
ILASP - Proofs M. Law, A. Russo and K. Broda

This document provides the proofs which were omitted from the paper Inductive Learning of Answer Set Programs.
In the first section, we recall the necessary definitions from the paper. In section 2 we introduce some extra notation
which serves only to simplify the proofs. In section 3 we give some lemmas necessary for the proofs; and finally, in
section 4 we give the proofs.

1 Definitions

Definition 1.1 corresponds to definition 4 from the paper.

Definition 1.1. A Learning from Answer Sets task is a tuple T = 〈B,SM , E+, E−〉 where B be is the background
knowledge, SM the search space defined by a language bias M , E+ and E− are sets of partial interpretations called,
respectively, the positive and negative examples. A hypothesis H ∈ ILPLAS(T), the set of inductive solutions of T
if and only if:

1. H ⊆ SM

2. ∀e+ ∈ E+ ∃A ∈ AS(B ∪H) such that A extends e+

3. ∀e− ∈ E− 6 ∃A ∈ AS(B ∪H) such that A extends e−

We write ILPn
LAS(T) to mean the set of all inductive solutions of length n.

Definition 1.2 corresponds to definition 6 from the paper.

Definition 1.2. Let T = 〈B,SM , E+, E−〉 be an ILPLAS task. An hypothesis H ∈ positive solutions(T), called
the set of positive inductive solutions of T , if and only if H ⊆ SM and ∀e+ ∈ E+ ∃A ∈ AS(B ∪ H) such that A
extends e+.

Definition 1.3 corresponds to definition 7 from the paper.

Definition 1.3. Let T = 〈B,SM , E+, E−〉 be an ILPLAS task. An hypothesis H ∈ violating solutions(T), called
the set of violating inductive solutions of T , if and only if H ∈ positive solutions(H) and ∃e− ∈ E− ∃A ∈ AS(B∪H)
such that A extends e−.

We will write positive solutionsn(T) and violating solutionsn(T) to denote the positive and violating solutions of
length n.

Definition 1.4 corresponds to definition 8 from the paper.

Definition 1.4. Let T = 〈B,SM , E+, E−〉 be an ILPLAS learning task and n ∈ N. Let Rid be a unique identifier
for each rule R∈ SM and let e+id be a unique identifier for each positive example e+ ∈E+. The learning task T is
represented as the ASP task program Tn

meta = meta(B)∪meta(SM)∪meta(E+)∪meta(E−)∪meta(Aux, n) where
each of these five “meta” components are as follows:

1. meta(B) is generated from B by replacing every atom A with the atom e(A,X), and by adding the condition
ex(X) to the body of each rule.

2. meta(SM) is generated from SM by replacing every atom A with the atom e(A,X), and by adding the two
conditions active(Rid) and ex(X) to the body of the rule R that matches the correct rule identifier Rid.

1

ILASP - Proofs M. Law, A. Russo and K. Broda

3. meta(E+) includes for every e+=〈{li1, . . . , lih}, {le1, . . . , lek}〉 ∈ E+ the rules
− ex(ex+

id)
− ← not example covered(ex+

id)
− example covered(e+id)← e(li1, ex

+
id), . . . , e(lih, ex

+
id),

not e(le1, ex
+
id), . . . , not e(lek, ex

+
id)

4. meta(E−) includes for every e−=〈{li1, . . . , lih}, {le1, . . . , lek}〉∈E− the rule
− violating ← e(li1, negative), . . . , e(lih, negative),

not e(le1, negative), . . . , not e(lek, negative)

5. meta(Aux, n) includes the ground facts length(Rid, |R|) for every rule R∈SM and the rule n #sum{active(R) =

X : length(R,X)}n to impose that the total length of the (active) hypothesis has to be n.

Definition 1.5 corresponds to definition 9 from the paper.

Definition 1.5. Let hypothesis H={R1, . . . , Rh}. We denote with constraint(H) the rule ← active(Rid1), . . . , active(Ridh),
where Rid1,. . .Ridh are the unique identifiers of rules R1, . . . , Rh in H.

For any set of active ids A, meta−1(A) = {R ∈ SM : active(Rid) ∈ A} (meta−1 converts the Answer Sets of Tn
meta

back to hypotheses).

2 Extra notation

This section gives some definitions which weren’t in the paper. The only purpose of these definitions is to give some
notation which simplifies the proofs.

Definition 2.1. Given a rule R and a constant c, we write e(R, c) to denote the rule constructed by replacing every
atom A in R with e(A, c).

For any ASP program P and constant const we will write e(P, const) to mean the program constructed by replacing
every atom A ∈ P by e(A, const). We will use the same notation for sets of literals/partial interpretations, so for a
set S: e(S, const) = {e(A, const) : A ∈ S}.

Definition 2.2. For any ASP program P and any atom a, append(P, a) is the program constructed by appending
a to every rule in P .

Definition 2.3. Given a program P and a positive example e+ = 〈Einc, Eexc〉 the expansion of P wrt e+ is written
e+[P] and constructed as follows:

append(e(B ∪H, e+id), ex(e+id)) ∪ {ex(ex+
id). example covered(ex+

id)←
∧

lit∈ex+
inc

e(lit, ex+
id) ∧

∧
lit∈ex+

exc

not e(lit, ex+
id).

← not example covered(ex+
id).}

Definition 2.4. Given a program P and the set of all negative examples E−

negative[P,E−] = {← not violating. ex(negative).} ∪ append(e(B ∪H,negative), ex(negative)) ∪⋃
e−∈E−

{violating ←
∧

lit∈ex−
inc

e(lit, negative) ∧
∧

lit∈ex−
exc

not e(lit, negative)}.

2

ILASP - Proofs M. Law, A. Russo and K. Broda

Definition 2.5. For any ILPLAS task T and hypothesis H ⊆ SM :

Tmeta[H] = meta(B) ∪meta(SM) ∪meta(E+) ∪meta(E−) ∪ {active(Rid) : R ∈ H}.

(This is Tn
meta without meta(Aux, n) in addition to one fact active(Rid) for each rule R ∈ H)

3 Lemmas

Lemma 3.1. For any ASP program P , AS(ground(P)) = AS(P).

Lemma 3.2. For any ASP program P , such that P contains no rule with the predicate active in the head, and
any sum rule S: n #sum {active(r1) = w1, ..., active(rm) = wm}n (where the ri’s are constants and the wi’s are
integers).

For any subset X of [1,m] st n =
∑

i∈X wi, then AS(P ∪ {active(ri) : i ∈ X}) = {A ∈ AS(P ∪ S) : A ∩
{active(1), ..., active(m)} = X}.

Corollary 3.3. For any hypothesis H ⊆ SM st |H| = n:

∃A ∈ AS(Tn
meta) st H = meta−1(A)⇔ Tmeta[H] is satisfiable.

Lemma 3.4. Let P be any ground ASP program and C be any constraint ← b1 ∧ ... ∧ bn ∧ not c1 ∧ ... ∧ not cm,

AS(P ∪ C) = {A ∈ AS(P) : (∃i ∈ [1, n] st bi 6∈ A) ∨ (∃i ∈ [1,m] st ci ∈ A)}.

Lemma 3.5. For any ASP program P : AS(e(P, const)) = e(AS(P), const).

Lemma 3.6. For any program P ∪Q in which the atom a does not occur:

AS(append(P, a) ∪Q ∪ {a.}) = {A ∪ {a.} : A ∈ AS(P ∪Q)}

Lemma 3.7. For any ASP program P any partial interpretation E = 〈Einc, Eexc〉 and any ground atom a which
does not appear in P or E.

∃A ∈ AS(P) st A extends E iff P ∪ {a←
∧

lit∈Einc

lit ∧
∧

lit∈Eexc

not lit. ← a.} is satisfiable.

Lemma 3.8. For any ILPLAS task T = 〈B,SM , E+, E−〉:

H ∈ positive solutionsn(T) iff |H| = n and H ⊆ SM and
⋃

e+∈E+

[e+[B ∪H]] is satisfiable.

Proof. Assume H ∈ positive solutionsn(T)

⇔ H ⊆ SM and |H| = n and ∀e+ ∈ E+ : ∃A ∈ AS(B ∪H) st A extends e+ (by definition).

⇔ H ⊆ SM and |H| = n and ∀e+ ∈ E+ : ∃A ∈ AS(B ∪H) st e(A, e+id) extends e(e+, e+id).

⇔ H ⊆ SM and |H| = n and ∀e+ ∈ E+ : ∃A ∈ AS(e(B ∪H, e+id)) st A extends e(e+, e+id) by lemma 3.5.

⇔ H ⊆ SM and |H| = n and ∀e+ ∈ E+ : e(B ∪H, e+id) ∪ {← not example covered(e+id).
example covered(e+id)←

∧
lit∈e+inc

e(lit, e+id) ∧
∧

lit∈e+exc

not e(lit, e+id).} is satisfiable by lemma 3.7.

3

ILASP - Proofs M. Law, A. Russo and K. Broda

⇔ H ⊆ SM and |H| = n and ∀e+ ∈ E+ : append(e(B ∪H, e+id), ex(e+id)) ∪ {ex(e+id). ← not example covered(e+id).
example covered(e+id) ←

∧
lit∈e+inc

e(lit, e+id) ∧
∧

lit∈e+exc

not e(lit, e+id).} is satisfiable by lemma 3.6 (used once for each

e+ ∈ E+).

⇔ H ⊆ SM and |H| = n and ∀e+ ∈ E+ : e+[B ∪H] is satisfiable.

⇔ H ⊆ SM and |H| = n and
⋃

e+∈E+

e+[B ∪H] is satisfiable (the individual programs have no atoms in common as

every atom in each contains the relevant constant e+id).

Lemma 3.9. For any program P and set of examples E−:

∃e− ∈ E− st ∃A ∈ AS(P) st A extends e− iff negative[P,E−] is satisfiable.

Proof. Assume ∃e− ∈ E− st ∃A ∈ AS(P) st A extends e−

⇔ ∃e− ∈ E− st ∃A ∈ AS(P) st e(A,negative) extends e(e−, negative).

⇔ ∃e− ∈ E− st ∃A ∈ AS(e(P, negative)) st A extends e(e−, negative) by lemma 3.5.

⇔ ∃e− ∈ E− st e(P, negative) ∪ {← not violating.
violating ←

∧
lit∈e(e−inc,negative)

lit ∧
∧

lit∈e(e−exc,negative)

not lit.} is satisfiable by lemma 3.7.

e(P, negative) ∪
⋃

e−∈E−
{← not violating. violating ←

∧
lit∈e(e−inc,negative)

lit ∧
∧

lit∈e(e−exc,negative)

not lit.} is satisfiable

(as violating already occurs in every Answer Set, so adding more rules with violating at the head will make no
difference).

⇔ negative[P,E−] is satisfiable by lemma 3.6.

4 Proofs

Theorem 4.1 corresponds to Theorem 1 from the paper.

Theorem 4.1. Let T = 〈B,SM , E+, E−〉 be an ILPLAS learning task.

Then ILPLAS(T) = positive solutions(T)\violating solutions(T)

Proof.

H ∈ ILPLAS(T) ⇔ H ⊆ SM ∧ ∀e+ ∈ E+ : ∃A ∈ AS(B ∪H) st A extends e+

∧∀e− ∈ E− : 6 ∃A ∈ AS(B ∪H) st A extends e+

⇔ H ⊆ SM ∧ ∀e+ ∈ E+ : ∃A ∈ AS(B ∪H) st A extends e+

∧ 6 ∃e− ∈ E− st ∃A ∈ AS(B ∪H) st A extends e+

⇔ H ∈ positive solutions(T)

∧ 6 ∃e− ∈ E− st ∃A ∈ AS(B ∪H) st A extends e+

⇔ H ∈ positive solutions(T) ∧H 6∈ violating solutions(T)

Proposition 4.2 corresponds to proposition 1 from the paper.

4

ILASP - Proofs M. Law, A. Russo and K. Broda

Proposition 4.2. Let T =〈B,SM , E+, E−〉 be an ILPLAS task and n∈N .

Then H∈positive solutionsn(T) if and only if ∃A∈AS(Tn
meta) such that H=meta−1(A).

Proof. Assume H ∈ positive solutionsn(T)

⇔ H ⊆ SM and |H| = n and
⋃

e+∈E+

[e+[B ∪H]] is satisfiable by lemma 3.8.

⇔ H ⊆ SM and |H| = n and
⋃

e+∈E+

[e+[B ∪H]]∪ append(e(B ∪H,negative), ex(negative)) is satisfiable (as none of

the bodies of these new rules can be true - ex(negative) does not appear at the head of any rule).

⇔ H ⊆ SM and |H| = n and
⋃

e+∈E+

[e+[B ∪H]] ∪ append(e(B ∪H,negative), ex(negative)) ∪
⋃

e−∈E−
{violating ←∧

lit∈e−inc

e(lit, negative) ∧
∧

lit∈e−exc

not e(lit, negative).} is satisfiable (as violating does not appear in the body of any

other rule (can seen by splitting the program on every literal other than violating)).

⇔ H ⊆ SM and |H| = n and ground(Tmeta[H]) is satisfiable by lemma 3.6 (we use lemma 3.6 once for each R ∈ H
to add active(Rid) as a fact, and append it to every rule of the form e(R, c) for some constant c).

⇔ H ⊆ SM and |H| = n and Tmeta[H] is satisfiable by lemma 3.1.

⇔ ∃A ∈ AS(Tn
meta) st H = meta−1(A) by corollary 3.3.

Proposition 4.3 corresponds to proposition 2 from the paper.

Proposition 4.3. Let T =〈B,SM , E+, E−〉 be an ILPLAS task and n ∈ N .

Let P be the ASP program Tn
meta ∪ {← not violating; ex(negative)}.

Then H ∈ violating solutionsn(T) if and only if ∃A ∈ AS(P) such that H=meta−1(A).

Proof. Assume H ∈ violating solutionsn(T)

⇔ H ∈ positive solutionsn(T) and ∃e− ∈ E− st ∃A ∈ AS(B ∪H) st A extends E.

⇔ |H| = n and H ⊆ SM and
⋃

e+∈E+

(e+[B ∪H]) is satisfiable and ∃e− ∈ E− st ∃A ∈ AS(B ∪H) st A extends E

lemma 3.8.

⇔ |H| = n and H ⊆ SM and
⋃

e+∈E+

(e+[B ∪H]) is satisfiable and negative[B ∪H] is satisfiable lemma 3.9.

⇔ |H| = n and H ⊆ SM and
⋃

e+∈E+

(e+[B ∪H]) ∪ negative[B ∪ H] is satisfiable (as the two programs share no

atoms).

⇔ ground(Tmeta[H]) ∪ {← not violating. ex(negative).} is satisfiable by lemma 3.6 (we use lemma 3.6 once for
each R ∈ H to add active(Rid) as a fact and also append it to every rule of the form e(R, c) for some constant c).

⇔ Tmeta[H] ∪ {← not violating. ex(negative).} is satisfiable (by lemma 3.1).

⇔ ∃A ∈ AS(Tn
meta ∪ {← not violating. ex(negative).}) st H = meta−1(A) (by corollary 3.3).

Proposition 4.4 corresponds to proposition 3 from the paper.

Proposition 4.4. Let T =〈B,SM , E+, E−〉 be an ILPLAS task and n ∈ N .

Let P = Tn
meta ∪ {constraint(V) : V ∈ violating solutionsn(T)}.

Then a hypothesis H ∈ ILPn
LAS(T) if and only if ∃A ∈ AS(P) such that H = meta−1(A).

5

ILASP - Proofs M. Law, A. Russo and K. Broda

Proof. Assume H ∈ ILPn
LAS(T) (then n = |H|)

⇔ H ∈ positive solutionsn(T) and H 6∈ violating solutionsn(T) by proposition 4.1

⇔ ∃A ∈ AS(Tn
meta) st H = meta−1(A) and H 6∈ violating solutionsn(T) by proposition 4.2

⇔ ∃A ∈ AS(Tn
meta) st H = meta−1(A) and H is does not satisfy the body of any constraint {constraint(V) : V ∈

violating solutionsn(T)}.

⇔ ∃A ∈ AS(P) st H = meta−1(A) by lemma 3.4.

6

	Definitions
	Extra notation
	Lemmas
	Proofs

