Logic-Based Learning: Answer Set Programming

Mark Law
February 5, 2015

This tutorial aims for you to practice using the stable model semantics (Unit 6) and
ASP (Unit 7). Once you have completed it, you should be able to write, solve and run
ASP programs involving normal rules, choice rules and constraints. These problems
require the use of clingo. Clingo is installed on the lab machines and can be found at
/vol/lab/CLASP /clingo. You should write your ASP programs and run the command
/vol/1lab/CLASP/clingo -n O {filename}. Clingo will then compute the Answer
Sets of your program. If you wish instead to see the ground program, you should run
with the option “-t”. Note that this grounding is sometimes simpler than what we
compute as ground(P), as clingo will simplify things wherever possible.

Question 1
For the following normal logic programs P and sets X:

a) Calculate ground(P)

b) Calculate (ground(P))*

d) Write down all stable models of P (No proof required).

e

)
)

c) Is X a stable model of P?
)
) Check your answers using Clingo.
)

i) X ={p(1),q(2),r(1),7(2)}, i) X ={p(1),q(2),r(1),r(2)},

p(X) « not ¢(X),r(X). p(X) « not ¢(X),r(X)
p_) a(X) ot p(X),r(X). q(X) + mnot p(X), r(X).
r(1). P=1¢ s+ ¢q(X),not s
r(2). r(1).
r(2).
iii) X ={p}and X =0 i) X ={p,q},

:{penotq. P:{p<—q.
q < D- q < D-

LoGic-BASED LEARNING: TUTORIAL 4 2

Question 2

a) Given the following normal logic programs P and statements .S, write down
further normal logic programs (), consisting of only a single normal rule which
is as short as possible, such that the statement S is true.

i) P = p < not q. p < not q.
| ¢4 notr. i) P— q < not p.

B) r<notrp.

§: “PUQ = p r < not r,q

PUQ [g and T

PUQ k7 S: “PUQ [p and
PUQ ¥ ¢

Hint: in part (i), p, ¢ and r can all be in different stable models of P U Q.

b) Consider again the program () you found in part i. Given the program P,
is there any set of literals X such that P U Q |=, X but there is no shorter
hypothesis @’ such that P U Q' |=, X7 If not, why not?

Question 3

Given a program P = r < p, ¢, write down normal logic programs () such that:
i) PUQ kEpp, PUQ =y gand PUQ . not r
i) PUQFypAgand PUQ fE. 1

Question 4

Calculate all Answer Sets of the ASP program P below. Use Clingo to verify your

answers.
{a,b,c,d}3 < e.
e < not f.

P={ 0{f}L.
b+ d.
c < not a.

Question 5

Consider the abductive task from Tutorial 1, (KB, Ab, IC), where KB, Ab and IC
are defined as follows:

MARK LAwW Answer Set Programming

LoGic-BASED LEARNING: TUTORIAL 4

headache(X) + jaundice(X)
KB = | headache(X) < migraine(X)
sickness(X) < stomachBug(X)

«— migraine(X), jaundice(X)
IC = | + jaundice(X),not yellowEyes(X)
« jaundice(X),not sickness(X)

Ab =

jaundice(bob)
migraine(bob)
yellowEyes(bob)

i) Encode the abductive task as an ASP program P such that the Answer Sets of
P can be mapped back to the abductive solutions of the task.

ii) Use clingo to find the abductive solutions of the task.

ii1) Write an optimisation statement such that smaller abductive solutions are pref-

ered.

Question 6

Consider the following abductive model (also from tutorial 1) (K B, Ab, IC), where

KB, Ab and IC' are defined as follows:

carDoesNotStart(X) < batteryFlat(X)
KB — carDoesNotStart(X) <— hasNoFuel(X)

lightsGoOn(mycar)

fuellndicator Empty(mycar)

+ batteryFlat(X),
lightsGoOn(X)
IC = | < hasNoFuel(X),
not fuellndicator Empty(X),
not brokenIndicator(X)

Ab =

batteryFlat(mycar)
batteryFlat(yourcar)
hasNoFuel(mycar)
hasNoFuel(yourcar)
brokenIndicator(mycar)
brokenIndicator(yourcar) |

For each observation below, write an ASP program whose optimal Answer Sets are

the smallest abductive solutions of the task.
1. O = carDoesNotStart(mycar)

2. O = carDoesNotStart(yourcar)

MARK LAwW

Answer Set Programming

LoGic-BASED LEARNING: TUTORIAL 4 4

Question 7
For each ASP program P below:

a) Use clingo to find the Answer Sets of P (use the option --opt-ignore to ignore
the optimisation statement)

b) Which of these Answer Sets is optimal? Why? (you can check your Answer
using clingo with --opt-all)

i) r(1..2).
p(X) :- not q(X), r(X).
q(X) :- not p(X), r(X), in_hyp(1).
q(X) - p(X), r(X), in_hyp(2).
q(X) :- s(X), in_hyp(3).
s(X) :- p(X), in_hyp(4).
:-= not p(1).
:— not q(2).
- p(2).
= q(1).
0 { in_hyp(1), in_hyp(2), in_hyp(3), in_hyp(4) } 4.
#minimize[in_hyp(1)=3, in_hyp(2)=3,
in_hyp(3)=2, in_hyp(4)=2].

ii) person(a). person(b). person(c). person(d).
interested(a, logic). interested(d, logic).
interested(b, biology) . interested(c, biology) .
interested(a, sport). interested(b, sport).
interested(c, sport). interested(a, physics).
interested(c, music). interested(d, music).
1 { pair(P, a), pair(P, b), pair(P, c), pair(P, d) } 1 :- person(P).
:— pair(P, P).

pair(P1, P2) :- pair(P2, P1).
shared_interest(P1, P2, I) :- interested(P1, I), interested(P2, I),
pair(P1, P2).
shared_disinterest(P1, P2, I) :- not interested(P1, I),
not interested(P2, I),
pair(P1, P2), interested(P3, I).
#maximize[shared_interest(P1, P2, I) = 2,
shared_disinterest(P1, P2, I) =1].

Notice that this program has a non-ground optimisation statement. What do
you think it would ground as?

MARK LAwW Answer Set Programming

LoGic-BASED LEARNING: TUTORIAL 4 5

Question 8

You are given some facts describing the “blocks world” problem shown below. The
rules are that at each step you are allowed to move exactly one block, providing that
there is no block already ontop of it. The table has enough room for all three blocks,
but each block can only hold one block immediately above it.

a
c b
b a ¢
Initial State Goal State
step(0..6). % This is shorthand for the facts step(0), ..., step(6).
block(a).
block(b) .
block(c).

on(b, table, 0).
on(a, table, 0).
on(c, a, 0).

finished(T) :- goal(T2), step(T), T >= T2.

goal(T) :- on(c, table, T), on(b,c, T), on(a, b, T), not finished(T-1).
goalMet :- goal(T).

:— not goalMet.

clear(table, T) :- step(T).
clear(L, T) :- not blocked(L, T), block(L), step(T).
blocked(L, T) :- on(B, L, T).

O { move(B, L, T) } 1 :- block(B), not blocked(B, T), clear(L, T), not finished(T).

:— move(B, L, T), move(B2, L2, T), B != B2.

1. Write some rules for on(Block, Location, T+1) in terms of on(Block, Location, T).
You will need to use step(T') to avoid an infinite grounding!

2. Write an optimisation statement such that the optimal Answer Sets of your
program are now the ones with the fewest moves before the goal is reached.

3. Test your implementation in Clingo.

MARK LAwW Answer Set Programming

LoGic-BASED LEARNING: TUTORIAL 4 6

Advanced Questions

Question 9

For any ASP program P and any atom a such that ground(P) does not contain a,
prove that for any ground atoms bq,...,b,, and ci,...,c,, there are no Answer Sets
Aof Q@ =PU{a < by,...,by,n0t c,...,n0t ¢, not a} st {by,...,0,} € A and
{c1,...,cn} NA=10.

Question 10

For any ASP program P and any atom a such that ground(P) does not contain a,
prove that for any ground atoms by,...,b,, and cq, ..., c,:
Q = PU{a < by,...,bp,n0t ¢1,...,00t ¢,,; < not a} . by, ..., by, 00t ¢1,..., 100t ¢,

MARK LAwW Answer Set Programming

