Brave and Cautious Induction

Mark Law

mark.law09@imperial.ac.uk

AIM

——

Structure

= Cautious Induction

= Definition and examples
> Limitations

= Brave Induction

= Definitions and examples
> Implementations

= ASPAL

> Skeleton rules

= ASP encoding

= Examples

= Limitations of Brave Induction

In this part of the course, we will consider the non-monotonic learning under the
Answer Set/Stable Model Semantics. In this lecture we look at early approaches to
learning under the Answer Set Semantics - brave and cautious induction - and study
the algorithm ASPAL which maps its ILP task to an ASP program which can then be
solved for optimal hypotheses.

Induction for definite programs

» Standard setting for ILP:
» Background knowledge B a definite program
» Positive examples E* atoms
» Negative examples E- atoms
» Find a hypothesis H such that:

vete E" : BUHEe€e"
veeE :BUHEEe

© Mark Law

For a definite program P, as there is always a unique least Herbrand model (written
M(P)), entailment is defined in terms of this least Herbrand model. The task of ILP
therefore is to find a hypothesis H such that M(B U H) contains all of a set of positive
examples and none of a set of negative examples.

When considering Answer Set programs, as we saw in previous lectures, there are
two different kinds of entailment: brave and cautious. In this lecture, we will see the
two ILP tasks based on these different types of entailment.

In subsequent lectures, we will then see a new ILP task which is capable of expressing
both brave and cautious induction.

Cautious Induction

Cautious Induction

* Cautious setting for ILP under the Answer Set semantics:
» Background knowledge B an ASP program
» Positive and negative examples E* and E- (atoms)
» Find a hypothesis H such that:
» B U H is satisfiable (has at least one Answer Set)
» for all Answer Sets A of BU H :

vete E* :efe A
veeE e ¢ A

© Mark Law

Cautious induction is based on the cautious semantics of ASP. As in the usual setting
for ILP we have sets of positive and negative examples called atoms (E* and E*). We
also have a background knowledge B which is an ASP program. We search for a
hypothesis H such that B U H is satisfiable (has at least one Answer Set) and every
Answer Set of B U H contains all of the positive examples and contains none of the
negative examples. We denote such an ILP task as the tuple <B, E*, E- >.

In other words, we search for a hypothesis such that B U H cautiously entails the

positive examples and the negation of each of the negative examples (B UH ~ (e1* A
..Nen*A(noter)A..A(notem))).

We write ILP.<B, E*, E- > to denote the set of hypotheses which are cautious inductive
solutions of the task <B, E*, E- >.

It should be noted that the original definition of Cautious Induction (Sakama 2008)
had no concept of negative examples. Here, we have presented a more general
definition.

Cautious Induction : Example

B

E* E
1 o]
q:-notp, notr.
s:-r.

* Which of the following hypotheses are cautious inductive solutions?

:- nots.
:-q.

p.

.
S. ‘

© Mark Law

Cautious Induction : Limitations

* What examples could we give to learn the program:

1 {value(C, heads), value(C, tails) } 1 :- coin(C).

coin(cl).

© Mark Law

Consider an empty background knowledge. We cannot construct a set of examples
such that any of the shortest hypotheses are: { 1 #count { value(C, heads); value(C,
tails) } 1 :- coin(C). coin(c1). }. This is because the only atom which is true in all
Answer Sets of the program we are trying to learn is coin(c1), and neither of the
atoms value(c1, heads) or value(cl, tails) is false in all Answer Sets. The only
relevant example we can give is therefore the positive example coin(c1). This would
cause us to learn coin(c1). as our hypothesis which has the single Answer Set
coin(c1). This is not what we are aiming for at all; we want to learn a program with
two distinct Answer Sets corresponding to the coin being heads or tails. Cautious
entailment of all examples in this case is too strong a requirement. We need to be
able to give examples of what is true in some Answer Sets but not all Answer Sets of
the learned program.

Brave Induction

Brave Induction

* Brave setting for ILP under the Answer Set semantics:
» Background knowledge B an ASP program
» Positive and negative examples E* and E- (atoms)
» Find a hypothesis H such that:
» there is at least one Answer Set Aof BU H :

vete E" et A
VveecE e ¢ A

© Mark Law

Brave induction is based on the brave semantics of ASP. We again have sets of atoms
called the positive and negative examples (E* and E") and a background knowledge B
which is an ASP program. We search for a hypothesis H such that B UH has at least
one Answer Set which contains all of the positive examples and contains none of the
negative examples. We denote such an ILP task as the tuple <B, E*, E- >.

In other words, we search for a hypothesis such that B UH bravely entails the positive
examples and the negation of each of the negative examples (B UH ~ (e1* /... Aen* /A

(noter) A... A(not em’))).

We write ILPy<B, E*, E- > to denote the set of hypotheses which are brave inductive
solutions of the task <B, E*, E >.

Similarly to cautious induction, it should be noted that the original definitions of
Brave Induction (Sakama 2008) had no concept of negative examples. We present the
more general definition here as it coincides with the task used by the algorithm we
will study.

Brave Induction : Example

B E* E

p :-notgq. |s | |:|

q:-notp, notr.
s:-r.

* Which of the following hypotheses are cautious inductive solutions?

- nots. p.
- q. s. |

© Mark Law

Implementations

Two of the main non-monotonic ILP algorithms compute the solutions
to brave induction tasks:

— XHAIL (Ray 09)

* An extension of the HAIL algorithm studied previously in the
course.

— ASPAL (Corapi, Russo, Lupu 201 |)

* Encodes of a brave ILP task into an ASP program.

— We will only have time to cover ASPAL in this course.

© Mark Law

Two of the main non-monotonic ILP systems which have been implemented, both
compute the solutions to a brave induction task. These are XHAIL - an extension of

the HAIL system studied earlier in the course - and ASPAL. We will study ASPAL in this
course.

ASPAL solves the ILP task by encoding the search as an ASP program.

ASPAL

ASPAL: Skeleton rules

* A skeleton rule for mode declarations <Mn, Mp> is a
compatible rule where all the constants placemarkers are
replaced with different variables instead of constants.

M, M, B

modeh(penguin(+bird)) bird(a). bird(b).

modeb(not can(+bird, #ability)) ability(fly). ability(swim).
can(a, fly). can(b, swim).

* The rule penguin(V1) = bird(V 1), not can(VI, Cl). represents:

* penguin(VI) - bird(V1), not can(V1, fly).
* penguin(Vl) - bird(V1), not can(VI, swim).

© Mark Law

For every variable, ASPAL will add the type of the variable to the body of the rule (as
on the slide with bird(V1)). This enforces that the rules only apply to terms with these
types and also means that ASPAL does not have to worry about the safety of rules (all
variables will certainly appear in at least one positive literal in the body). These
additional atoms do not count towards the length of the rules.

By using skeleton rules where the constant symbols are not yet ground, ASPAL shifts
the burden of finding the ground rules to the ASP solver. Each skeleton rule
represents a set of rules where the variables representing constants have been
replaced with constants of the correct types.

ASPAL: hypothesis space

* Given mode declarations <M, Mp>, the maximum number of literals
Limax allowed to appear in the body (not including atoms used to
enforce types) and the maximum number of variables Vimax, ASPAL will
generate a set of skeleton rules (omitting equivalent rules).We call
this set of skeleton rules the hypothesis space and denote it Sm.

* For example given Mh = {penguin(+bird)}, Mb = {not can(+bird, #ability)},

Vmax = | and Lmax = 2 calculate the hypothesis space Sm

M, M, B

modeh(penguin(+bird)) bird(a). bird(b).

modeb(not can(+bird, #ability)) ability(fly). ability(swim).
can(a, fly). can(b, swim).

© Mark Law

Given a set of mode declarations <Mh, Mb>, and positive integers Lmax and Vmax
specifying the number of literals allowed to appear in the body of the rule, and the
number of unique variables allowed in the rule, ASPAL constructs a set of skeleton
rules SM. We call this set the hypothesis space.

We say that a set of skeleton rules SM is maximal given <Mh, Mb>, Lmax and Vmax, if
any rule which can be constructed respecting <Mh, Mb>, Lmax and Vmax is
equivalent to a rule already in SM.

The hypothesis space constructed by ASPAL is maximal. We will not cover ASPAL's
algorithm for generating a maximal hypothesis space, but you will be expected to
construct a maximal hypothesis space for given mode declarations (this does not
have to be the same as the one generated by ASPAL).

ASPAL: hypothesis space

Su B

penguin(V1) :- bird(V1). bird(a). bird(b).

penguin(V1) :- bird(V1), not can(V1, C1). ability(fly). ability(swim).

penguin(V1) :- bird(V1), not can(V1, C1), can(a, fly). can(b, swim).
not can(V1, C2).

* Write down all possible rules represented by these skeleton rules:

© Mark Law

ASPAL: ASP encoding

* Given Sm, B, E*, and E-, we can encode the search for inductive solutions
as an ASP program.

* We assign each rule R in Su a unique identifier Ri.

* The atom rule(Rp, ¢y, ..., ¢;) represents the rule derived from the skeleton
rule R by replacing the variables for constant symbols with ¢;,...,c,.

* For example given the skeleton rule: p(V1, V2) :- g(V1, C1), r(V2, C2). with
ID: 2, the atom rule(2, a, b) represents:

p(V1, V2):-q(V1, a), r(V2, b).

The goal is to find these atoms using ASP.

© Mark Law

ASPAL encodes an ILP task as a meta level ASP program. The Answer Sets
contain atoms representing each of the rules in the hypothesis. This
means that we can map each Answer Set of the meta level program back
to an inductive solution of the task.

Each skeleton rule R in the hypothesis space §,, we assign a unique
identifier R,,. The atom rule(R,, c,, ..., ¢,) represents the skeleton rule R
with each of the constant variables replaced with the constants ¢, ..., c,.

ASPAL: ASP encoding

Given Sm, B, E*, and E;, we can encode the search for inductive
solutions as an ASP program.

The aggregate {rule(l, cl, c2), ... } causes one Answer Set to be
generated for each set of rules (ie. each hypothesis).

For each skeleton rule, we add the atom rule(RID, Cl,...,Cn) to its
body.

eg:
» penguin(V1) :- bird(V1), not can(V1, C1), rule(1, C1).

© Mark Law

The aggregate, {rule(1, c1, c2); ... }, causes one Answer Set to be
generated for each hypothesis which could be constructed from the
skeleton rules.

By adding rule(R,, C,,...,C,) to each rule R, we cause only the rules in the
hypothesis represented by a particular Answer Set of the meta program
to be effective. For any hypothesis H, for each Answer Set A of B UH,
there is an Answer Set A’ of the meta program which contains all of the
atoms of A in addition to the atoms rule(R,;, C,,...,C,) which represent the
hypothesis H.

ASPAL: ASP encoding

* Given Sm, B, E*, and E-, we can encode the search for inductive
solutions as an ASP program.

* We add the rule:
» goal -e*,...,en",not e, ..., not en.

* and the constraint:

» - not goal.

© Mark Law

By adding the rules:

goal :- e, ..., en*, not ez, ..., not em".

:- not goal.

we rule out any Answer Set of the meta program which corresponds to an Answer

Set of BUH which does not contain all of the positive examples or contains a negative
example.

This means that if there is an Answer Set of the meta program corresponding to a
particular hypothesis H, then BUH must have at least one Answer Set which contains
all of the positive examples or none of the negative examples (otherwise, all Answer
Sets of the meta program which correspond to H would have been rules out by the
goal constraint).

The result of this is that the Answer Sets of the meta program correspond exactly to
the inductive solutions of the task. This is exactly how ASPAL computes these
solutions.

ASPAL: ASP encoding

Given Sm, B, E*, and E;, we can encode the search for inductive
solutions as an ASP program.

* We add the optimisation statement:

—#minimize [rule(R},c),...,c)) = R ...]

© Mark Law

ASPAL uses an optimisation statement such that the optimal Answer Sets
of the meta level program correspond exactly to the optimal inductive
solutions of the task. It does this by weighting each of the rules by its
length.

ASPAL: ASP encoding example

B E* E

bird(a). bird(b). |penguin(b) | |penguin{a) |
ability(fly). ability(swim).
can(a, fly). can(b, swim).

% Background % Examples
bird(a). bird(b). goal :- penguin(b), not penguin(a).
:- not goal.

ability(fly). ability(swim).

can(a, fly). can(b, swim).

% Skeleton Rules

penguin(V1) :- bird(V1), rule(1).

penguin(V1) :- bird(V1), not can(V1, C1), rule(2, C1).

penguin(V1) :- bird(V1), not can(V1, C1), not can(V1, C2), rule(3, C1, C2).

% Generate Hypotheses

{rule(1), rule(2, fly), rule(2, swim), rule(3, fly, swim) }.

#minimise [rule(1)=1, rule(2, fly)=2, rule(2, swim)=2, rule(3, fly, swim)=3].
© Mark Law

Brave Induction : Limitations

* Consider a background knowledge:

1 {value(C, heads), value(C, tails) } 1 :- coin(C).
coin(C) :- biased coin(C).

biased coin(c1).

* What examples could we give to learn the constraint

:- not value(C, heads), biased coin(C).

© Mark Law

Some hypotheses cannot be learned using brave induction alone; for example, brave
induction cannot be used to learn any hypothesis which only rules out Answer Sets
and does not generate anything new.

In particular, a brave induction task will never have as an optimal solution, a
hypothesis containing a constraint. This is because, if the hypothesis is a solution for
the brave induction task, then it must have an Answer Set which contains all of the
positive and none of the negative examples. As constraints only rule out Answer Sets,
this Answer Set will still be an Answer Set of the program without the constraint. In
fact, one of the advanced questions on your tutorial sheet is to prove this property.

Summary

Defined
— Cautious Induction
—Brave Induction

* Seen an algorithm (ASPAL) which realises Brave Induction
by encoding the search as a meta level ASP program

* Seen that not all ASP programs can be learned using either
Brave or Cautious Induction.

* Next time: we will see a framework which is capable of
learning any ASP program consisting of normal rules,
choice rules and constraints.

© Mark Law

