


In	
  this	
  part	
  of	
  the	
  course,	
  we	
  will	
  consider	
  non-­‐monotonic	
  learning	
  under	
  
the	
  Answer	
  Set/Stable	
  Model	
  Seman<cs.	
  In	
  todays	
  lecture,	
  we	
  will	
  
introduce	
  the	
  concepts	
  needed	
  for	
  the	
  next	
  4	
  lectures.	
  	
  
In	
  Lecture	
  2	
  we	
  look	
  at	
  early	
  approaches	
  to	
  learning	
  under	
  the	
  Answer	
  
Set	
  Seman<cs	
  and	
  study	
  the	
  algorithm	
  ASPAL	
  which	
  maps	
  its	
  ILP	
  task	
  to	
  
an	
  ASP	
  program	
  which	
  can	
  then	
  be	
  solved	
  for	
  op<mal	
  hypotheses.	
  
In	
  the	
  final	
  two	
  lectures	
  we	
  will	
  study	
  a	
  recent	
  more	
  general	
  approach	
  to	
  
learning	
  ASP	
  programs	
  developed	
  within	
  the	
  department.	
  This	
  consists	
  of	
  
a	
  new	
  learning	
  task	
  -­‐	
  Learning	
  from	
  Answer	
  Sets	
  -­‐	
  and	
  its	
  corresponding	
  
algorithm	
  -­‐	
  ILASP.	
  





Prolog	
  programs	
  can	
  be	
  queried	
  as	
  to	
  whether	
  a	
  par<cular	
  formula	
  is	
  
true;	
  for	
  example,	
  in	
  the	
  program	
  {p	
  :-­‐	
  not	
  q.	
  	
  	
  q	
  :-­‐	
  a.	
  	
  	
  q	
  :-­‐	
  b.}	
  the	
  query	
  p?	
  
causes	
  the	
  search	
  shown	
  on	
  the	
  slide.	
  
	
  
Searching	
  for	
  (not	
  q)	
  leads	
  to	
  a	
  search	
  for	
  q.	
  If	
  each	
  branch	
  of	
  the	
  search	
  
tree	
  return	
  false	
  (in	
  finite	
  <me)	
  then	
  (not	
  q)?	
  returns	
  true.	
  As	
  the	
  search	
  
for	
  q	
  returns	
  false,	
  (not	
  q)?	
  returns	
  true.	
  Therefore	
  the	
  query	
  p?	
  returns	
  
true.	
  
	
  



Given	
  the	
  program	
  {	
  p	
  :-­‐	
  not	
  q.	
  	
  	
  	
  q	
  :-­‐	
  not	
  p.	
  },	
  the	
  Prolog	
  query	
  p?	
  leads	
  to	
  
the	
  infinite	
  search:	
  
	
  
p?	
  
(not	
  q)?	
  
q?	
  	
  
(not	
  p)?	
  
…	
  
	
  
There	
  are,	
  in	
  fact,	
  mul<ple	
  answers	
  to	
  the	
  query.	
  The	
  value	
  of	
  p	
  depends	
  
on	
  the	
  value	
  of	
  q:	
  if	
  q	
  is	
  true	
  then	
  p	
  is	
  false,	
  but	
  if	
  q	
  is	
  false	
  then	
  p	
  is	
  true.	
  
q	
  depends	
  similarly	
  on	
  p	
  and	
  thus	
  cannot	
  be	
  determined	
  either.	
  
	
  
The	
  stable	
  model	
  seman<cs	
  (Gelfond	
  and	
  Lifschitz	
  1988)	
  is	
  a	
  different	
  
approach	
  to	
  solving	
  normal	
  logic	
  programs.	
  Rather	
  than	
  providing	
  
solu<ons	
  to	
  specific	
  queries,	
  they	
  define	
  the	
  set	
  of	
  “stable”	
  models	
  for	
  
the	
  program.	
  This	
  par<cular	
  program	
  (as	
  we	
  will	
  see)	
  has	
  the	
  stable	
  
models	
  {p}	
  and	
  {q}.	
  





When	
  the	
  stable	
  model	
  seman<cs	
  were	
  first	
  defined,	
  these	
  defini<ons	
  
were	
  applied	
  to	
  normal	
  logic	
  programs.	
  These	
  are	
  collec<ons	
  of	
  rules	
  of	
  
the	
  form	
  of	
  the	
  rule	
  R	
  below:	
  
h	
  :-­‐	
  b1,	
  …,	
  bm,	
  not	
  c1,	
  …,	
  not	
  cn.	
  
where	
  the	
  h,	
  b’s	
  and	
  c’s	
  are	
  all	
  atoms.	
  	
  
We	
  refer	
  to	
  h	
  as	
  the	
  head	
  of	
  the	
  rule,	
  and	
  the	
  b’s	
  and	
  c’s	
  (collec<vely)	
  as	
  
the	
  body	
  of	
  the	
  rule.	
  We	
  write	
  head(R)	
  to	
  denote	
  h,	
  body+(R)	
  to	
  denote	
  
{b1,	
  …,	
  bm}	
  and	
  body-­‐(R)	
  to	
  denote	
  {c1,	
  …,	
  cn}.	
  
Note:	
  as	
  is	
  conven<onal,	
  for	
  rules	
  with	
  empty	
  bodies	
  (facts)	
  we	
  omit	
  
the	
  :-­‐	
  



The	
  grounding	
  of	
  a	
  program	
  P	
  is	
  the	
  program	
  constructed	
  by	
  replacing	
  
each	
  rule	
  R	
  in	
  P	
  by	
  every	
  ground	
  instance	
  of	
  R.	
  Most	
  of	
  the	
  <me,	
  this	
  
grounding	
  will	
  be	
  infinite	
  as	
  there	
  are	
  infinitely	
  many	
  redundant	
  rules	
  
whose	
  bodies	
  could	
  never	
  be	
  sa<sfied.	
  ASP	
  solvers	
  do	
  not	
  generate	
  
redundant	
  rules.	
  They	
  generate	
  the	
  grounding	
  incrementally,	
  only	
  
genera<ng	
  rules	
  R	
  such	
  that	
  each	
  atom	
  a	
  in	
  body+(R)	
  is	
  already	
  the	
  head	
  
of	
  another	
  ground	
  rule.	
  We	
  write	
  ground(P)	
  to	
  refer	
  to	
  this	
  grounding.	
  



In	
  Prolog,	
  floundering	
  is	
  a	
  problem	
  because	
  nega<ve	
  literals	
  may	
  contain	
  
a	
  variable	
  which	
  is	
  only	
  ground	
  by	
  a	
  posi<ve	
  literal	
  occurring	
  later	
  in	
  the	
  
body	
  of	
  the	
  rule.	
  As	
  ASP	
  does	
  not	
  consider	
  the	
  order	
  of	
  the	
  literals	
  in	
  a	
  
rule,	
  this	
  is	
  less	
  of	
  a	
  problem	
  in	
  ASP;	
  however,	
  due	
  to	
  ASP’s	
  need	
  to	
  
ground	
  the	
  en<re	
  program,	
  another	
  condi<on	
  (safety)	
  is	
  needed	
  instead.	
  
ASP	
  solvers	
  are	
  restricted	
  to	
  only	
  “safe”	
  rules.	
  A	
  rule	
  R	
  is	
  safe,	
  if	
  every	
  
variable	
  in	
  R	
  occurs	
  in	
  at	
  least	
  one	
  atom	
  in	
  body+(R).	
  For	
  example	
  p(X)	
  :-­‐	
  
q(Y)	
  is	
  not	
  safe,	
  but	
  p(X)	
  :-­‐	
  p(X)	
  is.	
  p(X)	
  :-­‐	
  q(X),	
  not	
  r(Y)	
  is	
  not	
  safe	
  either.	
  
Note	
  that	
  this	
  means	
  that	
  every	
  variable	
  in	
  the	
  head	
  of	
  the	
  rule	
  must	
  
occur	
  posi<vely	
  in	
  the	
  body;	
  the	
  fact	
  p(X)	
  is	
  unsafe.	
  This	
  is	
  very	
  different	
  
to	
  Prolog.	
  
	
  
Even	
  restric<ng	
  ourselves	
  to	
  safe	
  rules,	
  ground(P)	
  can	
  s<ll	
  be	
  infinite;	
  for	
  
example:	
  
p(f(X))	
  :-­‐	
  p(X).	
  
p(1).	
  
has	
  an	
  infinite	
  grounding.	
  
	
  



For	
  any	
  logic	
  program	
  P	
  the	
  Herbrand	
  Base	
  HB(P)	
  is	
  the	
  (possibly	
  infinite)	
  
set	
  of	
  all	
  ground	
  atoms	
  constructed	
  from	
  predicates,	
  constants	
  and	
  
func<on	
  symbols	
  in	
  P.	
  
An	
  Herbrand	
  interpreta<on	
  of	
  P	
  assigns	
  a	
  truth	
  value	
  (true	
  or	
  false)	
  to	
  
each	
  atom	
  in	
  HB(P).	
  We	
  will	
  write	
  an	
  Herbrand	
  interpreta<on	
  I	
  as	
  the	
  set	
  
of	
  all	
  atoms	
  in	
  HB(P)	
  which	
  I	
  assigns	
  to	
  true.	
  
For	
  definite	
  logic	
  programs	
  an	
  Herbrand	
  interpreta<on	
  I	
  of	
  P	
  is	
  an	
  
Herbrand	
  model	
  if	
  for	
  every	
  rule	
  R	
  such	
  that	
  each	
  atom	
  in	
  body+(R)	
  is	
  
true	
  in	
  I	
  and	
  each	
  atom	
  in	
  body-­‐(R)	
  is	
  false	
  in	
  I,	
  the	
  head	
  of	
  R	
  is	
  true	
  in	
  I.	
  
	
  



An	
  Herbrand	
  model	
  M	
  of	
  P	
  is	
  a	
  minimal	
  Herbrand	
  model	
  of	
  P	
  if	
  there	
  is	
  
no	
  smaller	
  Herbrand	
  model	
  of	
  P.	
  For	
  definite	
  logic	
  programs,	
  there	
  is	
  a	
  
unique	
  minimal	
  Herbrand	
  model,	
  called	
  the	
  least	
  Herbrand	
  model,	
  which	
  
we	
  will	
  denote	
  with	
  M(P).	
  
For	
  a	
  definite	
  logic	
  program	
  P,	
  M(P)	
  can	
  be	
  constructed	
  by	
  star<ng	
  with	
  
the	
  empty	
  set	
  M	
  =	
  {}	
  and	
  repeatedly	
  adding	
  any	
  atom	
  h	
  to	
  M	
  such	
  that	
  h	
  
is	
  the	
  head	
  of	
  a	
  rule	
  whose	
  body	
  is	
  a	
  subset	
  of	
  M.	
  For	
  definite	
  programs	
  
with	
  no	
  loops	
  this	
  is	
  the	
  same	
  as	
  what	
  is	
  provable	
  using	
  Prolog.	
  



When	
  it	
  comes	
  to	
  normal	
  logic	
  programs,	
  in	
  general,	
  there	
  is	
  not	
  a	
  least	
  
Herbrand	
  model.	
  The	
  first	
  program	
  depicted	
  on	
  the	
  slide	
  has	
  two	
  
minimal	
  models;	
  in	
  fact,	
  we	
  shall	
  see	
  that	
  these	
  coincide	
  with	
  the	
  stable	
  
models	
  of	
  the	
  same	
  program.	
  
	
  
The	
  second	
  program	
  does	
  have	
  a	
  least	
  Herbrand	
  model.	
  But	
  p	
  is	
  
“unsupported”.	
  That	
  is:	
  there	
  is	
  no	
  rule	
  in	
  the	
  program	
  with	
  p	
  as	
  its	
  head	
  
whose	
  body	
  is	
  true	
  given	
  the	
  model	
  {p}.	
  In	
  fact,	
  there	
  are	
  no	
  stable	
  
models	
  of	
  this	
  program.	
  



For	
  a	
  normal	
  logic	
  program,	
  in	
  general	
  there	
  may	
  not	
  be	
  a	
  unique	
  least	
  
Herbrand	
  model.	
  In	
  1988	
  Gelfond	
  and	
  Lifschitz	
  defined	
  the	
  stable	
  model	
  
seman<cs	
  for	
  normal	
  logic	
  programs.	
  To	
  determine	
  whether	
  an	
  
interpreta<on	
  X	
  is	
  a	
  stable	
  model	
  of	
  P,	
  we	
  must	
  first	
  construct	
  the	
  reduct	
  
of	
  P	
  with	
  respect	
  to	
  X	
  (wriben	
  PX).	
  
The	
  first	
  step	
  in	
  construc<ng	
  PX	
  is	
  to	
  remove	
  any	
  rule	
  R	
  from	
  P	
  such	
  that	
  
body-­‐(R)	
  contains	
  an	
  atom	
  which	
  is	
  not	
  in	
  X.	
  
The	
  second	
  (and	
  final)	
  step	
  is,	
  for	
  all	
  remaining	
  rules	
  R,	
  to	
  remove	
  body-­‐
(R).	
  
	
  
This	
  process	
  can	
  be	
  thought	
  of	
  as	
  making	
  a	
  guess	
  at	
  an	
  interpreta<on	
  X	
  
which	
  might	
  be	
  an	
  Answer	
  Set	
  and	
  then	
  assuming	
  the	
  Answer	
  Set	
  to	
  be	
  
true	
  when	
  interpre<ng	
  the	
  nega<on	
  as	
  failure	
  in	
  the	
  program.	
  For	
  
example,	
  on	
  the	
  slide	
  when	
  we	
  assume	
  {p}	
  to	
  be	
  the	
  Answer	
  Set,	
  we	
  
know	
  that	
  not	
  q	
  is	
  true	
  as	
  q	
  isn’t	
  in	
  {p}	
  so	
  we	
  can	
  remove	
  the	
  literal	
  from	
  
the	
  first	
  rule;	
  we	
  also	
  know	
  that	
  not	
  p	
  is	
  false	
  as	
  p	
  is	
  in	
  {p}	
  and	
  can	
  
therefore	
  remove	
  the	
  rule	
  with	
  this	
  literal	
  in	
  the	
  body.	
  



An	
  interpreta<on	
  X	
  is	
  a	
  stable	
  model	
  of	
  P	
  if	
  and	
  only	
  if	
  X	
  is	
  the	
  unique	
  
least	
  Herbrand	
  Model	
  of	
  ground(P)X.	
  For	
  proposi<onal	
  programs,	
  we	
  will	
  
ocen	
  omit	
  the	
  ground	
  as	
  ground(P)	
  =	
  P	
  and	
  write	
  instead	
  PX.	
  
For	
  the	
  logic	
  programs	
  we	
  have	
  considered	
  so	
  far,	
  stable	
  models	
  are	
  
equivalent	
  to	
  the	
  more	
  general	
  concept	
  of	
  Answer	
  Sets.	
  Answer	
  Set	
  
Programming	
  (ASP)	
  allows	
  for	
  many	
  more	
  kinds	
  of	
  rule	
  such	
  as	
  classical	
  
(strong)	
  nega<on,	
  constraints,	
  aggregates,	
  op<misa<on	
  statements	
  and	
  
weak	
  constraints.	
  We	
  will	
  explore	
  some,	
  but	
  not	
  all,	
  of	
  these	
  in	
  this	
  
course.	
  
From	
  this	
  point	
  onwards,	
  even	
  when	
  referring	
  to	
  stable	
  models	
  of	
  normal	
  
logic	
  programs,	
  we	
  will	
  use	
  the	
  term	
  Answer	
  Set.	
  	
  
	
  







For	
  definite	
  logic	
  programs	
  P,	
  the	
  no<on	
  of	
  entailment,	
  is	
  just	
  whether	
  a	
  
formula	
  is	
  true	
  in	
  the	
  least	
  Herbrand	
  model	
  of	
  a	
  program	
  P.	
  For	
  normal	
  
logic	
  programs,	
  there	
  can	
  be	
  one,	
  many	
  or	
  even	
  no	
  stable	
  models.	
  This	
  
leads	
  to	
  two	
  different	
  no<ons	
  of	
  entailment:	
  brave	
  and	
  cau(ous.	
  
We	
  say	
  that	
  a	
  formula	
  is	
  bravely	
  entailed	
  by	
  a	
  program	
  P	
  if	
  it	
  is	
  true	
  in	
  at	
  
least	
  one	
  stable	
  model	
  of	
  P.	
  Conversely,	
  it	
  is	
  cau<ously	
  entailed	
  if	
  it	
  is	
  
true	
  in	
  all	
  stable	
  models	
  of	
  P.	
  
For	
  definite	
  logic	
  programs,	
  the	
  least	
  Herbrand	
  model	
  coincides	
  with	
  the	
  
programs	
  unique	
  stable	
  model	
  and	
  therefore	
  the	
  no<ons	
  of	
  brave	
  and	
  
cau<ous	
  both	
  correspond	
  with	
  the	
  least	
  Herbrand	
  entailment.	
  
	
  




