Logic-based Learning in ASP

Mark Law

mark.law09@imperial.ac.uk

>

>

—

Structure

AIM

-~

Stable Model Semantics

= History and motivations
> Fundamental definitions for the Stable Model Semantics
> Brave and Cautious entailment

Answer Set Programming (ASP)

= Extended syntax of ASP including constraints, choice rules and optimisation
= Modelling in ASP

Non-monotonic learning in ASP

> Brave and Cautious Induction in ASP
= The algorithm of ASPAL

Learning from Answer Sets (LAS)
= Motivation: the need for a brave and cautious learning approach in ASP

= Relationship to other learning approaches
= Algorithm for computing the optimal solutions of any LAS task

© Mark Law

In this part of the course, we will consider non-monotonic learning under
the Answer Set/Stable Model Semantics. In todays lecture, we will

introduce the concepts needed for the next 4 lectures.

In Lecture 2 we look at early approaches to learning under the Answer
Set Semantics and study the algorithm ASPAL which maps its ILP task to
an ASP program which can then be solved for optimal hypotheses.

In the final two lectures we will study a recent more general approach to
learning ASP programs developed within the department. This consists of
a new learning task - Learning from Answer Sets - and its corresponding

algorithm - ILASP.

Stable Model Semantics

Mark Law

mark.law09@imperial.ac.uk

4 | 31| 2
21113 |4
312141

Prolog and negation

* Consider the program:

p:-n
q:-a
qg:-b

What should prolog return if queried p?

© Mark Law

Prolog programs can be queried as to whether a particular formula is
true; for example, in the program {p :-notq. q:-a. q:-b.}the queryp?
causes the search shown on the slide.

Searching for (not g) leads to a search for q. If each branch of the search
tree return false (in finite time) then (not g)? returns true. As the search
for g returns false, (not g)? returns true. Therefore the query p? returns

true.

Prolog and negation

* Consider the program:

b - not gq.
q - not p.

What should prolog return if queried p?

© Mark Law

Given the program { p :-notg. ¢ :- not p. }, the Prolog query p? leads to
the infinite search:

There are, in fact, multiple answers to the query. The value of p depends
on the value of q: if g is true then p is false, but if g is false then p is true.
g depends similarly on p and thus cannot be determined either.

The stable model semantics (Gelfond and Lifschitz 1988) is a different
approach to solving normal logic programs. Rather than providing
solutions to specific queries, they define the set of “stable” models for
the program. This particular program (as we will see) has the stable
models {p} and {q}.

Stable Model Semantics

Syntax

* The syntax of normal logic programs is a subset of the syntax of Prolog.
* Atoms are of the form: p(f(X),c)
* pis a predicate, X is a variable, f is a function symbol, c is a constant.

* Ground atoms are those which contain no variables.

* Normal logic programs are sets of rules of the form R:
h:- by, ..., bm, notcy, ..., not c
¢ h,b’s,c’s are all atoms.
* head(R) =h; body*(R) ={bi,....bm}; body(R)={ci,....,cn}

* Note: for facts (rules with no body) we will omit the :-

© Mark Law

When the stable model semantics were first defined, these definitions
were applied to normal logic programs. These are collections of rules of
the form of the rule R below:

h :- by, ..., bm, not cy, ..., not cn.

where the h, b’s and ¢’s are all atoms.

We refer to h as the head of the rule, and the b’s and c’s (collectively) as
the body of the rule. We write head(R) to denote h, body*(R) to denote
{bs, ..., bm} and body (R) to denote {cj, ..., cn}.

Note: as is conventional, for rules with empty bodies (facts) we omit
the :-

Grounding

* The first stage of solving any normal logic program, is to ground it.

* For any program P with function symbols, there are infinitely many
ground instances of each rule in P.

P: ground(P):

p(f(X)) - a(X).
qg(a).

* We can generate the set of relevant ground instances of rules in P
(written ground(P)) incrementally.

* At each step we generate all rules which are ground instances R; of
rules R in P, such that for each atom A in body*(R) there is at least one
rule already in ground(P) with A as the head.

© Mark Law

The grounding of a program P is the program constructed by replacing
each rule R in P by every ground instance of R. Most of the time, this
grounding will be infinite as there are infinitely many redundant rules
whose bodies could never be satisfied. ASP solvers do not generate
redundant rules. They generate the grounding incrementally, only
generating rules R such that each atom a in body*(R) is already the head
of another ground rule. We write ground(P) to refer to this grounding.

Safety

In Prolog, rules will flounder:

p(X) - notq(X, Y), r(X, Y).
r(a, b).

In ASP, this rule is fine, but there is another condition: safety

A rule is unsafe if it contains a variable which doesn’t occur in body*(R).

p(Z) :- not q(X,Y), r(X)Y).
p(X) :- not q(X)Y), r(X.Y).
p(Y) :- not q(X,Y), r(Y,Y).

© Mark Law

In Prolog, floundering is a problem because negative literals may contain
a variable which is only ground by a positive literal occurring later in the
body of the rule. As ASP does not consider the order of the literalsin a
rule, this is less of a problem in ASP; however, due to ASP’s need to
ground the entire program, another condition (safety) is needed instead.
ASP solvers are restricted to only “safe” rules. A rule R is safe, if every
variable in R occurs in at least one atom in body*(R). For example p(X) :-
q(Y) is not safe, but p(X) :- p(X) is. p(X) :- q(X), not r(Y) is not safe either.
Note that this means that every variable in the head of the rule must
occur positively in the body; the fact p(X) is unsafe. This is very different
to Prolog.

Even restricting ourselves to safe rules, ground(P) can still be infinite; for
example:
p(f(X)) :- p(X).

p(1).
has an infinite grounding.

Herbrand Model

* For any normal logic program P, the Herbrand Base of P (written
HB(P)) is the set of all ground atoms made from the constants,
function symbols and predicate symbols in P.

p(f(X)) - g(X). q(a).
{ p(a), p(f(a)), ..., ala), q(f(a)), ... }

* An Herbrand interpretation of P assigns each atom in HB(P) to either
true or false.VVe write it as the set of all atoms it assigns to true.

* An Herbrand model M of P, is an Herbrand interpretation such that
for every ground instance of a rule in P whose body is satisfied by M,
the head is also satisfied by M.

© Mark Law

For any logic program P the Herbrand Base HB(P) is the (possibly infinite)
set of all ground atoms constructed from predicates, constants and
function symbols in P.

An Herbrand interpretation of P assigns a truth value (true or false) to
each atom in HB(P). We will write an Herbrand interpretation / as the set
of all atoms in HB(P) which | assigns to true.

For definite logic programs an Herbrand interpretation / of Pis an
Herbrand model if for every rule R such that each atom in body*(R) is
true in / and each atom in body (R) is false in I, the head of R is true in /.

Least Herbrand Model

* An Herbrand model M is a minimal Herbrand model of a program P if
no subset of M is also a model.

* For definite logic programs, there is a unique minimal Herbrand model
called the least Hebrand model (denoted M(P))

* We can construct it, starting with M = {}, by iteratively adding the heads
of (the ground instances of) those rules whose bodies are already
satisfied by M.

p(f(X)) :- a(X).
p(X) - r(X), g(Y). M =

qg(b). r(a).

© Mark Law

An Herbrand model M of P is a minimal Herbrand model of P if there is
no smaller Herbrand model of P. For definite logic programs, there is a
unigue minimal Herbrand model, called the least Herbrand model, which
we will denote with M(P).

For a definite logic program P, M(P) can be constructed by starting with
the empty set M = {} and repeatedly adding any atom h to M such that h
is the head of a rule whose body is a subset of M. For definite programs
with no loops this is the same as what is provable using Prolog.

Least HM for a normal program?

p :-notq.

g :- not p.

p - notp.

© Mark Law

When it comes to normal logic programs, in general, there is not a least
Herbrand model. The first program depicted on the slide has two
minimal models; in fact, we shall see that these coincide with the stable
models of the same program.

The second program does have a least Herbrand model. But p is
“unsupported”. That is: there is no rule in the program with p as its head
whose body is true given the model {p}. In fact, there are no stable
models of this program.

Reduct

* The reduct of any ground normal logic program P with respect to any
set of atoms X is constructed in two steps:

* |) Remove any rule from P whose body contains the negation as failure
of an atom in X.

* 2) Remove any negation as failure atoms from the remaining rules in P

* The remaining logic program is the reduct of P with respect to X,
written PX

X = {p} P: p :- notq.

© Mark Law

For a normal logic program, in general there may not be a unique least
Herbrand model. In 1988 Gelfond and Lifschitz defined the stable model
semantics for normal logic programs. To determine whether an
interpretation X is a stable model of P, we must first construct the reduct
of P with respect to X (written PX).

The first step in constructing PX is to remove any rule R from P such that
body (R) contains an atom which is not in X.

The second (and final) step is, for all remaining rules R, to remove body

(R).

This process can be thought of as making a guess at an interpretation X
which might be an Answer Set and then assuming the Answer Set to be
true when interpreting the negation as failure in the program. For
example, on the slide when we assume {p} to be the Answer Set, we
know that not g is true as g isn’t in {p} so we can remove the literal from
the first rule; we also know that not p is false as p is in {p} and can
therefore remove the rule with this literal in the body.

Stable Model

* Aninterpretation X is a stable model of a normal logic program P iff X
is the least Herbrand model of ground(P)X. (X = M(ground(P)X)

M(P¥) = {p} = X

X is a stable model of P. Similarly {q} is also a stable model of P

© Mark Law

An interpretation X is a stable model of P if and only if X is the unique
least Herbrand Model of ground(P)X. For propositional programs, we will
often omit the ground as ground(P) = P and write instead P,

For the logic programs we have considered so far, stable models are
equivalent to the more general concept of Answer Sets. Answer Set
Programming (ASP) allows for many more kinds of rule such as classical
(strong) negation, constraints, aggregates, optimisation statements and
weak constraints. We will explore some, but not all, of these in this
course.

From this point onwards, even when referring to stable models of normal
logic programs, we will use the term Answer Set.

Stable Model

* Aninterpretation X is a stable model of a normal logic program P iff X
is the least Herbrand model of ground(P)*. (X = M(ground(P)*)

P X = {p, q}
PX empty!
M(PX)={}#X

X is not a stable model of P.

© Mark Law

Stable Model

* Aninterpretation X is a stable model of a normal logic program P iff X
is the least Herbrand model of ground(P)*. (X = M(ground(P)*)

P p:- : X={}
q:-
PX p. q.

M(P¥) = {p, q} # X

X is not a stable model of P.

© Mark Law

Brave/Cautious Entailment

* Anatom A is bravely entailed by a program P if it is true in at
least one stable model of P (written P =, A).

* AnatomA is cautiously entailed if it is true in every stable model
of P (written P =_ A).

p - not q. = P

Fy q
g :- not p. = r
r. Eor

© Mark Law

For definite logic programs P, the notion of entailment, is just whether a
formula is true in the least Herbrand model of a program P. For normal
logic programs, there can be one, many or even no stable models. This
leads to two different notions of entailment: brave and cautious.

We say that a formula is bravely entailed by a program P if it is true in at
least one stable model of P. Conversely, it is cautiously entailed if it is
true in all stable models of P.

For definite logic programs, the least Herbrand model coincides with the
programs unique stable model and therefore the notions of brave and
cautious both correspond with the least Herbrand entailment.

Summary

* Saw some examples of normal logic programs in which
some queries cannot be evaluated in Prolog.

* Defined
—Safety and grounding
—Least Herbrand Model (Recap)
—The reduct of a program
—Stable models of a normal logic program
—Brave and cautious entailment

* We saw a general way to test whether an interpretation is
a stable model of a particular program

© Mark Law

