negative), not e(q, negative)

violating  e(p, negative), e(q, negative)

We must “assign” ex(1) to {p} and ex(2) to {q}.

There are two di↵erent Answer Sets of Tn
meta where we “assign” ex(negative)

to each of the Answer Sets {p} and {q}.



Constructing the task program  Tmeta 

B = p not q

SM =

⇢
q  
q  not p

E+
=

⇢
h{p}, {q}i
h{q}, {p}i E�

=

⇢
h;, {p, q}i
h{p, q}, ;i

When n = 2, we must choose the second rule as our hypothesis H.

B [H now has two Answer Sets: {p} and {q}.

There are two Answer Sets of Tn
meta:

{e(p, 1), e(q, 2), active(2), covered(1), covered(2), e(p, negative) . . .}
{e(p, 1), e(q, 2), active(2), covered(1), covered(2), e(q, negative) . . .}

which both correspond to the hypothesis: q  not p.



Constructing the task program  Tmeta 

B = ;

SM =

8
<

:

q  
q  not p
1{p, q}2

E+
=

⇢
h{p}, {q}i
h{q}, {p}i E�

=

⇢
h;, {p, q}i
h{p, q}, ;i

Consider the new (incorrect) hypothesis (of length 6): 1{p, q}2

B [ H has three Answer Sets: {p}, {q} and {p, q}. The Answer Set {p, q}
extends a negative example.



Constructing the task program  Tmeta 

The Answer Sets of B [H are {p}, {q} and {p, q}.

E+
=

⇢
ex(1); covered(1) e(p, 1), not e(q, 1);  not covered(1)
ex(2); covered(2) e(q, 2), not e(p, 2);  not covered(2)

E�
=

⇢
ex(negative); violating  not e(p, negative), not e(q, negative)

violating  e(p, negative), e(q, negative)

We must “assign” ex(1) to {p} and ex(2) to {q}.

There are three di↵erent Answer Sets of Tn
meta where we “assign” ex(negative)

to each of the three Answer Sets of B [H. The third one, where we “assign”

ex(negative) to {p, q}, contains the atom violating.



Constructing the task program  Tmeta 

B = ;

SM =

8
<

:

q  
q  not p
1{p, q}2

E+
=

⇢
h{p}, {q}i
h{q}, {p}i E�

=

⇢
h;, {p, q}i
h{p, q}, ;i

Consider the new (incorrect) hypothesis (of length 6): 1{p, q}2

B [ H has three Answer Sets: {p}, {q} and {p, q}. The Answer Set {p, q}
extends a negative example.

When n = 6, the Answer Sets of Tn
meta are:

{e(p, 1), e(q, 2), active(3), covered(1), covered(2), e(p, negative) . . .}
{e(p, 1), e(q, 2), active(3), covered(1), covered(2), e(q, negative) . . .}
{e(p, 1), e(q, 2), active(3), covered(1), covered(2), e(p, negative),

e(q, negative), violating . . .}



Inductive Learning of Answer Set Programs

Tn
meta: ASP task program (a meta representation of the task T )

vs: violating solutions

ps: positive solutions



Inductive Learning of Answer Set Programs

Let ILP ⇤
LAS(T ) be the optimal inductive solutions of the task T .

Theorem 2. Let T be any ILPLAS learning task such that there is at

least one inductive solution.

Then ILASP (T ) = ILP ⇤
LAS(T ).



Comparison with related works

ILPbravehB,Ei

ILP
stable models

hB, {hE+, E�i}i

ILPLAShB,E+, E�i

ILPASPAL/XHAILhB, hE, ;ii

ILPASPAL/XHAILhB, hE+, E�ii

ILPLAShB, {hE+
1 , E�

1 i . . . hE+
n , E�

n i}, ;i

ILP
stable models

hB, {hE+
1 , E�

1 i . . . hE+
n

, E�
n

i}i



Comparison with related works

ILP
cautious

hB, {e1, . . . , en}i

ILPLAShB, ;, {h;, {e1}i . . . h;, {en}i}i



Application to a planning problem



Application to a planning problem

!
!
!
!
unlocked(C, T) :- not locked(C), 
                            cell(C), 
                            time(T). 
!
unlocked(C, T) :- visited_cell(Key, T), 
                            key(Key, C).



Application to a planning problem

valid_moves(1) = {(9,1), (10, 2)} 



Application to a planning problem

valid_moves(1) = {(9,1), (10, 2)} 

E+(1) = <{valid_move(cell(9,1), 1), 
               valid_move(cell(10, 2),1)},{}> 



Application to a planning problem

valid_moves(1) = {(9,1), (10, 2)} 

valid_move(C, T) :- unlocked(C, T).  

E+(1) = <{valid_move(cell(9,1), 1), 
               valid_move(cell(10, 2),1)},{}> 



Application to a planning problem

valid_moves(1) = {(9,1), (10, 2)} 

valid_move(C1, T) :- 
             agent_at(C2, T), 
             adjacent(C1, C2).  

E+(1) = <{valid_move(cell(9,1), 1), 
               valid_move(cell(10, 2),1)},{}> 
E- = { 
            <{valid_move(cell(9,2),1)},{}>, 
            <{valid_move(cell(8,1),1)},{}>, 
                              …   
       }



Application to a planning problem

valid_moves(1) = {(8, 1), (10, 1), (9, 2)} 

valid_move(C1, T) :- 
             agent_at(C2, T), 
             adjacent(C1, C2).  



Application to a planning problem

valid_moves(1) = {(9, 1), (8, 2)} 

valid_move(C1, T) :- 
             agent_at(C2, T), 
             adjacent(C1, C2).  



Application to a planning problem

valid_moves(1) = {(9, 1), (8, 2)} 

valid_move(C1, T) :- 
             agent_at(C2, T), 
             not wall(C1, C2), 
             adjacent(C1, C2).  



Application to a planning problem

valid_move(C1, T) :- 
             unlocked(C1, T), 
             agent_at(C2, T), 
             not wall(C1, C2), 
             adjacent(C1, C2). 
!
valid_move(C1, T) :- 
             unlocked(C1, T), 
             agent_at(C2, T), 
             link(C1, C2).



Predicate Invention

We took away the rule for unlocked from the background knowledge: 
!
unlocked(C, T) :- not locked(C), cell(C), time(T). 
unlocked(C, T) :- visited_cell(Key, T), key(Key, C). 
!
!
We expected the agent to relearn this definition, along with the 
previous definition for valid move. In fact the agent learned the 
shorter hypothesis: 
!
extra(C,T) :- agent_at(C1, V1), link(C1,C). 
extra(C,T) :- adjacent(C,C1), agent_at(C1, T), not wall(C,C1). 
!
valid_move(C, T) :- extra(C,T), not locked(C). 
valid_move(C, T) :- extra(C,T), key(C1,C), visited_cell(C1,T).



Non-deterministic rules

Up until now, we have been learning programs with one Answer Set. We 
now change the moves given by the oracle: 
!
• A cell with a link to (X,Y) will now either allow the agent to go to (X, Y), 

or it will allow the agent to go to (Y, X). 
!
This forces the agent to learn the rules: 
!
1 {valid_move(C, T); valid_move(FC, T)} 1 :-  unlocked(C, T), 
                                                                         link(C2, C, FC), 
                                                                         agent_at(C2, T). 
!
valid_move(C, T) :- unlocked(C, T), 
                                joined(C, C2), 
                                agent_at(C2, T). 



Current work: modification of ILASP

!
!

• For some classes of problem there could be many violating solutions          
before we find an inductive solution. 

!
• The sudoku example is one such problem, with 413044 before the first    

inductive solution it takes over 14 minutes to solve with ILASP.  
!

• In fact, many of these are violating for the same reason (they share            
Answer Sets which extend negative examples). 

!
• With our new system based on ruling out classes of hypothesis, we need      

only 7 classes and the problem is solved in less than 1 second. 
!
!



Other current work

!
!

• Expand the subset of ASP that we can learn 
• conditions, weighted aggregates etc. 
• weak constraints/optimisation statements 

!
!

• Real applications 
• Ideally not achievable by other ILP tasks 
• Will motivate the work from a practical point of view 
• Measure the accuracy of the learning task



Questions?

?



How does this compare to the learning of Prolog programs?

!
!

• The main advantage of learning ASP rather than Prolog is that it is purely         
declarative. The sudoku problem can be written in Prolog as follows: 

!
           value(1). value(2). value(3). value(4). !
           board(B) :- partial(B, 0). !
           partial([], 16). 
           partial([V|Prev], C-1) :- value(V), partial(Prev, C), not violation(V, Prev, C-1). !
           violation(V, [V, Prev] Index, Cell) :- same_row(Index, Cell). 
           violation(V, [V, Prev] Index, Cell) :- same_col(Index, Cell). 
           violation(V, [V, Prev] Index, Cell) :- same_block(Index, Cell). 
           violation(V, [V2, Prev], Index, Cell) :- violation(V, Prev, Index - 1, Cell). !

• In fact, this also relies on negation as failure, which not many Prolog ILP 
          systems allow for! 
!
!



Learning from Interpretation Transitions

Take the ILPLFIT task:

B = ;, E =

⇢
h{p}, {q}i
h{q}, {p}i , SM =

⇢
p q

q  p

We could map this to the ILPLAS task:

B =

8
<

:

1{example1, example2}1
p example1

q  example2

, E

+
=

⇢
h{example1, next(q)}, {next(p)}i
h{example2, next(p)}, {next(q)}i ,

E

�
= ;, SM =

⇢
next(p) q

next(q) p

This would have the hypothesis: {next(p) q; next(q) p}.
This could then be mapped back to the hypothesis: {p q; q  p}



How does this compare to the learning of Prolog programs?

!
!

• Most ILP systems which learn Prolog are restricted to learning monotonic    
logic programs. 

!
• If we restrict ourselves to only the shared syntax of ASP and Prolog (no       

lists, aggregates, constraints or optimisation statements), then the “usual” 
monotonic ILP task maps trivially to a Learning from Answer Sets task with   
one positive example. 

!
!
!

ILPLAShB, {h{e+1 , . . . , e+n }, {e
�
1 , . . . , e

�
m}i}, ;i

ILP
monotonic

hB, {e+1 , . . . , e+n }, {e
�
1 , . . . , e

�
m

}i


