This document provides the proofs which were omitted from the paper *Inductive Learning of Answer Set Programs*. In the first section, we recall the necessary definitions from the paper. In section 2 we introduce some extra notation which serves only to simplify the proofs. In section 3 we give some lemmas necessary for the proofs; and finally, in section 4 we give the proofs.

1 Definitions

Definition 1.1 corresponds to definition 4 from the paper.

Definition 1.1. A Learning from Answer Sets task is a tuple $T = \langle B, S_M, E^+, E^- \rangle$ where B be is the background knowledge, S_M the search space defined by a language bias M, E^+ and E^- are sets of partial interpretations called, respectively, the positive and negative examples. A hypothesis $H \in ILP_{LAS}(T)$, the set of inductive solutions of T if and only if:

- 1. $H \subseteq S_M$
- 2. $\forall e^+ \in E^+ \exists A \in AS(B \cup H)$ such that A extends e^+
- 3. $\forall e^- \in E^- \not\exists A \in AS(B \cup H)$ such that A extends e^-

We write $ILP_{LAS}^{n}(T)$ to mean the set of all inductive solutions of length n.

Definition 1.2 corresponds to definition 6 from the paper.

Definition 1.2. Let $T = \langle B, S_M, E^+, E^- \rangle$ be an ILP_{LAS} task. An hypothesis $H \in positive_solutions(T)$, called the set of positive inductive solutions of T, if and only if $H \subseteq S_M$ and $\forall e^+ \in E^+ \exists A \in AS(B \cup H)$ such that A extends e^+ .

Definition 1.3 corresponds to definition 7 from the paper.

Definition 1.3. Let $T = \langle B, S_M, E^+, E^- \rangle$ be an ILP_{LAS} task. An hypothesis $H \in violating_solutions(T)$, called the set of violating inductive solutions of T, if and only if $H \in positive_solutions(H)$ and $\exists e^- \in E^- \exists A \in AS(B \cup H)$ such that A extends e^- .

We will write *positive_solutions*ⁿ(T) and *violating_solutions*ⁿ(T) to denote the positive and violating solutions of length n.

Definition 1.4 corresponds to definition 8 from the paper.

Definition 1.4. Let $T = \langle B, S_M, E^+, E^- \rangle$ be an ILP_{LAS} learning task and $n \in \mathbb{N}$. Let R_{id} be a unique identifier for each rule $R \in S_M$ and let e_{id}^+ be a unique identifier for each positive example $e^+ \in E^+$. The learning task T is represented as the ASP task program $T_{meta}^n = meta(B) \cup meta(S_M) \cup meta(E^+) \cup meta(E^-) \cup meta(Aux, n)$ where each of these five "meta" components are as follows:

- 1. meta(B) is generated from B by replacing every atom A with the atom e(A, X), and by adding the condition ex(X) to the body of each rule.
- 2. $meta(S_M)$ is generated from S_M by replacing every atom A with the atom e(A, X), and by adding the two conditions $active(R_{id})$ and ex(X) to the body of the rule R that matches the correct rule identifier R_{id} .

- 3. $meta(E^+)$ includes for every $e^+ = \langle \{li_1, \dots, li_h\}, \{le_1, \dots, le_k\} \rangle \in E^+$ the rules $- ex(ex_{id}^+)$ $- \leftarrow not example_covered(ex_{id}^+)$ $- erample_covered(e^+) \leftarrow e(li_1 ex_{id}^+)$ $- e(li_1 ex_{id}^+)$
 - $example_covered(e_{id}^+) \leftarrow e(li_1, ex_{id}^+), \dots, e(li_h, ex_{id}^+), \\ \text{not } e(le_1, ex_{id}^+), \dots, \text{not } e(le_k, ex_{id}^+)$
- 4. $meta(E^{-})$ includes for every $e^{-} = \langle \{li_1, \dots, li_h\}, \{le_1, \dots, le_k\} \rangle \in E^{-}$ the rule - violating $\leftarrow e(li_1, negative), \dots, e(li_h, negative),$ not $e(le_1, negative), \dots$, not $e(le_k, negative)$
- 5. meta(Aux, n) includes the ground facts $length(R_{id}, |R|)$ for every rule $R \in S_M$ and the rule $n \#sum\{active(R) = X: length(R, X)\}n$ to impose that the total length of the (active) hypothesis has to be n.

Definition 1.5 corresponds to definition 9 from the paper.

Definition 1.5. Let hypothesis $H = \{R_1, \ldots, R_h\}$. We denote with constraint(H) the rule $\leftarrow active(R_{id1}), \ldots, active(R_{idh}),$ where R_{id1}, \ldots, R_{idh} are the unique identifiers of rules R_1, \ldots, R_h in H.

For any set of active ids A, $meta^{-1}(A) = \{R \in S_M : active(R_{id}) \in A\}$ ($meta^{-1}$ converts the Answer Sets of T_{meta}^n back to hypotheses).

2 Extra notation

This section gives some definitions which weren't in the paper. The only purpose of these definitions is to give some notation which simplifies the proofs.

Definition 2.1. Given a rule R and a constant c, we write e(R, c) to denote the rule constructed by replacing every atom A in R with e(A, c).

For any ASP program P and constant *const* we will write e(P, const) to mean the program constructed by replacing every atom $A \in P$ by e(A, const). We will use the same notation for sets of literals/partial interpretations, so for a set $S: e(S, const) = \{e(A, const) : A \in S\}$.

Definition 2.2. For any ASP program P and any atom a, append(P, a) is the program constructed by appending a to every rule in P.

Definition 2.3. Given a program P and a positive example $e^+ = \langle E^{inc}, E^{exc} \rangle$ the expansion of P wrt e^+ is written $e^+[P]$ and constructed as follows:

 $\begin{aligned} append(e(B \cup H, e^+_{id}), ex(e^+_{id})) \cup \{ex(ex^+_{id}). \quad example_covered(ex^+_{id}) \leftarrow \bigwedge_{lit \in ex^+_{inc}} e(lit, ex^+_{id}) \land \bigwedge_{lit \in ex^+_{exc}} \text{not } e(lit, ex^+_{id}). \\ \leftarrow \text{ not } example_covered(ex^+_{id}). \end{aligned}$

Definition 2.4. Given a program P and the set of all negative examples E^-

 $\begin{array}{l} negative[P,E^-] = \{ \leftarrow \text{ not } violating. \quad ex(negative). \} \cup append(e(B \cup H, negative), ex(negative)) \cup \\ \bigcup_{e^- \in E^-} \{ violating \leftarrow \bigwedge_{lit \in ex_{inc}^-} e(lit, negative) \land \bigwedge_{lit \in ex_{exc}^-} \text{ not } e(lit, negative) \}. \end{array}$

Definition 2.5. For any ILP_{LAS} task T and hypothesis $H \subseteq S_M$:

 $T_{meta}[H] = meta(B) \cup meta(S_M) \cup meta(E^+) \cup meta(E^-) \cup \{active(R_{id}) : R \in H\}.$

(This is T_{meta}^n without meta(Aux, n) in addition to one fact $active(R_{id})$ for each rule $R \in H$)

3 Lemmas

Lemma 3.1. For any ASP program P, AS(ground(P)) = AS(P).

Lemma 3.2. For any ASP program P, such that P contains no rule with the predicate *active* in the head, and any sum rule S: $n \# sum \{active(r_1) = w_1, ..., active(r_m) = w_m\}n$ (where the r_i 's are constants and the w_i 's are integers).

For any subset X of [1,m] st $n = \sum_{i \in X} w_i$, then $AS(P \cup \{active(r_i) : i \in X\}) = \{A \in AS(P \cup S) : A \cap \{active(1), ..., active(m)\} = X\}.$

Corollary 3.3. For any hypothesis $H \subseteq S_M$ st |H| = n: $\exists A \in AS(T^n_{meta})$ st $H = meta^{-1}(A) \Leftrightarrow T_{meta}[H]$ is satisfiable.

Lemma 3.4. Let P be any ground ASP program and C be any constraint $\leftarrow b_1 \land ... \land b_n \land \text{not } c_1 \land ... \land \text{not } c_m,$ $AS(P \cup C) = \{A \in AS(P) : (\exists i \in [1, n] \text{ st } b_i \notin A) \lor (\exists i \in [1, m] \text{ st } c_i \in A)\}.$

Lemma 3.5. For any ASP program P: AS(e(P, const)) = e(AS(P), const).

Lemma 3.6. For any program $P \cup Q$ in which the atom a does not occur: $AS(append(P, a) \cup Q \cup \{a.\}) = \{A \cup \{a.\} : A \in AS(P \cup Q)\}$

Lemma 3.7. For any ASP program P any partial interpretation $E = \langle E^{inc}, E^{exc} \rangle$ and any ground atom a which does not appear in P or E.

 $\exists A \in AS(P) \text{ st } A \text{ extends } E \text{ iff } P \cup \{a \leftarrow \bigwedge_{lit \in E^{inc}} lit \land \bigwedge_{lit \in E^{exc}} \text{ not } lit. \quad \leftarrow a.\} \text{ is satisfiable.}$

Lemma 3.8. For any ILP_{LAS} task $T = \langle B, S_M, E^+, E^- \rangle$: $H \in positive_solutions^n(T)$ iff |H| = n and $H \subseteq S_M$ and $\bigcup_{e^+ \in E^+} [e^+[B \cup H]]$ is satisfiable.

Proof. Assume $H \in positive_solutions^n(T)$

 $\Leftrightarrow H \subseteq S_M$ and |H| = n and $\forall e^+ \in E^+ : \exists A \in AS(B \cup H)$ st A extends e^+ (by definition).

 $\Leftrightarrow H \subseteq S_M \text{ and } |H| = n \text{ and } \forall e^+ \in E^+ : \exists A \in AS(B \cup H) \text{ st } e(A, e^+_{id}) \text{ extends } e(e^+, e^+_{id}).$

 $\Leftrightarrow H \subseteq S_M$ and |H| = n and $\forall e^+ \in E^+ : \exists A \in AS(e(B \cup H, e^+_{id}))$ st A extends $e(e^+, e^+_{id})$ by lemma 3.5.

 $\Leftrightarrow H \subseteq S_M \text{ and } |H| = n \text{ and } \forall e^+ \in E^+ : e(B \cup H, e^+_{id}) \cup \{\leftarrow \text{ not } example_covered(e^+_{id}). \\ example_covered(e^+_{id}) \leftarrow \bigwedge_{lit \in e^+_{inc}} e(lit, e^+_{id}) \land \bigwedge_{lit \in e^+_{exc}} \text{ not } e(lit, e^+_{id}). \} \text{ is satisfiable by lemma 3.7.}$

 $\Leftrightarrow H \subseteq S_M \text{ and } |H| = n \text{ and } \forall e^+ \in E^+ : append(e(B \cup H, e^+_{id}), ex(e^+_{id})) \cup \{ex(e^+_{id}). \quad \leftarrow \text{ not } example_covered(e^+_{id}). \\ example_covered(e^+_{id}) \leftarrow \bigwedge_{lit \in e^+_{inc}} e(lit, e^+_{id}) \land \bigwedge_{lit \in e^+_{exc}} \text{ not } e(lit, e^+_{id}). \} \text{ is satisfiable by lemma 3.6 (used once for each a state)}$

$$e^+ \in E^+)$$

 $\Leftrightarrow H \subseteq S_M$ and |H| = n and $\forall e^+ \in E^+ : e^+[B \cup H]$ is satisfiable.

 $\Leftrightarrow H \subseteq S_M$ and |H| = n and $\bigcup_{e^+ \in E^+} e^+ [B \cup H]$ is satisfiable (the individual programs have no atoms in common as every atom in each contains the relevant constant e^+_{id}).

Lemma 3.9. For any program P and set of examples E^- : $\exists e^- \in E^- \text{ st } \exists A \in AS(P) \text{ st } A \text{ extends } e^- \text{ iff } negative[P, E^-] \text{ is satisfiable.}$

 $\begin{array}{l} Proof. \ \text{Assume } \exists e^- \in E^- \ \text{st } \exists A \in AS(P) \ \text{st } A \ \text{extends } e^- \\ \Leftrightarrow \exists e^- \in E^- \ \text{st } \exists A \in AS(P) \ \text{st } e(A, negative) \ \text{extends } e(e^-, negative). \\ \Leftrightarrow \exists e^- \in E^- \ \text{st } \exists A \in AS(e(P, negative)) \ \text{st } A \ \text{extends } e(e^-, negative) \ \text{by lemma } 3.5. \\ \Leftrightarrow \exists e^- \in E^- \ \text{st } e(P, negative) \cup \{\leftarrow \ \text{not } violating. \\ violating \leftarrow & \bigwedge & \lim_{lit \in e(e^-_{inc}, negative)} \ \text{not } lit. \} \ \text{is satisfiable by lemma } 3.7. \\ e(P, negative) \cup & \bigcup_{e^- \in E^-} \ \text{full } hot \ violating. \ violating \leftarrow & \bigwedge_{lit \in e(e^-_{inc}, negative)} \ lit \land & \bigwedge_{lit \in e(e^-_{exc}, negative)} \ \text{not } lit. \} \ \text{is satisfiable by lemma } 3.7. \\ e(P, negative) \cup & \bigcup_{e^- \in E^-} \ \text{full } violating. \ violating \leftarrow & \bigwedge_{lit \in e(e^-_{exc}, negative)} \ lit \land & \bigwedge_{lit \in e(e^-_{exc}, negative)} \ \text{not } lit. \} \ \text{is satisfiable} \\ \text{(as violating already occurs in every Answer Set, so adding more rules with violating at the head will make no$

(as violating already occurs in every Answer Set, so adding more rules with violating at the head will make no difference).

 $\Leftrightarrow negative[P, E^-]$ is satisfiable by lemma 3.6.

4 Proofs

Theorem 4.1 corresponds to Theorem 1 from the paper.

Theorem 4.1. Let $T = \langle B, S_M, E^+, E^- \rangle$ be an ILP_{LAS} learning task. Then $ILP_{LAS}(T) = positive_solutions(T) \setminus violating_solutions(T)$

Proof.

$$\begin{array}{lll} H \in ILP_{LAS}(T) & \Leftrightarrow H \subseteq & S_M \land \forall e^+ \in E^+ : \ \exists A \in AS(B \cup H) \ \text{st } A \ \text{extends } e^+ \\ & \land \forall e^- \in E^- : \nexists A \in AS(B \cup H) \ \text{st } A \ \text{extends } e^+ \\ & \Leftrightarrow H \subseteq & S_M \land \forall e^+ \in E^+ : \exists A \in AS(B \cup H) \ \text{st } A \ \text{extends } e^+ \\ & \land \nexists e^- \in E^- \ \text{st } \exists A \in AS(B \cup H) \ \text{st } A \ \text{extends } e^+ \\ & \Leftrightarrow H \in & positive_solutions(T) \\ & \land \nexists e^- \in E^- \ \text{st } \exists A \in AS(B \cup H) \ \text{st } A \ \text{extends } e^+ \\ & \Leftrightarrow H \in & positive_solutions(T) \land \exists A \in AS(B \cup H) \ \text{st } A \ \text{extends } e^+ \\ & \Leftrightarrow H \in & positive_solutions(T) \land H \notin violating_solutions(T) \end{array}$$

Proposition 4.2 corresponds to proposition 1 from the paper.

Proposition 4.2. Let $T = \langle B, S_M, E^+, E^- \rangle$ be an ILP_{LAS} task and $n \in \mathcal{N}$. Then $H \in positive_solutions^n(T)$ if and only if $\exists A \in AS(T_{meta}^n)$ such that $H = meta^{-1}(A)$.

Proof. Assume $H \in positive_solutions^n(T)$

 $\Leftrightarrow H \subseteq S_M \text{ and } |H| = n \text{ and } \bigcup_{e^+ \in E^+} [e^+[B \cup H]] \text{ is satisfiable by lemma 3.8.}$ $\Leftrightarrow H \subseteq S_M \text{ and } |H| = n \text{ and } \bigcup_{e^+ \in E^+} [e^+[B \cup H]] \cup append(e(B \cup H, negative), ex(negative)) \text{ is satisfiable (as none of explanation)} (e^+(B \cup H)) = 0$

the bodies of these new rules can be true - ex(negative) does not appear at the head of any rule).

 $\Leftrightarrow H \subseteq S_M \text{ and } |H| = n \text{ and } \bigcup_{\substack{e^+ \in E^+ \\ e^+ \in E^+ \\ e^+ \in E^+ \\ e^+ (B \cup H]] \cup append(e(B \cup H, negative), ex(negative)) \cup \bigcup_{e^- \in E^- \\ e^- \in E^- \\ e^- \in E^- \\ e^- (lit, negative) \land \bigwedge_{\substack{e^+ \in E^+ \\ inc}} e(lit, negative). \} \text{ is satisfiable (as violating does not appear in the body of any } lite_{e^- exc}$

other rule (can seen by splitting the program on every literal other than violating)).

 $\Leftrightarrow H \subseteq S_M$ and |H| = n and $ground(T_{meta}[H])$ is satisfiable by lemma 3.6 (we use lemma 3.6 once for each $R \in H$ to add $active(R_{id})$ as a fact, and append it to every rule of the form e(R, c) for some constant c).

 $\Leftrightarrow H \subseteq S_M$ and |H| = n and $T_{meta}[H]$ is satisfiable by lemma 3.1.

 $\Leftrightarrow \exists A \in AS(T^n_{meta}) \text{ st } H = meta^{-1}(A) \text{ by corollary 3.3.}$

Proposition 4.3 corresponds to proposition 2 from the paper.

Proposition 4.3. Let $T = \langle B, S_M, E^+, E^- \rangle$ be an ILP_{LAS} task and $n \in \mathcal{N}$.

Let P be the ASP program $T_{meta}^n \cup \{\leftarrow not \ violating; \ ex(negative)\}.$

Then $H \in violating_solutions^n(T)$ if and only if $\exists A \in AS(P)$ such that $H = meta^{-1}(A)$.

Proof. Assume $H \in violating_solutions^n(T)$

 $\Leftrightarrow H \in positive_solutions^n(T) \text{ and } \exists e^- \in E^- \text{ st } \exists A \in AS(B \cup H) \text{ st } A \text{ extends } E.$

 $\Leftrightarrow |H| = n \text{ and } H \subseteq S_M \text{ and } \bigcup_{e^+ \in E^+} (e^+[B \cup H]) \text{ is satisfiable and } \exists e^- \in E^- \text{ st } \exists A \in AS(B \cup H) \text{ st } A \text{ extends } E \text{ lemma } 3.8.$

 $\Leftrightarrow |H| = n \text{ and } H \subseteq S_M \text{ and } \bigcup_{e^+ \in E^+} (e^+[B \cup H]) \text{ is satisfiable and } negative[B \cup H] \text{ is satisfiable lemma 3.9.}$

 $\Leftrightarrow |H| = n \text{ and } H \subseteq S_M \text{ and } \bigcup_{e^+ \in E^+} (e^+[B \cup H]) \cup negative[B \cup H] \text{ is satisfiable (as the two programs share no atoms).}$

 $\Leftrightarrow ground(T_{meta}[H]) \cup \{\leftarrow \text{ not } violating. ex(negative).\} \text{ is satisfiable by lemma 3.6 (we use lemma 3.6 once for each <math>R \in H$ to add $active(R_{id})$ as a fact and also append it to every rule of the form e(R, c) for some constant c). $\Leftrightarrow T_{meta}[H] \cup \{\leftarrow \text{ not } violating. ex(negative).\} \text{ is satisfiable (by lemma 3.1)}.$ $\Leftrightarrow \exists A \in AS(T_{meta}^n \cup \{\leftarrow \text{ not } violating. ex(negative).\}) \text{ st } H = meta^{-1}(A) \text{ (by corollary 3.3)}.$

Proposition 4.4 corresponds to proposition 3 from the paper.

Proposition 4.4. Let $T = \langle B, S_M, E^+, E^- \rangle$ be an ILP_{LAS} task and $n \in \mathcal{N}$. Let $P = T_{meta}^n \cup \{constraint(V) : V \in violating_solutions^n(T)\}$. Then a hypothesis $H \in ILP_{LAS}^n(T)$ if and only if $\exists A \in AS(P)$ such that $H = meta^{-1}(A)$. Proof. Assume $H \in ILP_{LAS}^n(T)$ (then n = |H|)

 $\Leftrightarrow H \in positive_solutions^n(T)$ and $H \notin violating_solutions^n(T)$ by proposition 4.1

 $\Leftrightarrow \exists A \in AS(T^n_{meta}) \text{ st } H = meta^{-1}(A) \text{ and } H \not\in violating_solutions^n(T) \text{ by proposition } 4.2$

 $\Leftrightarrow \exists A \in AS(T_{meta}^n) \text{ st } H = meta^{-1}(A) \text{ and } H \text{ is does not satisfy the body of any constraint } \{constraint(V) : V \in violating_solutions^n(T)\}.$

 $\Leftrightarrow \exists A \in AS(P) \text{ st } H = meta^{-1}(A) \text{ by lemma 3.4.}$