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Abstract. Learning interpretable models from data is stated as one of
the main challenges of AI. The goal of logic-based learning is to compute
interpretable (logic) programs that explain labelled examples in the con-
text of given background knowledge. This tutorial introduces recent ad-
vances of logic-based learning, specifically learning non-monotonic logic
programs under the answer set semantics. We introduce several learning
frameworks and algorithms, which allow for learning highly expressive
programs, containing rules representing non-determinism, choice, excep-
tions, constraints and preferences. Throughout the tutorial, we put a
strong emphasis on the expressive power of the learning systems and
frameworks, explaining why some systems are incapable of learning par-
ticular classes of programs.
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1 Introduction

Over the last decade we have witnessed a growing interest in Machine Learn-
ing. In recent years Deep Learning has been demonstrated to achieve high-levels
of accuracy in data analytics, signal and information processing tasks, bring-
ing transformative impact in domains such as facial, image, speech recognition,
and natural language processing. They have best performance on computational
tasks that involve large quantities of data and for which the labelling process
and feature extraction would be difficult to handle. However, they also suffer
from two main drawbacks, which are crucial in the context of cognitive com-
puting. They are not capable of supporting AI solutions that are good at more
than one task. They are very effective when applied to single specific tasks (e.g.
recognition of specific clues, objects in images, natural language translation).
But applying the same technology from one task to another within the same
class of problems would often require retraining, causing the system to possibly
forget how to solve a previously learned task. Secondly, and most importantly,
they are not transparent. Operating primarily as black boxes, deep learning ap-
proaches are not amenable to human inspection and human feedbacks, and the
learned models are not explainable, leaving the humans agnostic of the cogni-
tive and learning process performed by the system. This lack of transparency
hinders human comprehension, auditing of the learned outcomes, and human ac-
tive engagement into the learning and reasoning processes performed by the AI
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systems. This has become an increasingly important issue in view of the recent
General Data Protection Regulation (GDPR) which requires actions taken as a
result of a prediction from a learned model to be justified.

Within the last decade, there has been a growing interest in Machine Learn-
ing approaches whose learned models are explainable and human interpretable.
The last ten years have witnessed a tremendous advancement in the field of logic-
based machine learning, also referred to as Inductive Logic Programming (ILP)
[28, 30], where the goal is the automated acquisition of knowledge (expressed
as a logic program) from given (labelled) examples and existing background
knowledge. The main advantage of these machine learning approaches is that
the learned knowledge can be easily expressed into plain English and explained
to a human user, so facilitating a closer interaction between humans and the
machine. Although a well established field since the early ’90s [28], logic-based
machine learning has traditionally addressed the task of learning knowledge ex-
pressible in a very limited form [29] (definite clauses). Our logic-based machine
learning systems [2] [7] [21] have extended this field to a wider class of formalisms
for knowledge representation, captured by the answer set programming (ASP)
semantics [14]. This ASP formalism is truly declarative, and due to its non-
monotonicity it is particularly well suited to common-sense reasoning [9, 27, 13].
It allows constructs such as choice rules, hard and weak constraints, and support
for default inference and default assumptions. Choice rules and weak constraints
are particularly useful for modelling human preferences, as the choice rules can
represent the choices available to the user, and the weak constraints can specify
which choices a human prefers. The typical workflow in ASP is that a real world
problem is encoded as an ASP program, whose answer sets – a special subset
of the models of the program – correspond to the solutions of the original prob-
lem. Because of its expressiveness and efficient solving, ASP is also increasingly
gaining attention in industry [10]; for example, in decision support systems [31],
in e-tourism [38] and in product configuration [43].

In the recent years we have made fundamental contributions to the field of
ILP by extending it to the learning of the full class of ASP programs [33, 40, 36,
7, 21, 25] and this tutorial provides an introduction to these results and to the
general field of learning under the answer set semantics. In general, ASP pro-
grams can have one, many or even no answer sets. Early approaches to learning
ASP programs can mostly be divided into two categories: brave learners aim to
learn a program such that at least one answer set covers the examples; on the
other hand, cautious learners aim to find a program which covers the examples
in all answer sets. Most of the early ASP-based ILP systems were brave, and
several of these are presented in Section 3 of this tutorial. In [21], we showed
that some ASP programs cannot be learned using either the brave or the cau-
tious settings, and in fact a combination of both brave and cautious semantics
is needed. This was the original motivation for the Learning from Answer Sets
family of frameworks, which we have developed since then and have been shown
to be able to learn any ASP program. Section 4 presents these Learning from
Answer Sets frameworks and discusses the associated ILASP algorithms. The



Logic-based Learning of Answer Set Programs 3

generality of the main ASP-based ILP frameworks was investigated, with the
aim being to formally define the classes of problems that can be solved by each
of these learning frameworks has also been investigated [25]. We re-present and
discuss the main results of this investigation in Section 4.

The above is all presented in the context of learning tasks where all examples
are assumed to be perfectly labeled, meaning that any inductive solution of a
task must cover every example of that task. In practice, of course, examples
are unlikely to be perfectly labeled. In real datasets, it is likely that there is
noise, and a more realistic approach is to search for a hypothesis that covers the
majority of examples, and balances the example coverage against the complexity
of the hypothesis – dramatically increasing the hypothesis complexity in order
to cover a few more examples is undesirable, as these examples may well be
incorrectly labeled. We end the tutorial by discussing how ILP frameworks can
be extended to learn from noisy examples.

The rest of this document is structured as follows. In the next section we
recall the background material necessary for this tutorial. Section 3 covers the
early approaches to learning under the answer set semantics. Section 4 introduces
the more recent advances including the Learning from Answer Sets frameworks,
the generality results for the frameworks and extensions for learning from noisy
examples. Much of the material in this tutorial is based on [20].

2 Background

In this section we introduce the background material used in the tutorial.

2.1 Answer Set Programming

Given any atoms h, h1, . . . , hk, b1, . . . , bn, c1, . . . , cm, a rule h : - b1, . . . , bn, not c1,
. . . , not cm is called a normal rule, with h as the head and b1, . . . , bn, not c1, . . . ,
notcm (collectively) as the body (“not” represents negation as failure); a con-
straint is a rule : - b1, . . . , bn, not c1, . . . , not cm; and a choice rule is a rule of
the form l{h1, . . . , hk}u : - b1, . . . , bn, not c1, . . . , not cm where l{h1, . . . , hk}u is
called an aggregate. In an aggregate l and u are integers and hi, for 1 ≤ i ≤ k,
are atoms. For example, when learning a policy, we may need to learn that
in a specific scenario, sc1, at least one of a set of possible actions, a1, . . . , an,
must be executed. This can be expressed in ASP with the following choice rule:
1{execute(a1), . . . , execute(an)}n : - holds(sc1). This expresses that in a model
whenever the scenario sc1 is true, it must be the case that between 1 and n
atoms execute(a1), . . . , execute(an) are also true. In other words, whenever the
scenario holds, at least one (but possibly more) of the actions must be executed.

A rule R is called safe if every variable in R occurs in at least one posi-
tive literal in the body of R. For example, the rules p(X) : - q(Y), not r(Y) and
p : - q, not r(X) are not safe, as X does not occur in any positive literal in their
respective body. Unless otherwise specified, an ASP program P is a finite set of
safe normal rules, constraints and choice rules.



4 M. Law et al.

Given an ASP program P , the Herbrand Base of P , denoted as HBP , is the
set of ground (variable free) atoms that can be formed from the predicates and
constants that appear in P . The subsets of HBP are called the (Herbrand) inter-
pretations of P . Informally, a model of an ASP program P , called Answer Set of
P , is defined in terms of the notion of reduct of P , which is in turn constructed
by applying four transformation steps (described below) to the grounding of
P . As shown below. a reduct is a definite program. A model of a definite pro-
gram is an interpretation I that makes every rule in the program true, and a
model is minimal if it is the smallest such interpretation. Let’s see how the
reduct of an ASP program is constructed. We said that it uses the grounding
of the program, so we can consider just the grounding of a given program P .
A ground aggregate l{h1, . . . , hk}u is said to be satisfied by an interpretation I
if and only if l ≤ |I ∩ {h1, . . . , hk}| ≤ u. As we restrict our programs to sets of
normal rules, constraints and choice rules, we use the simplified definitions of
the reduct for choice rules presented in [23]. Given a program P and an Her-
brand interpretation I ⊆ HBP , the reduct P I is constructed from the grounding
of P using the following four transformation steps: from the grounding of P
we first remove rules whose bodies contain the negation of an atom in I; sec-
ondly, we remove all negative literals from the remaining rules; thirdly, we set
⊥ (note ⊥ /∈ HBP ) to be the head to every constraint, and in every choice rule
whose head is not satisfied by I we replace the head with ⊥; and finally, we re-
place any remaining choice rule l{h1, . . . , hm}u : - b1, . . . , bn with the set of rules
{hi : - b1, . . . , bn | hi ∈ I ∩ {h1, . . . , hm}}. Any I ⊆ HBP is an answer set of P if
it is the minimal model of the reduct P I . We denote an answer set of a program
P with A and the set of answer sets of P with AS(P ). A program P is said to
be satisfiable (resp. unsatisfiable) if AS(P ) is non-empty (resp. empty).

ASP also allows optimisation over the answer sets according to weak con-
straints. These are rules of the form :∼ b1, . . . , bm, not bm+1, . . . , not bn.[w@l,
t1, . . . , tk] where b1, . . . , bn are atoms called (collectively) the body of the rule,
and w, l, t1 . . . tk are all terms with w called the weight and l the priority level.
We refer to [w@l, t1, . . . , tk] as the tail of the weak constraint. A ground in-
stance of a weak constraint W is obtained by replacing all variables in W with
ground terms. We assume that all weights and levels of all ground instances
of weak constraints are integers. Unlike other ASP rules, weak constraints do
not affect what is (or is not) an answer set of a program. Instead, they cre-
ate an ordering �P over AS(P ), specifying which answer sets are “preferred”
to others. Informally, at each priority level l, satisfying weak constraints with
level l means discarding any answer set that does not minimise the sum of
the weights of the ground weak constraints (with level l) whose bodies are
satisfied. Higher levels are minimised first. For example, the two weak con-
straints :∼ mode(L, walk), distance(L, D).[D@2, L] and :∼ cost(L, C).[C@1, L] ex-
press a preference ordering over alternative journeys. The first constraint (at
priority 2) expresses that the total walking distance (the sum of the distances of
journey legs whose mode of transport is walk) should be minimised, and the sec-
ond constraint expresses that the total cost of the journey should be minimised.
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As the first weak constraint has a higher priority level than the second, it is
minimised first – so given a journey j1 with a higher cost than another journey
j2, j1 is still preferred to j2 so long as the walking distance of j1 is lower than
that of j2. The set ord(P ) captures the ordering of interpretations induced by P
and generalises the �P relation, so it not only includes 〈A1, A2, <〉 if A1 �P A2,
but includes tuples for each binary comparison operator (<, >, =, ≤, ≥ and 6=).

2.2 Inductive Logic Programming

The most common setting for ILP is called learning from entailment, where a
task consists of a background knowledge B (a pre-defined logic program, defining
concepts which may be useful), and two sets of examples (usually atoms) called
the positive and negative examples, E+ and E−, respectively. The goal is to
find a hypothesis H such that ∀e ∈ E+, B ∪H |= e and ∀e ∈ E−, B ∪H 6|= e.
When learning definite logic programs, the notion of entailment (|=) is usually
entailment in the unique minimal Herbrand model of B ∪ H, but we will see
that under the answer set semantics, it is interesting to explore the use of other
notions of entailment.

Usually, the search for hypotheses is bounded by a hypothesis space, which
is the set of all rules allowed to appear in H. In an ILP task, the expressivity of
the hypothesis space is defined by a notion of language bias of the task. Mode
declarations are a popular means of characterising the language bias [30]. They
specify which literals may appear in the head and in the body of a hypothesis.
Given a language bias the full hypothesis space, also called search space and de-
noted with SM , is given by the finite set of all the rules that can be constructed
according to the given bias. A language bias can be defined as a pair of mode
declarations 〈Mh,Mb〉, where Mh (resp. Mb) are called the head (resp. body)
mode declarations. Each mode declaration mh (resp. mb) is a literal whose ab-
stracted arguments are either +t or −t or #t, for some constant t (referred to
as a type). Informally, a literal is said to be compatible with a mode declaration
m if every instance of +t and −t in m has been replaced with a variable, and
every #t with a constant of type t. We say that a variable occurs as an input
(resp. output) variable of type t if it replaces an argument +t (resp. −t). Given
a mode bias M , SM is the set of all rules which are compatible with the mode
declarations M .

Definition 1. Given a set of mode declarations M = 〈Mh,Mb〉, a normal rule
R is in the search space SM if and only if (i) the head of R is compatible with
a mode declaration in Mh; (ii) each body literal of R is compatible with a mode
declaration in Mb; (iii) every input variable in the body of R occurs earlier in R,
either as an input variable in the head, or an output variable in the body; and
(iv) no variable occurs with two different types.

In the input to most ILP systems a mode declaration is written as atom
class(recall, m), where class is either #modeh or #modeb, specifying whether
the mode declaration m is in Mh or Mb. The recall is an optional integer argu-
ment, which puts an upper bound on the number of times the mode declaration
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can be used in a single rule. In many ILP systems, the types of variables are
“enforced” by adding an extra “type” atom to the body for each variable; for
instance, for a variable V of type bird, the atom bird(V) is added.

The notion of mode bias given in Definition 1 is commonly used in the
ILP literature, but it is not universal. ILASP uses a different notion of mode
bias, which we will not present in this tutorial. We refer the reader to https:

//www.doc.ic.ac.uk/~ml1909/ILASP/language_biases_2018.pdf for further
details. For simplicity, all the ILASP learning tasks presented in this paper will
include an explicit hypothesis space defined in terms of sets of ASP (choice)
rules and constraints rather than using a declarative mode bias.

2.3 Complexity Theory

We assume the reader is familiar with the fundamental concepts of complexity,
such as Turing machines and reductions; for a detailed explanation, see [34].
P is the class of all problems which can be solved in polynomial time by a

Deterministic Turing Machine (DTM); ΣP0 = ΠP0 = ∆P0 = P; ∆Pk+1 = PΣP
k

is the class of all problems which can be solved by a DTM in polynomial time

with a ΣPk oracle. ΣPk+1 = NPΣP
k is instead the class of all problems which can

be solved by a non-deterministic Turing Machine in polynomial time with a ΣPk
oracle. Finally. ΠPk+1 = co-NPΣP

k is the class of all problems whose complement
can be solved by a non-deterministic Turing Machine in polynomial time with
a ΣPk oracle. ΣP1 and ΠP1 are NP and co-NP (respectively). Note, NP is the
class of problems which can be solved by a non-deterministic Turing machine
in polynomial time and co-NP is the class of problems whose complement is in
NP . DP is the class of problems that can be mapped to a pair of problems D1

and D2 such that D1 ∈ NP and D2 ∈ co-NP . It is well known that the following
inclusions hold: P ⊆ NP ⊆ DP ⊆ ∆P2 ⊆ ΣP2 and P ⊆ co-NP ⊆ DP ⊆ ∆P2 ⊆
ΠP2 [34].

3 Early Approaches to Logic-based Learning under the
Answer Set Semantics

In ASP, there can be one, many or even no answer sets of a program. This leads
to two different standard notions of entailment under the answer set semantics:
brave entailment and cautious entailment. Consider, for instance, the following
ASP program P = {1{p, q}1 : - r. r. : - not p, r.}. This program would accept
exactly one answer set A = {r, p}. In this case r and p would be entailed bravely
and cautiously. If the first choice rule was instead replaced with 1{p, q}2 : - r.,
the program would accept two answer sets A1 = {r, p} and A2 = {r, p, q}. In
this case r would be cautiously entailed but q would be only bravely entailed.
If the additional constraint : - r was added to P , then the new program would
have no answer set.
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These two different notions of entailment naturally lead to two different
frameworks for learning from entailment under the answer set semantics: cau-
tious induction and brave induction. Early approaches to ILP under the answer
set semantics tended to adopt cautious induction1 [16, 42, 39], as this is closer
to standard learning from entailment, where examples must be covered in every
model. In [41], it was argued that in some cases cautious induction can be too
strong as it would require that all positive examples must be true in all answer
sets of a given background knowledge and learned hypothesis (this is illustrated
in Example 2). In those cases a weaker form of induction – brave induction –
is needed. It was in [41] that the notions of brave and cautious induction were
first defined. Brave induction defines an inductive task where all of the examples
should be covered in at least one answer set (i.e. entailed under brave entailment
in ASP). Note that there should be at least one answer set that covers every
example (rather than at least one answer set for each example). Therefore, brave
induction cannot specify other brave learning tasks such as enforcing that two
examples are both bravely entailed, but not necessarily in the same answer set
(as brave induction requires all examples to be covered in the same answer set).
In some cases, for instance, we might want to learn a hypothesis that would
require to cover some positive example(s) in an answer set and other positive
example(s) in other answer sets (of the same learned hypothesis when added
to a given background knowledge). These examples would still be bravely en-
tailed but brave induction would not be able to solve tasks requiring such type
of coverage. Furthermore, brave induction can only reason about what should
be true in at least one answer set of a learned hypothesis (together with the
background knowledge). Therefore it cannot reason about what should be true
in all answer sets of a program. For this reason, brave induction is incapable of
learning constraints.

3.1 Cautious Induction

Cautious induction, first presented in [41], defines a learning task in which all
examples should be covered in every answer set (i.e. entailed under cautious
entailment in ASP) and B ∪ H should be satisfiable (have at least one answer
set)2. Note that the satisfiability condition is crucial to avoid trivial solutions
such as “: - .”, which eliminate all answer sets.

1 As the notions had not been defined at the time, they did not call it cautious induc-
tion, but the definitions are the same.

2 The original definitions of brave and cautious induction did not consider atoms
which should not be present in an answer set (negative examples). Publicly available
algorithms that realise brave induction, on the other hand, do allow for negative
examples. We therefore upgrade the definitions in this tutorial to allow negative
examples. Note that a negative example e can be easily simulated by adding a rule
a : - not e to the background knowledge and giving a as a positive example (where
a is a new atom that does not appear anywhere in the original task).
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Definition 2. A cautious induction (ILPc) task Tc is a tuple 〈B,SM , 〈E+, E−〉〉,
where B is an ASP program, SM is a set of ASP rules and E+ and E− are sets
of ground atoms. A hypothesis H ⊆ SM is an inductive solution of Tc, written
H ∈ ILPc(T ), if and only if AS(B ∪ H) 6= ∅ and ∀A ∈ AS(B ∪ H), E+ ⊆ A
and E− ∩A = ∅.

Example 1. Consider the ILPc task T = 〈B,SM , 〈E+, E−〉〉, where:

B =


bird(X) : - penguin(X).
bird(X) : - sparrow(X).
penguin(b1).
sparrow(b2).


E+ = {flies(b2)}
E− = {flies(b1)}

SM =



h1 :
h2 :

h3 :
h4 :

flies(X) : - bird(X).
flies(X) : - bird(X),

not penguin(X).
0{flies(X)}1 : - bird(X).
0{flies(X)}1 : - bird(X),

not penguin(X).


The background knowledge B has only one answer set A = {penguin(b1),

sparrow(b2), bird(b1), bird(b2)}.

– ∅ 6∈ ILPc(T ) as B has exactly one answer set, and it does not contain
flies(b2).

– {h1} 6∈ ILPc(T ) as B ∪ {h1} has exactly one answer set, A ∪ {flies(b1)},
which contains the negative example.

– {h2} ∈ ILPc(T ) as B ∪ {h2} has exactly one answer set, A ∪ {flies(b2)}
which contains the positive example flies(b2) but not the negative example
flies(b1).

– {h3} and {h4} are not in ILPc(T ), as they both have answer sets (when
combined with B) that do not cover the examples. Specifically, B∪{h3} has
three answer sets: A1 = A, A2 = A∪{flies(b1)}, and A3 = A∪{flies(b2)}.
It is clearly not the case that all these three answer sets include the positive
example and do not include the negative example. Similarly, B ∪ {h4} has
two answer sets, A1 = A and A2 = A ∪ {flies(b2)} which also do not all
include the positive example.

Limitations of Cautious Induction. Enforcing that examples are covered in
every answer set is sometimes too strong a requirement, as shown in the following
example.

Example 2. Consider the background knowledge B = ∅ and the hypothesis space
SM =

{
h1 : p : - not q. ; h2 : q : - not p.

}
. There are only two atoms (p and q)

in the Herbrand base of B∪SM . It is impossible to construct an ILPc task T with
background knowledge B and hypothesis space SM , whatever example from the
Herbrand base we consider, that would accept {h1, h2} as solution and does not
accept the empty set as solution. This can be seen as follows. Given that there
are only two atoms (p and q) in the Herbrand base of B∪SM , there are only two
atoms which would be meaningful as examples. Neither of them can be given as
a positive example as for each atom there is an answer set of B ∪ {h1, h2} that
does not contain it. Similarly, neither can be given as a negative example, as
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for each atom there is an answer set that contains it. This means that the only
ILPc task T such that {h1, h2} ∈ ILPc(T ) is 〈B,SM , 〈∅, ∅〉〉. But, clearly for this
task, as there are no examples in T , the empty set, ∅, would be also an inductive
solution of T , and it would be the one that, in practice, caution ILP systems
would return as they would always search for the shortest possible hypothesis.
This means that no examples can be given such that a cautious induction system
would return {h1, h2}, showing that caution induction is too restrictive.

3.2 Brave Induction

Brave induction (ILPb) was also formalised in [41]. It defines an inductive task
in which all of the examples should be covered in at least one answer set (i.e.
entailed under brave entailment in ASP). Note that there should be at least one
answer set that covers every example (rather than at least one answer set for
each example).

Definition 3. A brave induction (ILPb) task Tb is a tuple 〈B,SM , 〈E+, E−〉〉,
where B is an ASP program, SM is a set of ASP rules and E+ and E− are sets
of ground atoms. A hypothesis H ⊆ SM is an inductive solution of Tb, written
H ∈ ILPb(T ), if and only if ∃A ∈ AS(B∪H) such that E+ ⊆ A and E−∩A = ∅.

Example 3. Consider the ILPb task T = 〈B,SM , 〈E+, E−〉〉, where B, SM , E+

and E− are defined as in Example 2:

B =


bird(X) : - penguin(X).
bird(X) : - sparrow(X).
penguin(b1).
sparrow(b2).


E+ = {flies(b2)}
E− = {flies(b1)}

SM =



h1 :
h2 :

h3 :
h4 :

flies(X) : - bird(X).
flies(X) : - bird(X),

not penguin(X).
0{flies(X)}1 : - bird(X).
0{flies(X)}1 : - bird(X),

not penguin(X).


– ∅ 6∈ ILPb(T ) as B has exactly one answer set, and it does not contain

flies(b2).
– {h1} 6∈ ILPb(T ) as B ∪ {h1} has exactly one answer set, and it contains

flies(b1).
– {h2}, {h3}, {h4} ∈ ILPb(T ) as each of B ∪ {h2}, B ∪ {h3} and B ∪ {h4} has

the answer set {penguin(b1), sparrow(b2), bird(b1), bird(b2), flies(b2)},
which contains flies(b2) but does not contain flies(b1).

Limitations of Brave Induction Brave induction can only reason about what
should be true in at least one answer set of a program. It cannot reason about
what should be true in all answer sets of a program. For this reason, brave induc-
tion is incapable of learning constraints, as illustrated in the following example.
In particular, any solution of an ILPb task T that includes a constraint is still a
solution of T if the constraint is removed, indicating that brave induction omits
searching for constraints when learning a solution.
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Example 4. Consider the background knowledge B = {0{p}1.} and a hypothesis
space SM , containing only the constraint : - p., SM = {p.}.There is only one atom
(p) in the Herbrand base of B ∪ SM . We show that it is impossible to construct
a brave induction task Tb, with background knowledge B and hypothesis space
SM , whatever example from the Herbrand base we consider, that accepts {: - p.}
as solution and does not accept the empty set as solution. This can be seen as
follows. Given that there is only one atom (p) in the Herbrand base of B ∪ SM ,
there is then one atom which would be meaningful as an example. It must be
given as a negative example (as B ∪ {: - p.} has only one answer set, and it does
not contain p). But B ∪ ∅ also covers this negative example, as it also has the
answer set ∅, which does not contain p. Therefore for any ILPb task that accepts
the constraint {: - p.} as a solution, ∅ is also a solution, meaning that in practice
brave induction systems (searching for the shortest hypothesis) will never return
the constraint as (part of) a solution.

XHAIL. One of the first logic-based machine learning systems under the answer
set programming semantics is the eXtended Hybrid Abductive Inductive Learning
(XHAIL) [36], which generalises the HAIL [37, 35] algorithm, defined for definite
clauses, in order to solve ILPb tasks for ASP programs with negation as failure.
Similarly to HAIL, XHAIL combines abductive and deductive inference. Abduc-
tive inference is an ampliative form of inference, as it generates knowledge that
is not included in the premises of the inference process. Specifically, abduction
is the process of reasoning from examples (observations) to possible causes. An
abductive inference task takes as input a background knowledge, a set of ab-
ducibles (i.e., ground atoms that are not defined in the background knowledge)
and set of examples and returns as output possible explanations (i.e. cases in
syllogistic terms), also called abductive solutions, that together with the back-
ground knowledge, entail (i.e. explain) the examples. It differs from inductive
inference in the fact that explanations do not require a process of generalisation
during the inference process, whereas induction aims at discovering new general
rules from samples (positive and negative) of cases. In other words, abduction is
the process of explanation – reasoning from effects to possible causes, whereas in-
duction is the process of generalisation – reasoning from specific cases to general
hypothesis.

The XHAIL learning system computes inductive solutions in three phases: an
abductive phase; a deductive phase; and an inductive phase. The abductive step
takes as abducibles ground atoms that conform with the modeh of the language
bias of the given task and computes as abductive solution a set of abducible
atoms, ∆, such that B ∪∆ |=b (

∧
E+) ∧ (

∧
{ not e | e ∈ E−}). An abductive

solution becomes the heads of (ground instances of) rules in the final hypothesis.
Next, in the deductive phase, XHAIL computes the set of all ground literals that
could go in the body of the rules in the hypothesis. Each of these body atoms b
is such that B ∪∆ |=b b and b is a ground instance of an atom that conforms to
at least one modeb declaration. The sets of ground rules with the heads from ∆
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and with bodies consisting of literals computed in the deductive phase is referred
to as the (ground) Kernel Set K.

Example 5. (from [36])
Consider the ILPb task T = 〈B,SM , 〈E+, E−〉〉, where B, M , E+ and E−

are as follows:

B =


bird(X) : - penguin(X).
bird(a).
bird(b).
bird(c).
penguin(d).

M =

#modeh(flies(+bird))
#modeb(penguin(+bird))
#modeb(not penguin(+bird))



E+ =

flies(a),
flies(b),
flies(c)

 E− =
{
flies(d)

}
One abductive explanation of the examples is ∆ = {flies(a), flies(b),

flies(c)}. This leads to the ground Kernel Set:

K =

flies(a) : - not penguin(a).
flies(b) : - not penguin(b).
flies(c) : - not penguin(c).


The unground Kernel Set that conforms to the mode bias and the declaration

of input variables is given by:

K =
{
flies(X) : - not penguin(X).

}
Note that although there are other potential body literals that are entailed by

B ∪∆ and that are declared to be mode body predicates (i.e., penguin(d)) they
are not added to the ground Kernel Set as they do not form part of a ground
instance of a rule that conforms to the mode declarations. According to the
declaration of input variables in the language bias body literals need to have the
same variable as the one that appears in the head of the rule. The ground literal,
penguin(d), for instance, cannot be added to any of the three ground rules of
the ground Kernel Set. This is because the unground version of the Kernel Set
would give an unground rule with penguin(Y) in the body, which violates the
input variable constraint of the mode body declaration: an input variable in a
mode body predicate must either appear in the head predicate of the rule, or
appear as output variable in another body atom. In the mode declaration M
given above, variables are only input variables, so any variable that appears in
a body predicate must appear in the head predicate of the rule.

The final step of the XHAIL algorithm – the inductive step – computes a
hypothesis H that conforms to the mode declarations, subsumes the unground
Kernel Set and bravely entails the examples. This phase is also supported by an
abductive inference process that takes as background knowledge a “transformed”
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unground Kernel Set, as abducibles ground instances of a predicate use, and as
observation the same of examples used in the first phase. The abductive answer
determines the literals in the body of the rules of the Kernel Set that need to
be maintained in order for the examples to be covered.

Example 6. Consider again the unground Kernel Set computed in Example 5.
This is transformed in the following ASP program:flies(X) : - use(1, 0), try(1, 1, X).

try(1, 1, X) : - bird(X), not use(1, 1).
try(1, 1, X) : - bird(X), use(1, 1), not penguin(X).


The first and second arguments of each of the meta-level atoms use and try

indicate respectively a unique identifier for the object-level rules (starting from
1) in the unground kernel Set, and a unique identifier for the literal in each of
these rules (starting from 0 as identifier of the head atom). So, use(1, 0) means
that the head atom flies(X) is being used (i.e. it is in the hypothesis). The
try atoms are for testing whether the rule body is satisfied. If the head is being
used, then flies(X) is true in two cases: (1), the literal not penguin(X) is not
in the hypothesis (indicated by the first try rule); or (2), not penguin(X) is
true (represented by the second try rule).

The transformed Kernel Set is augmented with the choice rule 0{use(1, 0),
use(1, 1)}2. This phase computes an abductive solution. In the above example,
XHAIL uses an ASP solver to compute the smallest abductive answer using the
transformed Kernel Set, and this answer gives then hypothesis that subsumes the
Kernel Set, conforms to the mode declarations and bravely entails the examples.
In the above example, the abductive solution generated during the inductive
phase would be ∆i = {use(1, 1)}, which indicates that in the final hypothesis,
constituted just by the first rule, the first body literal will have to be kept in
order to cover the examples correctly.

One major difference between HAIL and XHAIL is that HAIL uses a cover
loop approach, whereas XHAIL does not. This is due to the nonmonotonicity
of negation as failure: in a cover loop approach, examples that were covered in
previous iterations of the cover loop may not be covered in future iterations.

As in general there are many possible abductive solutions ∆, and not all ∆’s
lead to inductive solutions, XHAIL employs an iterative deepening approach,
ordering the ∆’s by size and terminating after processing the shortest ∆ that
leads to a solution. In general, this may not lead to the optimal solution being
found, as there may be a large ∆ that leads to a shorter hypothesis (e.g. with
more individual rules, but fewer overall literals).

INSPIRE. Inspire [18], is an ILP system based on XHAIL, but with some
modifications to aid scalability. The main modification is that some rules are
“pruned” from the Kernel Set before the XHAIL’s inductive phase. Both XHAIL
and Inspire use a meta-level ASP program to perform the inductive phase, and
the ground Kernel Set is generalised into a first order Kernel Set (using the mode
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declarations to determine which arguments of which predicates should become
variables). Inspire prunes rules that have fewer than Pr instances in the ground
Kernel Set (where Pr is a parameter of Inspire). The intuition is that if a rule is
necessary to cover many examples then it is likely to have many ground instances
in the Kernel Set. Clearly this is an approximation, so Inspire is not guaranteed
to find the optimal hypothesis in the inductive phase. In fact, as XHAIL is not
guaranteed to find the optimal inductive solution of the task (as it may pick the
“wrong” abductive solution), this means that Inspire may be even further from
computing optimal solutions.

ILED. ILED [17] is an incremental algorithm, based on XHAIL. It is targeted
at learning Event Calculus [19] theories and, therefore, its examples are slightly
different in that they are grouped into time windows. The examples are processed
one at a time and at each timepoint the hypothesis is revised so that it covers
all examples in all windows that have been processed so far.

ILED has been shown to be much more scalable than XHAIL when processing
large numbers of examples divided into time windows [17]. On the other hand,
like XHAIL, ILED is not guaranteed to find the optimal solution of a task. In
fact, this incompleteness with respect to optimal solutions is more severe in ILED
than in XHAIL, as it can also occur because of the incremental nature of the
algorithm. Although at each step the revision may be optimal, the combination
of every revision may result in a longer hypothesis than could have been found
if all examples had been processed together.

ASPAL. The algorithms presented so far follow a bottom-up approach for
searching for solutions within a given hypothesis space specified by a language
bias. In the cases of XHAIL, ILED and INSPIRE the algorithms compute first
a most specific (set of) clauses that cover the examples, which constitute the
“bottom element” of the search space, and then try to generalise it searching
for more general solutions within the search space. But alternative approaches
to the search for inductive solutions have been proposed in the literature. These
are referred to as meta-level approaches with top-down search. An example of
such algorithms is the Top-directed Abductive Learning (TAL) system [6]. This
system solves an ILP task by automatically translating it into a semantically
equivalent abductive inference task, whose background knowledge is given by
the background knowledge of the learning task augmented with meta-level rep-
resentation of the hypothesis space, and the observation to explain is given, as
in XHAIL, by the conjunction of the examples. The inference process performs
a top-down abductive search [32] for abductive solutions that explain the obser-
vation. Such an abductive solution is then translated back into rules that are
guaranteed to correspond to an inductive solution of the original brave inductive
task. The transformation relies upon a one-to-one mapping that translates each
(normal) rule of the hypothesis space into a meta-level representation and uses
a “meta-program”, called top theory, that captures possible ways of construct-
ing such rules in terms of their meta-level representation. The main advantage
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of this approach is its ability to solve ILP tasks that require recursive rules as
solutions or rules that are interdependent (e.g., predicates that appear in the
body of a rule can also appear in the head of another rule belonging to the same
solution). However, a drawback of this approach is its scalability. The abductive
reasoning engine used by TAL is implemented in Prolog. As such, it suffers from
redundant inference steps, which causes its computational time to be affected
by the size of the hypothesis space and the number of examples of a given ILP
task.

The ASPAL [7] algorithm is a brave induction system that aims at addressing
the limitations of the TAL system by using an ASP implementation: as in TAL,
an ILP task is translated into a meta-level program, but in ASPAL this is an ASP
program. Given an ILPb task Tb = 〈B,SM , 〈E+, E−〉〉, where SM is defined by
a given set of mode declarations M , the first step is to compute a set of skeleton
rules SkM . These are the set of rules R, such that there is an R′ ∈ SM , where
each constant in R′ is replaced by a placeholder variable in R.

Example 7. Consider the mode declarations M .

M =

{
#modeh(penguin(+bird))
#modeb(2, not can(+bird,#ability))

}
The first argument of the mode body declaration is called the recall and it

expresses the constraint that this mode declaration can be used at most twice
per rule in the hypothesis space. There are three skeleton rules:

SkM =

penguin(X) : - bird(X)
penguin(X) : - bird(X), not can(X, C1)
penguin(X) : - bird(X), not can(X, C1), not can(X, C2)


Note that the hypothesis space SM consists of the rules in SkM but where

C1 and C2 have been replaced with constants of type ability.

Each skeleton rule R ∈ SkM is associated with a unique meta-level atom
rule(Rid, C1, . . . , Cn), denoted as Rmeta, where C1, . . . , Cn are the “constant place-
holder” variables in R. For each rule R′ ∈ SM , we similarly write R′meta to denote
the ground atom representing R′ (where each “constant placeholder” variable
has been replaced with a constant of the correct type). Informally, consider for
example the second rule penguin(X) : - bird(X), not can(X, C1) in SkM . Its as-
sociated meta-level atom would be rule(2, C1). Now assuming, for the sake of
the argument, that ability(fly) is true in the background knowledge of the given
learning task, the ASPAL computation may given rise for instance to a ground
instance rule(2, f ly), which would then be used by ASPAL to generate the cor-
responding rule R′ ∈ SM given by penguin(X) : - bird(X), not can(X, fly) in the
final inductive solution.

Using this notion of skeleton rules, the ASPAL system automatically con-
structs an ASP meta-level representation of a learning task by adding to the
background theory B of the learning task, the set of skeleton rules, each aug-
mented with an additional body literal given by the associated meta-level atom.
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These meta-level atoms are considered to be abducible and their truth is deter-
mined by a choice rule which is used by the ASP solver to select the minimal
number of such atoms (corresponding to the minimal number of rules R′ ∈ SM )
so that the examples of the given learning task are covered. This is captured
formally by the following definition.

Definition 4. Let T be the ILPb task 〈B,SM , 〈{e+1 , . . ., e+n }, {e−1 , . . ., e−m }〉〉,
where SM is characterised by the set of mode declarations M . Let SkM be the
set of skeleton rules derivable from M . The ASPAL meta-representation is the
program consisting of the following components:

– B
– h : - b1, . . . brl, Rmeta, for each rule R ∈ SkM , where R is the rule h : - b1, . . . , brl.
– A choice rule 0{ab1, . . . , abk}k., where {ab1, . . ., abk}={Rmeta | R∈SkM}3
– The rule goal : - e+1 , . . . , e

+
n , not e−1 , . . . , not e−m .

– The constraint : - not goal.

We refer to the answer sets of this meta representation as meta-level answer
sets, and the answer sets of B ∪H as object-level answer sets. Each meta-level
answer set A represents a single hypothesis H (defined by the rule atoms in
A). Each meta-level answer set also contains exactly one object-level answer set
of B ∪ H that contains all of the positive examples and none of the negative
examples (enforced by the goal constraint).

Example 8. Consider the ILPb task T = 〈B,SM , E+, E−〉, where SM is charac-
terised by the mode declarations in Example 7.

B =



bird(a).
bird(b).
can(a, fly).
can(b, swim).
ability(fly).
ability(swim).


E+ = {penguin(b)} E− = {penguin(a)}

The ASPAL meta-level representation is shown in Figure 1. Note that each
skeleton rule R has been appended with the atom Rmeta, where each of the
arguments other than the identifier Rid is a variable representing a placeholder
for a constant. The choice rule on the other hand contains atoms R′meta, gener-
ated by instantiating the constant placeholder variable with all possible constant
values allowed by the constant type. In this way each ground R′ is an instance
of a skeleton rule R. The answer sets of this program can be mapped to the
ILPb inductive solutions of the task Tb. For example, the answer set {bird(a),

3 This is a slight simplification. In the ASPAL algorithm, this is a choice rule using
conditional literals, in order to delegate the grounding of the possible constants to
the ASP solver. The ground version of ASPAL’s choice rule is identical to the one
presented in this definition.
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bird(a).
bird(b).
can(a, fly).
can(b, swim).
ability(fly).
ability(swim).

penguin(X) : - bird(X), rule(1).
penguin(X) : - bird(X), not can(X, C1), rule(2, C1).
penguin(X) : - bird(X), not can(X, C1), not can(X, C2), rule(3, C1, C2).

0{rule(1), rule(2, fly), rule(2, swim), rule(3, fly, swim)}4.

goal : - penguin(b), not penguin(a).
: - not goal.

Fig. 1. The ASPAL meta-level representation for the learning task in Example 8.

bird(b), can(a, fly), can(b, swim), ability(fly), ability(swim), penguin(b),
rule(2, fly), goal} shows that the hypothesis
{penguin(X) : - bird(X), not can(X, fly).} is a solution of the ILPb task T .

In the ASPAL algorithm, this meta representation is combined with an opti-
misation statement (similar to weak constraints in ASP), which orders the meta-
level answer sets by the length of the hypothesis that they represent. This optimi-
sation statement is equivalent to adding a weak constraint :∼ Rmeta.[|R|@1, Rmeta]
for each R in SkM , which means that the total penalty paid by a meta-level
answer set at priority level 1 is the length of the hypothesis generated from
the answer set. Note that when computing |R| the “type” atoms in R (such as
bird(X) in the rule above) are not counted.

ASPAL has been proven to be sound and complete with respect to the opti-
mal inductive solutions of any brave induction task [5]. This means that, unlike
XHAIL and XHAIL-based algorithms, ASPAL is guaranteed to return an opti-
mal inductive solution of any brave induction task (resources permitting).

RASPAL. ASPAL scales poorly with respect to the size of ground(B∪SM ) [2].
One of the main factors in the size of this ground program is the number of body
literals that are allowed to appear in a rule in the hypothesis space. RASPAL [2]
addresses this limitation by iteratively refining a hypothesis until all of the ex-
amples in an ILPb task are covered. At each step, the number of literals that are
allowed to be added to the hypothesis is restricted, meaning that the grounding
in RASPAL is often significantly smaller than the meta-level program in AS-
PAL. In [1] it was shown that RASPAL significantly outperforms ASPAL on
some learning tasks with large problem domains and large hypothesis spaces.
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3.3 Induction of Stable Models.

Induction of stable models [33] (ILPsm), generalises ILPb, in order to allow
conditions to be set over multiple answer sets. The examples of an ILPsm task
are partial interpretations.

Definition 5. A partial interpretation e is a pair of sets of atoms 〈einc, eexc〉.
We refer to einc and eexc as the inclusions and exclusions respectively. An in-
terpretation I is said to extend e if and only if einc ⊆ I and eexc ∩ I = ∅.

Example 9. Consider the partial interpretation e = 〈{p, q}, {r, s}〉.

– {p} does not extend e, as it does not contain q.

– {p, q, r} does not extend e, as it contains r.

– {p, q} extends e, as it contains all of e’s inclusions, and none of e’s exclusions.

– {p, q, t} extends e, as it contains all of e’s inclusions, and none of e’s exclu-
sions.

Induction of stable models is formalised in Definition 6.

Definition 6. An induction of stable models (ILPsm) task Tsm is a tuple 〈B,
SM , 〈E〉〉, where B is an ASP program, SM is the hypothesis space and E is a
set of example partial interpretations. A hypothesis H is an inductive solution of
Tsm if and only if H ⊆ SM and ∀e ∈ E, ∃A ∈ AS(B ∪H) such that A extends
e.

Note that a brave induction task can be thought of as a special case of
induction of stable models (with |E| = 1 and the inclusions and exclusions of
the only partial interpretation example being the positive and negative examples
of the brave task, respectively).

Example 10. Consider the ILPsm task T = 〈B,SM , 〈E〉〉, where:

B = ∅
SM =

{
h1 :
h2 :

p : - not q.
q : - not p.

} E =

{
〈{p}, {q}〉,
〈{q}, {p}〉

}

{h1, h2} is the only subset of the hypothesis space that is an inductive solution
of T , as it is the only hypothesis that has answer sets that extend both of the
examples.

Note that, although induction of stable models is a generalisation of brave
induction, it is still incapable of learning constraints. This is because, similarly
to brave induction, it can only give examples of what should be (in) an answer
set, rather than examples of what should not be an answer set.
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4 Learning from Answer Sets and ILASP

In the previous section, we presented the main frameworks for learning ASP
programs, which fall into two categories: either the examples must be covered in
at least one answer set of the learned program (brave induction [41] and induction
of stable models [33]), or the examples must be covered in every answer set of
the learned program (cautious induction [41]). Work on using brave induction
(such as [36] and [7]) has often only considered learning stratified programs4.
In general, however, ASP programs can have one, many or even no answer sets.
Example 11 presents a program H describing the rules of Sudoku, and shows
that no brave induction, induction of stable models or cautious induction task
could possibly have H as an optimal solution.

Example 11. Consider a background knowledge B that contains definitions of
the structure of a 4x4 Sudoku grid; i.e. definitions of cell, same row, same col

and same block (where same row, same col and same block are true only for
two different cells in the same row, column or block).

B =



cell((1, 1)). cell((1, 2)). . . . cell((4, 4)).
same row((X1, Y), (X2, Y)) : - cell((X1, Y)), cell((X2, Y)), X1 6= X2.
same col((X, Y1), (X, Y2)) : - cell((X, Y1)), cell((X, Y2)), Y1 6= Y2.
block((1, 1), 1). block((1, 2), 1). block((2, 1), 1). block((2, 2), 1).
block((3, 1), 2). block((3, 2), 2). block((4, 1), 2). block((4, 2), 2).
block((1, 3), 3). block((1, 4), 3). block((2, 3), 3). block((2, 4), 3).
block((3, 3), 4). block((3, 4), 4). block((4, 3), 4). block((4, 4), 4).
same block(C1, C2) : - block(C1, B), block(C2, B), C1 6= C2.


One hypothesis H that describes the correct rules of Sudoku is as follows:

H =


1{value(C, 1), value(C, 2), value(C, 3), value(C, 4)}1 : - cell(C).
: - same row(C1, C2), value(C1, V), value(C2, V).
: - same col(C1, C2), value(C1, V), value(C2, V).
: - same block(C1, C2), value(C1, V), value(C2, V).


Let SM be a set of rules which contains the rules in H (for the purposes

of this example, it does not matter which other rules it contains). There is no
ILPb, ILPsm or ILPc task such that H is a solution, and no subset of H is a
solution. In practice, as ILP systems tend to search for a solution that is as short
as possible (called an optimal solution), no system for ILPb, ILPsm or ILPc will
return H as the solution. We now show that no task exists, for any of the three
frameworks, for which H is an optimal solution.

– Assume that there is an ILPb task Tb with background knowledge B such
that H is a solution of Tb. Then there must be at least one answer set of
B ∪ H that contains all of the positive examples of Tb and none of the

4 Both XHAIL [36] and ASPAL [7] support learning non-stratified programs, but the
background knowledge and hypothesis space of each of the example tasks in [36]
and [7] is stratified.
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negative examples of Tb. But this answer set must also be an answer set
of B∪{1{value(C, 1), value(C, 2), value(C, 3), value(C, 4)}1 : - cell(C).}, as
the constraints in H only rule out answer sets. Hence, H ′ = {1{value(C, 1),
value(C, 2), value(C, 3), value(C, 4)}1 : - cell(C).} must also be an induc-
tive solution of Tb. As H ′ is shorter than H, this means that H cannot
possibly be an optimal solution of Tb.

– The argument for ILPsm is similar to ILPb. Assume there is an ILPsm task
Tsm with background knowledge B such that H is a solution of Tsm. Then
for each example e, there must be at least one answer set Ae of B ∪ H,
such that Ae extends e. In each case, Ae must also be an answer set of
B∪{1{value(C, 1), value(C, 2), value(C, 3), value(C, 4)}1 : - cell(C).}, as the
constraints in H only rule out answer sets. Hence, the hypothesis H ′ =
{1{value(C, 1), value(C, 2), value(C, 3), value(C, 4)}1 : - cell(C).}must also
be an inductive solution of Tsm. As H ′ is shorter than H, this means that
H cannot possibly be an optimal solution of Tsm.

– If we use ILPc to learn H, we have to give examples which are either true in
every answer set of B ∪H, or false in every answer set. Therefore, we could
not give any meaningful examples about the value predicate – for each atom
value(x, y) (where x and y range from 1 to 4), there is at least one answer
set of B ∪H that contains value(x, y) and at least one that does not; this
means that if value(x, y) is given as either a positive or negative example,
H will not be a solution of the task. This means that for any ILPc task Tc =
〈B,SM , E+, E−〉 such that H is a solution, E+ ⊆ {a | ∀A ∈ AS(B), a ∈ A}
and E− ⊆ {a | ∀A ∈ AS(B), a 6∈ A}. Hence, for any such task, ∅ must be a
solution of Tc, meaning that H cannot be an optimal solution.

The problem with using either brave or cautious induction to learn general
ASP programs is that brave induction can only reason about what should be
true in at least one answer set of the learned program, which can be far too weak
a condition, and cautious induction can only express what should be true in all
answer sets of a program, which can be far too strong a condition. Furthermore,
examples in both frameworks are atoms. In ASP it is common [9] to represent
a problem such that the answer sets are solutions (see Figure 2 (a)). In order
to learn ASP programs, examples should therefore be of what should (or should
not) be an answer set of the program (Figure 2 (b)). In the context of learning
the rules of Sudoku using the representation in Example 11, this corresponds to
giving examples of Sudoku grids rather than the values of individual cells.

In practice, there may be some atoms whose values are unknown before learn-
ing. It is therefore more practical to consider learning from partial interpretations
rather than full interpretations. This setting, under the answer set semantics, is
the basis of the Learning from Answer Sets framework.

A learning from answer sets task consists of an ASP background knowledge
B, a hypothesis space and sets of positive and negative partial interpretation
examples. The goal is to find a hypothesis H that has at least one answer set
(when combined with B) that extends each positive example, and no answer set
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Fig. 2. (a) shows the general paradigm of answer set programming [4]; (b) shows the
general idea of Learning from Answer Sets.

that extends any negative examples. Note that each positive example could be
extended by a different answer set of the learned program.

Definition 7. A Learning from Answer Sets (ILPLAS) task is a tuple T =
〈B,SM , 〈E+, E−〉〉 where B is an ASP program, SM a set of ASP rules and E+

and E− are finite sets of partial interpretations. A hypothesis H ⊆ SM is an
inductive solution of T if and only if:

1. ∀e+ ∈ E+ ∃A ∈ AS(B ∪H) such that A extends e+

2. ∀e− ∈ E− @A ∈ AS(B ∪H) such that A extends e−

Example 12. Consider the problem of learning the definition of what it means
for a graph to be Hamiltonian.5 The background knowledge B defines what it
means to be a graph, up to size 4.

B =

1{size(1), size(2), size(3), size(4)}1.
node(1..S) : - size(S).
0{edge(N1, N2)}1 : - node(N1), node(N2).


The answer sets of B exactly represent the graphs of size 1 to 4. For ex-

ample, the answer set {size(4), node(1), node(2), node(3), node(4), edge(1, 2),
edge(2, 3), edge(3, 4), edge(4, 1)} represents the graph G:

1 2

3 4

The program H can be used to determine whether a graph is Hamiltonian
or not. The answer sets of B ∪H correspond exactly to the Hamiltonian graphs
of size 1 to 4.

5 A graph is Hamiltonian if it contains a cycle that visits each node exactly once.
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H =


0{in(V0, V1)}1 : - edge(V0, V1).
reach(V0) : - in(1, V0).
reach(V1) : - in(V0, V1), reach(V0).
: - node(V0), not reach(V0).
: - in(V0, V1), in(V0, V2), V1! = V2.


The graph G can be represented as a partial interpretation 〈{size(4), edge(1, 2),
edge(2, 3), edge(3, 4), edge(4, 1)}, {edge(1, 1), edge(1, 3), edge(1, 4), edge(2, 1),
edge(2, 2), edge(2, 4), edge(3, 1), edge(3, 2), edge(3, 3), edge(4, 2), edge(4, 3),
edge(4, 4)}〉.

Given sufficient positive and negative examples of Hamilton graphs, it is
possible to learn the hypothesis H using the ILASP system for solving ILPLAS
tasks. Similarly to the Sudoku program in Example 11, it is impossible to learn
H with any of the previous frameworks.

Since the original ILPLAS framework was introduced in [21], it has been ex-
tended in several ways. The rest of this section presents each of these extensions.

4.1 Preference Learning in ASP

Preference Learning has received much attention over the last decade from within
the machine learning community. A popular approach to preference learning is
learning to rank [11, 12], where the goal is to learn to rank any two objects
given some examples of pairwise preferences (indicating that one object is pre-
ferred to another). While in previous work ILP systems such as TILDE [3] and
Aleph [44] have been applied to preference learning [8, 15], this has addressed
learning ratings, such as good, poor and bad, rather than rankings over the ex-
amples. Ratings are not expressive enough if we want to find an optimal solution
as we may rate many objects as good when some are better than others. ASP, on
the other hand, allows the expression of preferences through weak constraints.

Weak constraints do not affect what is, or is not, an answer set of a program.
Instead, they create a preference ordering over the answer sets of a program; i.e.
they allow us to specify which answer sets are preferred to other answer sets.
Example 13 shows how a set of preferences can be encoded as weak constraints.

Example 13. Consider the problem of using a user’s preferences over alternative
journeys, in order to select the optimal journey. Let A, B, C and D be the jour-
neys represented by the following sets of attributes. Each journey is split into a
number of legs, in which a single mode of transport is used.



leg mode(1, walk),
leg crime rating(1, 2),
leg distance(1, 500),
leg mode(2, bus),
leg crime rating(2, 4),
leg distance(2, 3000)



(A)
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leg mode(1, bus),
leg crime rating(1, 2),
leg distance(1, 4000),
leg mode(2, walk),
leg crime rating(2, 5),
leg distance(2, 1000)


(B)

leg mode(1, bus),
leg crime rating(1, 2),
leg distance(1, 400),
leg mode(2, bus),
leg crime rating(2, 4),
leg distance(2, 3000)



(C)

leg mode(1, bus),
leg crime rating(1, 5),
leg distance(1, 2000),
leg mode(2, walk),
leg crime rating(2, 1),
leg distance(2, 2000)


(D)

The following weak constraints H give a preference ordering to the journeys
A to D.

H =

 :∼ leg mode(L, walk), leg crime rating(L, C), C > 4.[1@3, L, C]
:∼ leg mode(L, bus).[1@2, L]
:∼ leg mode(L, walk), leg distance(L, D).[D@1, L, D]


The first weak constraint inH means that the user would like to avoid walking

through an area with a crime rating higher than 4. A journey pays a penalty
of 1 at priority level 3 for each leg of the journey that involves walking though
such an area. As there is no weak constraint in H with a priority level higher
than 3, this preference is the most important. The second weak constraint (at
priority level 2) means that the user would like to take as few buses as possible.
The third weak constraint (at priority level 1) means that the user would like
to minimise the distance that they have to walk. Note that, as a penalty of the
distance is paid for each leg where the user has to walk, the total penalty is
equal to the total walking distance of the journey. Given these preferences, A is
the best journey, followed by D, then C and then B.

The hypothesis in Example 13 could be learned by giving examples of which
journeys are preferred to which other journeys. For the preferences to be learned
as weak constraints, this would require examples of pairs of answer sets, such
that the first is preferred to the second. In fact, each ordering example contains
two partial interpretations, rather than two complete answer sets. Examples can
also be given with any of the operators <, ≤, =, 6=, > or ≥. The < operator, for
example, indicates that the first partial interpretation is preferred to the second;
whereas the = operator specifies that the two partial interpretations are equal.

Definition 8. An ordering example is a tuple o = 〈e1, e2, op〉 where e1 and e2
are partial interpretations and op is a binary comparison operator (<, >, =, ≤,
≥ or 6=).

As ordering examples contain two partial interpretations, rather than two full
interpretations, there are two possible semantics to give to the examples. The
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brave semantics indicates that there should be at least one pair of answer sets
extending the pair of partial interpretations, which are ordered according to the
operator. The cautious semantics, on the other hand, indicates that every pair
of answer sets that extend the pair of partial interpretations should be ordered
according to the operator.

Definition 9. Let o = 〈e1, e2, op〉 be an ordering example. An ASP program P
bravely respects o iff ∃A1, A2 ∈ AS(P ) such that all of the following conditions
hold: (i) A1 extends e1; (ii) A2 extends e2; and (iii) 〈A1, A2, op〉 ∈ ord(P ). P
cautiously respects o iff @A1, A2 ∈ AS(P ) such that all of the following condi-
tions hold: (i) A1 extends e1; (ii) A2 extends e2; and (iii) 〈A1, A2, op〉 6∈ ord(P ).

Definition 10 defines the notion of Learning from Ordered Answer Sets (ILPLOAS).

Definition 10. A Learning from Ordered Answer Sets task is a tuple T =
〈B,SM , 〈E+, E−, Ob, Oc〉〉 where B is an ASP program, SM is a set of ASP
rules, E+ and E− are finite sets of partial interpretations and Ob and Oc are
finite sets of ordering examples over E+ called brave and cautious orderings. A
hypothesis H ⊆ SM is an inductive solution of T if and only if:

1. H ∈ ILPLAS(〈B,SM , 〈E+, E−〉〉)
2. ∀o ∈ Ob B ∪H bravely respects o

3. ∀o ∈ Oc B ∪H cautiously respects o

Note that the orderings are only over positive examples. The justification
behind this restriction is that there does not appear to be any scenario where a
hypothesis would need to respect an ordering of a pair of partial interpretations
that are not extended by any pair of answer sets of B ∪H.

Example 14. Recall the journey preferences in Example 13. Consider the back-
ground knowedge B, which defines a set of possible journeys.

B =


1{leg(1), . . . , leg(5)}5.
1{leg mode(L, walk), leg mode(L, bus)}1 : - leg(L).
1{leg crime rating(L, 1), . . . , leg crime rating(L, 4000)}1 : - leg(L).
1{leg distance(L, 0), . . . , leg distance(L, 4000)}1 : - leg(L).


Journeys A to D of Example 13 can be represented by the four positive

examples eA to eD.

〈


leg mode(1, walk),
leg crime rating(1, 2),
leg distance(1, 500),
leg mode(2, bus),
leg crime rating(2, 4),
leg distance(2, 3000)


,

leg(3),
leg(4),
leg(5)


〉

(eA)
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〈


leg mode(1, bus),
leg crime rating(1, 2),
leg distance(1, 400),
leg mode(2, bus),
leg crime rating(2, 4),
leg distance(2, 3000)


,

leg(3),
leg(4),
leg(5)


〉

(eC)

〈


leg mode(1, bus),
leg crime rating(1, 2),
leg distance(1, 4000),
leg mode(2, walk),
leg crime rating(2, 5),
leg distance(2, 1000)


,

leg(3),
leg(4),
leg(5)


〉

(eB)

〈


leg mode(1, bus),
leg crime rating(1, 5),
leg distance(1, 2000),
leg mode(2, walk),
leg crime rating(2, 1),
leg distance(2, 2000)


,

leg(3),
leg(4),
leg(5)


〉

(eD)

As these positive examples completely represent each journey, there is exactly
one answer set of B that extends each example. Therefore there is no distinc-
tion between brave and cautious orderings in this case. Recall from Example 13
that journey A was preferred to journey D, which was preferred to journey C,
which was preferred to journey B. This means that to learn the preferences in
Example 13, we could give the orderings 〈eA, eD, <〉, 〈eD, eC , <〉 and 〈eC , eB , <〉
as either brave or cautious orderings.

4.2 Context-dependent Learning from Answer Sets

Common to previous ILP frameworks is the underlying assumption that hy-
potheses should cover the examples with respect to one fixed given background
knowledge. But, in practice, some examples may be context-dependent – differ-
ent examples may need to be covered using different background knowledges.
The journey preferences in Example 13 can be extended, for example, with con-
textual information (e.g. the weather).

Example 15. Reconsider the background knowledge and examples from Exam-
ple 14. It may be that certain attributes of a journey are context-dependent ; for
instance, weather conditions may be important. Any of the ordering examples o
in Example 14 could be extended with a context such as C = {raining.}. This
would mean that for a brave ordering o, there should be a pair of answer sets
of B ∪H ∪C that extends the partial interpretations in o and that respects the
ordering (w.r.t. the weak constraints in B ∪H ∪ C).
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In fact, the definition of a context-dependent ordering example given in this
tutorial is slightly more general than in Example 15, as each partial interpre-
tation in a context-dependent ordering example can have its own context. We
will see that in addition to representing genuine contextual information, in some
cases, contexts can be used in order to partition the background knowledge into
pieces that are relevant to particular examples. We now formalise the notion of
context-dependent examples. Similarly to ILPLOAS examples, these are of two
types: partial interpretations and ordering examples.

Definition 11. A context-dependent partial interpretation (CDPI) is a pair
e = 〈epi, ectx〉, where epi is a partial interpretation and ectx is an ASPch pro-
gram (i.e. an ASP program with no weak constraints), called a context. Given a
program P , an interpretation I is said to be an accepting answer set of e w.r.t.
P if and only if I ∈ AS(P ∪ ectx) and I extends epi. P is said to accept e if
there is at least one accepting answer set of e w.r.t. P .

Definition 12. A context-dependent ordering example (CDOE) o is a tuple
〈〈e1pi, e1ctx〉, 〈e2pi, e2ctx〉, op〉, where the first two elements are CDPIs and op is a bi-
nary comparison operator (<, >, =, ≤, ≥ or 6=). Given a CDOE o = 〈e1, e2, op〉,
inverse(o) = 〈e1, e2, op−1〉, where <−1 is ≥, ≤−1 is >, =−1 is 6=, 6=−1 is =, >−1

is ≤ and ≥−1 is >. A pair of interpretations 〈I1, I2〉 is said to be an accepting
pair of answer sets of o wrt a program P if all of the following conditions hold:
(i) I1 is an accepting answer set of 〈e1pi, e1ctx〉; (ii) I2 is an accepting answer

set of 〈e2pi, e2ctx〉; and (iii) 〈I1, I2, op〉 ∈ ord(P,AS(P ∪ e1ctx) ∪ AS(P ∪ e2ctx)). A
program P is said to bravely respect o if there is at least one accepting pair of
answer sets of o. P is said to cautiously respect o if there is no accepting pair
of answer sets of inverse(o).

Definition 13. A Context-dependent Learning from Ordered Answer Sets
(ILP contextLOAS ) task is a tuple T = 〈B,SM , 〈E+, E−, Ob, Oc〉〉 where B is an ASP
program, SM is a set of ASP rules, E+ and E− are finite sets of CDPIs, and Ob

and Oc are finite sets of CDOEs over E+ called, respectively, brave and cautious
orderings. A hypothesis H ⊆ SM is an inductive solution of T if and only if:

1. ∀e ∈ E+, B ∪H accepts e
2. ∀e ∈ E−, B ∪H does not accept e
3. ∀o ∈ Ob, B ∪H bravely respects o
4. ∀o ∈ Oc, B ∪H cautiously respects o

Example 16. Reconsider the journey preference learning task of Example 14.
The contextual information in Example 15 can be added to the examples e1 and
e2, to show the preference “in the case that it is raining e1 is preferred to e2,
but otherwise it is the other way around” with the context dependent ordering
examples o1 and o2:

o1 =
〈〈
e1,
{
raining.

}〉
,
〈
e2,
{
raining.

}〉
, <
〉

o2 = 〈〈e2, ∅〉 , 〈e1, ∅〉 , <〉
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4.3 ILASP

Inductive Learning of Answer Set Programs (ILASP) is a collection of algorithms
for solving ILPLAS , ILPLOAS and ILP contextLOAS tasks. Similarly to ASPAL, each
ILASP algorithm makes use of meta-level ASP programs. As we will see in
Section 4.4, deciding whether a hypothesis is a solution of one of the ILPb tasks
solved by ASPAL is NP -complete in the propositional case, whereas the same
decision problem for the tasks solved by ILASP is DP -complete. For this reason,
ILASP 1 and 2 do not encode the search for solutions in a single meta-level ASP
program (solving such a program is NP -complete in the propositional case), but
instead employ an iterative algorithm, where a meta-level ASP program is solved
repeatedly with new constraints added in each iteration, until the optimal answer
sets of the meta-level program correspond to the optimal inductive solutions of
the task.

The details of ILASP’s meta-level programs are beyond the scope of this tuto-
rial6. For the purposes of this tutorial, all the reader needs to know is that given
any ILPLAS , ILP contextLAS or ILP contextLOAS task T , both ILASP1(T ) and ILASP2(T )
return an optimal solution of T (resources permitting, of course).

Relevant examples and ILASP2i. The ILASP1 and ILASP2 algorithms both
scale poorly with respect to the number of examples as the number of rules in
the grounding of their meta-level ASP programs is proportional to the number
of examples. The ILASP2i algorithm [24] solves a task iteratively, by building
up a set of relevant examples. The idea is that in real tasks, many examples may
be similar and may therefore be covered by exactly the same set of hypotheses.
If this is the case, it is sufficient to consider only a small set of examples that
are representative of the full set – these are the relevant examples. ILASP2i
constructs this set iteratively, by assuming that its current relevant example set
is completely representative of the full set, and using ILASP2 to solve the task
with only those examples. If the assumption holds, then the hypothesis returned
by ILASP2 will be an inductive solution of the full task. If not, then there must
be at least one example which is not covered by the hypothesis returned by
ILASP2 – this is added to the relevant example set before the next iteration.7

The findRelevantExample method is used to check whether a given hypothesis
H is an inductive solution of the full task; if it is, then it returns nil (as there
are no relevant examples to find); otherwise, it returns an example which is not
covered by H.

In some ways, ILASP2i can be thought of as a non-monotonic variation on
the idea of a cover-loop with three major differences: (1) just because an example
is covered in one iteration, it is not guaranteed to be covered in future iterations

6 Details of the encodings can be found in [21, 22, 20].
7 In Algorithm 1.1 the set Relevant is a pair of sets of examples, the first set be-

ing relevant positive examples and the second set relevant negative examples. The
notation on Line 5 means to add example re to the appropriate set, depending on
whether it is a positive or a negative example.
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Algorithm 1.1 ILASP2i

1: procedure ILASP2i(〈B,SM , E
+, E−〉)

2: Relevant = 〈∅, ∅〉; H = ∅;
3: re = findRelevantExample(〈B,SM , E

+, E−〉, H);
4: while re 6= nil do
5: Relevant << re;
6: H = ILASP2(〈B,SM , Relevant〉);
7: if H == nil then
8: return UNSATISFIABLE;
9: else

10: re = findRelevantExample(〈B,SM , E
+, E−〉, H);

11: end if
12: end while
13: returnH;
14: end procedure

(unless it is added to the set of relevant examples); (2) the learning starts from
scratch in each iteration (rather than iteratively building a hypothesis); and (3)
the full set of relevant examples is considered in each iteration (rather than a
single current seed example).

4.4 The Complexity and Generality of Learning Answer Set
Programs

Throughout this tutorial, we have discussed the six main frameworks for learning
under the answer set semantics. As we introduced the early learning frameworks,
we discussed some of their limitations, such as the fact that systems based on
brave induction are unable to learn constraints. These limitations were some of
the original motivations of the later frameworks such as ILPLAS .

Although we have already demonstrated that there are programs which can
be learned by ILPLAS based systems that cannot be learned by systems based
on earlier frameworks, it is more interesting to consider exactly which classes
of programs can be learned by each framework. The aim is to characterise the
class of ASP programs that a framework is capable of learning, if given sufficient
examples. Language biases tend, in general, to impose their own restrictions on
the classes of program that can be learned. They are primarily used to aid the
performance of the computation, rather than to capture intrinsic properties of
a learning framework. In this chapter we will therefore consider learning tasks
with unrestricted hypothesis spaces: hypotheses can be constructed from any set
of normal rules, choice rules and hard and weak constraints. We assume each
learning framework F to have a task consisting of a pair 〈B,EF 〉, where B is
the (ASP) background knowledge and EF is a tuple consisting of the examples
for this framework; for example ELAS

8 = 〈E+, E−〉 where E+ and E− are sets
of partial interpretations.

8 Note that to avoid cumbersome notation, we denote this ELAS rather than EILPLAS .
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In [25], the generality of the six main frameworks was investigated and three
new measures of generality were presented, based on which of the hypotheses a
framework can distinguish from other hypotheses. Roughly speaking, a hypothe-
sis H1 can be distinguished from another hypothesis H2 (with respect to a given
background knowledge B) if there is at least one set of examples E such that
B∪H1 satisfies every example in E and B∪H2 does not. The following definition
formalises the one-to-one-distinguishability class of a learning framework.

Definition 14. The one-to-one-distinguishability class of a learning framework
F (denoted D1

1(F)) is the set of tuples 〈B,H1, H2〉 of ASP programs for which
there is at least one task TF = 〈B,EF 〉 such that H1 ∈ ILPF (TF ) and H2 6∈
ILPF (TF ). For each 〈B,H1, H2〉 ∈ D1

1(F), TF is said to distinguish H1 from
H2 with respect to B.

Note that the one-to-one-distinguishability relationship is not symmetric; i.e
there are pairs of hypothesesH1 andH2 such that, given a background knowledge
B, H1 can be distinguished from H2, but H2 can not be distinguished from H1.
This is illustrated by Example 17.

Example 17. Consider a background knowledge B that defines the concepts of
cell, same block, same row and same column for a 4x4 Sudoku grid (see Exam-
ple 11).

Let H1 be the incomplete description of the Sudoku rules:

1 { value(C, 1), value(C, 2), value(C, 3), value(C, 4) } 1 :- cell(C).

:- value(C1, V), value(C2, V), same_row(C1, C2).

:- value(C1, V), value(C2, V), same_col(C1, C2).

Also let H2 be the complete description of the Sudoku rules:

1 { value(C, 1), value(C, 2), value(C, 3), value(C, 4) } 1 :- cell(C).

:- value(C1, V), value(C2, V), same_row(C1, C2).

:- value(C1, V), value(C2, V), same_col(C1, C2).

:- value(C1, V), value(C2, V), same_block(C1, C2).

ILPb can distinguish H1 from H2 with respect to B. This can be seen using
the task 〈B, 〈{value((1, 1), 1), value((2, 2), 1)}, ∅〉〉. On the other hand, ILPb
cannot distinguish H2 from H1. Whatever examples are given in a learning task
to learn H2, it must be the case that E+ ⊆ A and E− ∩ A = ∅, where A is an
answer set of B ∪H2. But answer sets of B ∪H2 are also answer sets of B ∪H1.
So A is also an answer set of B ∪H1, which implies that H1 satisfies the same
examples and is a solution of the same learning task.

Table 1 gives conditions which are both sufficient and necessary for a tuple
〈B,H,H1〉 to appear in the one-to-one-distinguishability class of each learning
framework.9 Proofs of the correctness of these conditions are given in [25]. The
conditions show that that the following orderings hold:

9 In Table 1 the following two notations are used. For programs P and Q the relation
P ≡s Q means that for any program R AS(P ∪R) = AS(Q∪R) and for a program
P Ec(BP ) is the set of conjunctions of literals in every answer set of P .



Logic-based Learning of Answer Set Programs 29

Framework F Sufficient/necessary condition for 〈B,H1, H2〉 to be in D1
1(F)

ILPb AS(B ∪H1) 6⊆ AS(B ∪H2)

ILPsm AS(B ∪H1) 6⊆ AS(B ∪H2)

ILPc AS(B ∪H1) 6= ∅ ∧ (AS(B ∪H2) = ∅ ∨ (Ec(B ∪H1) 6⊆ Ec(B ∪H2)))

ILPLAS AS(B ∪H1) 6= AS(B ∪H2)

ILPLOAS (AS(B ∪H1) 6= AS(B ∪H2)) ∨ (ord(B ∪H1) 6= ord(B ∪H2))

ILP context
LOAS (B ∪H1 6≡s B ∪H2) ∨ (∃C ∈ ASPch s.t. ord(B ∪H1 ∪ C) 6= ord(B ∪H2 ∪ C))

Table 1. A summary of the sufficient and necessary conditions in each learning frame-
work for a hypothesis H1 to be distinguishable from another hypothesis H2 with respect
to a background knowledge B.

– D1
1(ILPb) = D1

1(ILPsm) ⊂ D1
1(ILPLAS) ⊂ D1

1(ILPLOAS) ⊂ D1
1(ILP contextLOAS )

– D1
1(ILPc) ⊂ D1

1(ILPLAS)

If we view one-to-one-distinguishability as a measure of the generality of a
learning framework, then ILPb, ILPsm and ILPc are each strictly less general
than ILPLAS , and ILPLOAS and ILP contextLOAS are more general still.

The one-to-many-distinguishability class of a learning framework. In
practice, an ILP task has a search space of possible hypotheses, and it is im-
portant to know the cases in which one particular hypothesis can be distin-
guished from the rest. In what follows, we analyse the conditions under which
a learning framework can distinguish a hypothesis from a set of other hypothe-
ses. This corresponds to the notion of one-to-many-distinguishability class of a
learning framework, which is a generalisation of the notion of the one-to-one-
distinguishability class.

Definition 15. The one-to-many-distinguishability class of a learning frame-
work F (denoted D1

m(F)) is the set of all tuples 〈B,H, {H1, . . . ,Hn}〉 such that
there is a task TF that distinguishes H from each Hi with respect to B.

Given two frameworks F1 and F2, we say that F1 is at least as (resp. more)
D1
m-general as (resp. than) F2 if D1

m(F2) ⊆ D1
m(F1) (resp. D1

m(F2) ⊂ D1
m(F1)).

The one-to-many-distinguishability class tells us the circumstances in which
a framework is general enough to distinguish some target hypothesis from a
set of unwanted hypotheses. Note that, although the tuples in a one-to-many-
distinguishability class that have a singleton set as the third argument corre-
spond to the tuples in a one-to-one-distinguishability class of that framework, it
is not always the case that if F1 is more D1

m-general than F2 then F1 is also more
D1

1-general than F2. For example, we will see that ILPsm is more D1
m-general

than ILPb, but we have already seen that the ILPb and ILPsm are equally
D1

1-general.

Example 18. D1
m(ILPb) ⊂ D1

m(ILPsm). We can see this as follows. Firstly,
clearly D1

m(ILPb) ⊆ D1
m(ILPsm), as any ILPb task can be trivially mapped

into an ILPsm task. Thus, it remains to show that D1
m(ILPb) 6= D1

m(ILPsm).
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Consider the programs B = ∅, H = {1{heads, tails}1.}, H1 = {heads.}
and H2 = {tails.}. 〈B,H, {H1, H2}〉 ∈ D1

m(ILPsm) (〈B, 〈{〈{tails}, ∅〉,
〈{heads}, ∅〉}〉〉 distinguishes H from H1 wrt the background knowledge B).
We now show that there is no task Tb = 〈B, 〈E+, E−〉〉 such that H ∈ ILPb(Tb)
and {H1, H2} ∩ ILPb(Tb) = ∅.

Assume for contradiction that there is such a task Tb. As H ∈ ILPb(Tb)
and AS(B ∪ H) = {{heads}, {tails}}, E+ ⊂ {heads, tails} and E− ⊂
{heads, tails} (neither can be equal to {heads, tails} or H would not be
a solution).

Case 1: E+ = ∅
Case a: E− = ∅

Then H1 and H2 would be inductive solutions. This is a contradiction
as {H1, H2} ∩ ILPb(Tb) = ∅.

Case b: E− = {heads}
Then H2 would be an inductive solution of Tb. Contradiction.

Case c: E− = {tails}
Then H1 would be an inductive solution of Tb. Contradiction.

Case 2: E+ = {heads}
heads 6∈ E− as otherwise the task would have no solutions (and we know
that H is a solution). In this case H1 would be an inductive solution
(regardless of what else is in E−). Contradiction.

Case 3: E+ = {tails}
Similarly to above case, tails 6∈ E− as otherwise the task would have no
solutions. In this case H2 would be an inductive solution (regardless of
what else is in E−). Contradiction.

Hence, there is no such task Tb = 〈B, 〈E+, E−〉〉 such that H ∈ ILPb(Tb) and
{H1, H2} ∩ ILPb(Tb) = ∅. So, D1

m(ILPb) 6= D1
m(ILPsm).

In [25], it is shown that the following orderings hold.

– D1
m(ILPb) ⊂ D1

m(ILPsm) ⊂ D1
m(ILPLAS) ⊂ D1

m(ILPLOAS) ⊂ D1
m(ILP contextLOAS )

– D1
m(ILPc) ⊂ D1

m(ILPLAS)

[25] presents a further measure of generality, many-to-many-distinguishability.
The many-to-many-distinguishability class of a framework is used to analyse
which sets of hypotheses can be distinguished from other sets of hypotheses.
However, the many-to-many-distinguishability class is outside the scope of this
tutorial.

Complexity. Given the differences in generality between the various learning
frameworks, an obvious question to ask is whether there is any price to pay in
terms of computational complexity when using the more general frameworks.
In this section, we consider three common decision problems when using the
learning frameworks:

– Verification: deciding whether a given hypothesis is an inductive solution of
a given learning task.
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Framework Verification Satisfiablity Optimum Verification

ILPb NP -complete NP -complete DP -complete

ILPsm NP -complete NP -complete DP -complete

ILPc DP -complete ΣP
2 -complete ΠP

2 -complete

ILPLAS DP -complete ΣP
2 -complete ΠP

2 -complete

ILPLOAS DP -complete ΣP
2 -complete ΠP

2 -complete

ILP context
LOAS DP -complete ΣP

2 -complete ΠP
2 -complete

Table 2. A summary of the complexity of the various learning frameworks. Verification
corresponds to deciding whether a given hypothesis is a solution of a given learning
task. Satisfiability corresponds to deciding whether a learning task has any solutions
at all. Optimum verification corresponds to deciding whether a given hypothesis is the
optimal (shortest) solution of a given task.

– Satisfiability : deciding whether a given learning task has any inductive solu-
tions.

– Optimum Verification: deciding whether a given hypothesis is an optimal
inductive solution of a given learning task.

Table 2 gives the complexity results for propositional versions of each of the
learning frameworks (where the background knowledge, contexts of examples
and hypothesis space is restricted to propositional ASP). Proofs of the results
in Table 2 can be found in [20]. Interestingly despite the great difference in the
generality of the various frameworks, for each of the three decision problems,
ILP contextLOAS has the same complexity as ILPc. The complexity of both ILPb
and ILPsm is lower than any of the other frameworks, which suggests that
in applications where the increased generality of the other frameworks is not
needed, ILPsm may be more suitable. It should be noted that ILASP may still
be used to solve such tasks – ILPLAS tasks with no negative examples are
equivalent to ILPsm tasks.

4.5 Learning Answer Set Programs from Noisy Examples

The learning from answer sets frameworks have recently been upgraded to sup-
port learning from noisy examples [26]. In this section, we present a generalisa-
tion of the idea to give a general way of upgrading any non-noisy learning frame-
work with a notion of penalised examples. There are already several algorithms,
predating these formal definitions, which adopt the approach of penalising ex-
amples (e.g. XHAIL [36] and Inspire [18]).

Given any learning framework ILPF covered in this tutorial (ILPb, ILPc,
ILPLAS , etc) a task of the penalised framework n(ILPF ) is of the same form
as tasks for ILPF , other than the fact that each example is of the form e@p,
where e is an example of the previous framework and p is either ∞ (meaning
the example must be covered) or it is a positive integer representing the penalty
for not covering that example. This penalty is also often called a weight for the
example.
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Given any task T and hypothesis H, the score of H w.r.t. T , written S(H,T ),
is equal to |H|+

∑
e@p∈U

p where U is the set of examples in T that are not covered

by H. In the case of brave induction (where each answer set of B ∪ H might
suggest that different examples are covered), S(H,T ) is assigned the minimum
possible score. In the case of cautious induction, for the penalty of a hypothesis
to be finite, it must also be satisifiable when it is combined with the background
knowledge. The inductive solutions of a task are the hypotheses with a finite
score. The optimal inductive solutions are the set of inductive solutions which
minimise the score.

Example 19. Consider an extension of the ILPb task from Example 3, T ′ =
〈B,SM , 〈E+, E−〉〉, where:

B =



bird(X) : - penguin(X).
bird(X) : - sparrow(X).
penguin(b1).
penguin(b2).
penguin(b3).
sparrow(b4).



E+ = {flies(b1)@2, flies(b4)@2}

E− = {flies(b2)@2, flies(b3)@2}

SM =

h1 :
h2 :

flies(X) : - bird(X).
flies(X) : - bird(X),

not penguin(X).


– S(∅, T ′) = |∅|+ 4 = 4.
– S({h1}, T ′) = |{h1}| + 4 = 5 (recall that the type atom bird(X) does not

count towards the length of the rule).
– S({h2}, T ′) = |{h2}|+ 2 = 4.
– S({h2}, T ′) = |{h1, h2}|+ 4 = 7.

This task has two optimal inductive solutions: ∅ and {h2}. The choice of
penalty for the examples is important. If each of the examples in this task had
had penalty 1, ∅ would have been optimal; whereas if the penalties had all been
3, {h2} would have been optimal.

Note that we have used an extremely small hypothesis space here to keep
things simple. In reality, the hypothesis space would usually be much bigger!

The ASPAL encoding shown in the previous section can be extended to solve
noisy tasks. This is achieved using weak constraints to represent the penalties
of the examples. The XHAIL and ILASP systems have also been extended to
handle noise in a similar way by using optimisation in ASP. ASPAL and ILASP
are both guaranteed to find an optimal inductive solution of any task; however,
as shown in Example 20 XHAIL may not.

Example 20. Consider the following noisy task, in the XHAIL input format:

p(X) :- q(X, 1), q(X, 2).

p(X) :- r(X).

s(a). s(b). s2(b).

t(1). t(2).

#modeh r(+s).

#modeh q(+s2, +t).

#example not p(a)=50.

#example p(b)=100.
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This corresponds to a hypothesis space that contains two facts F1 = r(X),
F2 = q(X, Y) (in XHAIL, these facts are implicitly “typed”, so the first fact,
for example, can be thought of as the rule r(X) : - s(X)). The two examples have
penalties 50 and 100 respectively. There are four possible hypotheses: ∅, F1, F2

and F1 ∪ F2, with scores 100, 51, 1 and 52 respectively. XHAIL terminates and
returns F1, which is a suboptimal hypothesis.

The issue is with the first step. The system finds the smallest abductive
solution, {r(b)} and as there are no body declarations in the task, the kernel
set contains only one rule: r(b) : - s(b). XHAIL then attempts to generalise to a
first order hypothesis that covers the examples. There are two hypotheses which
are subsets of a generalisation of r(b) (F1 and ∅); as F1 has a lower score than
∅, XHAIL terminates and returns F1. The system does not find the abductive
solution {q(b, 1), q(b, 2)}, which is larger than {r(b)} and is therefore not chosen,
even though it would eventually lead to a better solution than {r(b)}.

It should be noted that XHAIL does have an iterative deepening feature for
exploring non-minimal abductive solutions, but in this case using this option
XHAIL still returns F1, even though F2 is a more optimal hypothesis. Even
when iterative deepening is enabled, XHAIL only considers non-minimal abduc-
tive solutions if the minimal abductive solutions do not lead to any non-empty
inductive solutions.

Although ILASP1, ILASP2 and ILASP2i are all guaranteed to find optimal
inductive solutions of any n(ILP contextLOAS ) task, they do not perform well when
solving tasks with noise. ILASP3 is specifically targetted at learning tasks with
noisy examples; however, a discussion of ILASP3 is beyond the scope of this tu-
torial. An in depth discussion of ILASP3 can be found in [20], and an evaluation
of ILASP3 on several noisy datasets can be found in [26].

5 Conclusion

This tutorial has presented an introduction to logic based learning under the
answer set semantics. We have introduced the six main frameworks for learning
ASP programs, and presented generality results highlighting the flaws in early
frameworks and showing that to learn some ASP programs the recent, more
general, frameworks are required. The development of learning frameworks has
been matched by the development of more sophisticated algorithms, of which we
have given an overview in this tutorial. The most recent ILASP system supports
learning ASP programs including normal rules, choice rules and hard and weak
constraints, even from noisy examples. However, there are still challenges to
be addressed, particularly with respect to scalability, which is the focus of our
current research.
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