Answer Set Programming

Mark Law

mark.law09@imperial.ac.uk

4 | 31| 2
21113 |4
312141

Extended Constructs in ASP

In the previous lecture, we covered the stable model semantics for normal logic
programs. The stable model semantics grew into the field that is now known as
Answer Set Programming (ASP). For normal logic programs, Answer Sets are exactly
the same as stable models; however, we will see in the course of this lecture that ASP
also allows for much more. Not only does ASP allow an extended syntax in which
constraints, aggregates, classical negation and optimisation statements are allowed;
it has become a new declarative programming paradigm.

The idea of Answer Set Programming is that you encode a problem as a logic
program, solve it for Answer Sets and then map these Answer Sets back to the
solutions of the original problem. We will see that ASP can not only be used like this
to solve simple problems such as sudoku, but can actually solve ILP tasks for their
optimal solutions.

Constraints

* Constraints, are ways of filtering any unwanted Answer Sets
:-bi, ..., bm, not cy, ..., not c.
* They are written as rules with an empty head (which means false).

* When computing the reduct, this empty head is replaced by L.

© Mark Law

Constraints can be used as a way of ruling out Answer Sets which are not
intended solutions of the problem we are trying to represent. At the
head of a constraint, is the atom L. L can never be in an Answer Set,
and so if the body of a constraint is satisfied by an interpretation X, then
X can not be an Answer Set (ground(P)X contains L, but X doesn’t).

In fact, any constraint:

:- bs, ..., bm, not cy, ..., not cn.

is equivalent to the normal rule:

s :-bi, ..., bm, notcy, ..., not ¢y, not s.

where s is an atom which does not occur in the rest of the program.

Constraints: example

* What are the Answer Sets of the program:

p :- not q.
q :- not p.
- p, not g.

* What about:

p - not q.
g - not p.
r.
- g, notr.

© Mark Law

© Mark Law

* An aggregate a {h, h,, ...,
ifa<|{h,hy...h}nX|<b

Choice Rules

h.} b is satisfied by an interpretation X

ground(P):

AS(P):

Aggregates are a construct in ASP which allow the mapping of a set of
atoms contained in an Answer Set to an integer. We will consider only

the most common in this course — count. In this course, we will also

restrict ourselves to rules in which aggregates are only allowed to appear
in the head rather than the body. This particular kind of rule is called a

choice rule.

Counting aggregates are useful when we want to express that there is a

choice. For instance, the rule:
1 { value(Coin, heads), value(Coin, tails) } 1 :- coin(Coin).

expresses that every coin takes either the value “heads” or “tails” (but

not both).

Choice Rules : Semantics

* We can compute the Answer Sets of a program P containing aggregates
in the heads of rules by inserting a final step into the computation of
the reduct PX. For each rule R with an aggregate as the head:

I. If the aggregate is not satisfied by X then we remove the head,
converting R into a constraint.

2. If the aggregate is satisfied then we generate one rule for each atom
A in the aggregate which is also in X, with A at the head.

P: 1{p,q}l:r. X={p,qr}

© Mark Law

For the subclass of rules with aggregates we use, this description of the
semantics of aggregates coincides with that described in Answer Set
Solving in Practice (Gebser et al. 2012). The restriction to rules only
containing aggregates in the head allows us to simplify these definitions.
When constructing the reduct of a ground program containing a rule R
with an aggregate A as its head with respect to an interpretation X, we
first apply the two steps for computing the reduct of a normal program
(treating A as if it were an atom).

If A is not satisfied with respect to the interpretation X, we remove the
rule R. If A is satisfied with respect to X, then we replace R with one rule
for each atom in A which is true in X (where this atom becomes the head
of the rule).

Choice Rules : Semantics

* We can compute the Answer Sets of a program P containing aggregates
in the heads of rules by inserting a final step into the computation of
the reduct PX. For each rule R with an aggregate as the head:

I. If the aggregate is not satisfied by X then we remove the head,
converting R into a constraint.

2. If the aggregate is satisfied then we generate one rule for each atom
A in the aggregate which is also in X, with A at the head.

P: 1{p,q}2:r. X={p, qr}
r.

P*: p:-r.
q:-r.

© Mark Law r.

Abduction in ASP

* Reconsider the abductive task:

KB IC
wobblyWheel < brokenSpokes
wobblyWheel < flatTyre
flatTyre < leakyValve

< not puncturedTube, leakyValve

flatTyre < puncturedTube. O Ab
wobblyWheel brokenSpokes
o puncturedTube
* How could we represent this in ASP? leakyValve

© Mark Law

We can represent any abductive task as an ASP program similarly to the one on this
slide. The choice rule here (with no body) generates Answer Sets in which each of the
abducibles is true. We then test each Answer Set using the integrity constraints and
the constraint which says that the observation wobblyWheel should be true.

This structure to an ASP program is called generate and test and is used a lot when
modeling using ASP. The idea is that you generate lots of Answer Sets and then use
constraints to test that they really are solutions to the problem you are solving.
Although, as previously mentioned in the course, generate and test is thought to be a
naive approach to ILP, the ASP solver is not actually doing a generate and test search
underneath; in fact, we could devote many lectures (possibly even an entire course)
to studying the different algorithms employed by ASP solvers. This one of the huge
advantages to ASP, although the solver is doing some very clever things underneath,
we do not see them. We write a program in a simplistic generate and test structure
and let the solver do the hard work. Imagine writing the same program in Prolog; you
would have to encode the logic of the search into the program.

We will see in the next lecture that ASPAL uses a very similar approach to solve an ILP
task.

© Mark Law

Optimisation Statements

Consider P:
1 {value(C, heads), value(C, tails) } 1 :- coin(C).
:-value(cl, X), value(c2, X)
coin(cl1). coin(c2).

Its Answer Sets are:

{ coin(c1), coin(c2), value(c1, heads), value(c2, tails) },

{ coin(c1), coin(c2), value(cl, tails), value(c2, heads) }

What do you think the optimisation statement below does?

#minimize [value(cl, heads)=1, value(c2, heads)=2]

Optimisation statements are useful when using ASP to model problems.
We can set up the ASP program to have Answer Sets corresponding to
the problems solution, and then use optimisation statements to give an
ordering over the Answer Sets specifying which Answer Sets of the

program are

ASP solvers such as clingo are then able to find optimal Answer Sets of
the program, which correspond to the optimal solutions of the original

problem.

preferred over others.

Optimisation Statements

» Optimisation statements are of the form:
#minimize [a,=w,,..., a =W _] or #maximize [a,=w,..., a =W,]
* The w’s are integer weights, and the a’s are ground atoms.

* The solvers will search for optimal Answer Sets which maximize or
minimize the weighted sum of the atoms.

© Mark Law

ASP solvers allow the use of multiple optimisation statements with different
priorities, but in this course we will consider ASP programs with only one
optimisation statement. These optimisation statements are sets of ground atoms
with weights.

They map Answer Sets to the weighted sum of the atoms which are true. If the
statement is a minimize statement then the optimal Answer Sets are then those with
the lowest sum. If the statement is a maximize statement then the optimal Answer
Sets are those with the highest sum.

You should note that modern ASP solvers also allow for weak constraints. We will not
consider these in this course, but they are equivalent to optimisation statements.

Modelling in ASP

Answer Set Programming

The Answer Set Programming paradigm is to translate the problem we
want to solve into an Answer Set Program such that when we solve the
program for Answer Sets, these Answer Sets can then be translated back

into solutions to the original problem. In the next few slides we will see
such a translation for the solutions of sudoku.

26

Answer Set Programming

== w

ol |w | =

ASP Representation
of-Sudoku

27

Sudoku

number(1..4).
cell(cell(X, Y)) :- number(X), number(Y).

same_row(cell(X1, Y), cell(X2,Y)) :
cell(cell(X1,Y)), cell(cell(X2,)), X1 !=X2.

same_col(cell(X, Y1), cell(X, Y2)) :-
cell(cell(X, Y1)), cell(cell(X, Y2)), Y1 I=Y2.

same_block(cell(1, 1), cell(1, 2)).
same_block(cell(1, 1), cell(2, 1)).
same_block(cell(1, 1), cell(2, 2)).

Sudoku

4 3 1 2 1 {value(C, 1), value(C, 2), value(C, 3), value(C, 4)} 1 :- cell(C).
211134 ‘
value(C1, V), value(C2, V), same_row(C1, C2).
3 9 4 1 :- value(C1, V), value(C2, V), same_col(C1, C2).
:- value(C1, V), value(C2, V), same_block(C1, C2).
114123

In the next few lectures, we will see how we can learn this
ASP program!

© Mark Law

Further Reading

Knowledge Representation, Reasoning and Declarative Problem Solving
— 2003, Cambridge University Press, Baral, C.

Knowledge Representation, Reasoning, and the Design of Intelligent
Agents

— 2012, Gelfond, M. Gelfond, Khal,Y.

http://www.cs.utexas.edu/~vl/teaching/388L/clingo guide.pdf
— 2010, Gebser et al

Knowledge Representation
— Course 491

Summary

* Looked at the paradigm of Answer Set programming.

* Defined the concepts of:
—Constraints
—Aggregates (Choice rules)
—Optimisation statements

* Modelling in ASP

—Abduction in ASP
—Solving sudoku in ASP

© Mark Law

