


In	
  this	
  part	
  of	
  the	
  course,	
  we	
  will	
  consider	
  the	
  non-­‐monotonic	
  learning	
  under	
  the	
  
Answer	
  Set/Stable	
  Model	
  Seman<cs.	
  In	
  this	
  lecture	
  we	
  look	
  at	
  early	
  approaches	
  to	
  
learning	
  under	
  the	
  Answer	
  Set	
  Seman<cs	
  -­‐	
  brave	
  and	
  cau<ous	
  induc<on	
  -­‐	
  and	
  study	
  
the	
  algorithm	
  ASPAL	
  which	
  maps	
  its	
  ILP	
  task	
  to	
  an	
  ASP	
  program	
  which	
  can	
  then	
  be	
  
solved	
  for	
  op<mal	
  hypotheses.	
  



For	
  a	
  definite	
  program	
  P,	
  as	
  there	
  is	
  always	
  a	
  unique	
  least	
  Herbrand	
  model	
  (wriHen	
  
M(P)),	
  entailment	
  is	
  defined	
  in	
  terms	
  of	
  this	
  least	
  Herbrand	
  model.	
  The	
  task	
  of	
  ILP	
  
therefore	
  is	
  to	
  find	
  a	
  hypothesis	
  H	
  such	
  that	
  M(B	
  ∪	
  H)	
  contains	
  all	
  of	
  a	
  set	
  of	
  posi<ve	
  
examples	
  and	
  none	
  of	
  a	
  set	
  of	
  nega<ve	
  examples.	
  
	
  
When	
  considering	
  Answer	
  Set	
  programs,	
  as	
  we	
  saw	
  in	
  previous	
  lectures,	
  there	
  are	
  
two	
  different	
  kinds	
  of	
  entailment:	
  brave	
  and	
  cau(ous.	
  In	
  this	
  lecture,	
  we	
  will	
  see	
  the	
  
two	
  ILP	
  tasks	
  based	
  on	
  these	
  different	
  types	
  of	
  entailment.	
  
	
  
In	
  subsequent	
  lectures,	
  we	
  will	
  then	
  see	
  a	
  new	
  ILP	
  task	
  which	
  is	
  capable	
  of	
  expressing	
  
both	
  brave	
  and	
  cau<ous	
  induc<on.	
  





Cau<ous	
  induc<on	
  is	
  based	
  on	
  the	
  cau<ous	
  seman<cs	
  of	
  ASP.	
  As	
  in	
  the	
  usual	
  sePng	
  
for	
  ILP	
  we	
  have	
  sets	
  of	
  posi<ve	
  and	
  nega<ve	
  examples	
  called	
  atoms	
  (E+	
  and	
  E-­‐	
  ).	
  We	
  
also	
  have	
  a	
  background	
  knowledge	
  B	
  which	
  is	
  an	
  ASP	
  program.	
  We	
  search	
  for	
  a	
  
hypothesis	
  H	
  such	
  that	
  B	
  ⋃ H	
  is	
  sa<sfiable	
  (has	
  at	
  least	
  one	
  Answer	
  Set)	
  and	
  every	
  
Answer	
  Set	
  of	
  B	
  ⋃	
  H	
  contains	
  all	
  of	
  the	
  posi<ve	
  examples	
  and	
  contains	
  none	
  of	
  the	
  
nega<ve	
  examples.	
  We	
  denote	
  such	
  an	
  ILP	
  task	
  as	
  the	
  tuple	
  <B,	
  E+,	
  E-­‐	
  >.	
  
	
  
In	
  other	
  words,	
  we	
  search	
  for	
  a	
  hypothesis	
  such	
  that	
  B	
  ⋃	
  H	
  	
  cau<ously	
  entails	
  the	
  
posi<ve	
  examples	
  and	
  the	
  nega<on	
  of	
  each	
  of	
  the	
  nega<ve	
  examples	
  (B	
  ⋃	
  H	
  ⊨c	
  (e1+	
  ⋀	
  
…	
  ⋀	
  en+	
  ⋀	
  (not	
  e1-­‐)	
  ⋀	
  …	
  ⋀	
  (not	
  em-­‐))	
  ).	
  
	
  
We	
  write	
  ILPc<B,	
  E+,	
  E-­‐	
  >	
  to	
  denote	
  the	
  set	
  of	
  hypotheses	
  which	
  are	
  cau<ous	
  induc<ve	
  
solu<ons	
  of	
  the	
  task	
  <B,	
  E+,	
  E-­‐	
  >.	
  
	
  
It	
  should	
  be	
  noted	
  that	
  the	
  original	
  defini<on	
  of	
  Cau<ous	
  Induc<on	
  (Sakama	
  2008)	
  
had	
  no	
  concept	
  of	
  nega<ve	
  examples.	
  Here,	
  we	
  have	
  presented	
  a	
  more	
  general	
  
defini<on.	
  





Consider	
  an	
  empty	
  background	
  knowledge.	
  We	
  cannot	
  construct	
  a	
  set	
  of	
  examples	
  
such	
  that	
  any	
  of	
  the	
  shortest	
  hypotheses	
  are:	
  {	
  1	
  #count	
  {	
  value(C,	
  heads);	
  	
  value(C,	
  
tails)	
  }	
  1	
  :-­‐	
  coin(C).	
  	
  	
  	
  coin(c1).	
  }.	
  This	
  is	
  because	
  the	
  only	
  atom	
  which	
  is	
  true	
  in	
  all	
  
Answer	
  Sets	
  of	
  the	
  program	
  we	
  are	
  trying	
  to	
  learn	
  is	
  coin(c1),	
  and	
  neither	
  of	
  the	
  
atoms	
  value(c1,	
  heads)	
  or	
  	
  value(c1,	
  tails)	
  is	
  false	
  in	
  all	
  Answer	
  Sets.	
  The	
  only	
  
relevant	
  example	
  we	
  can	
  give	
  is	
  therefore	
  the	
  posi<ve	
  example	
  	
  coin(c1).	
  This	
  would	
  
cause	
  us	
  to	
  learn	
  coin(c1).	
  as	
  our	
  hypothesis	
  which	
  has	
  the	
  single	
  Answer	
  Set	
  
coin(c1).	
  This	
  is	
  not	
  what	
  we	
  are	
  aiming	
  for	
  at	
  all;	
  we	
  want	
  to	
  learn	
  a	
  program	
  with	
  
two	
  dis<nct	
  Answer	
  Sets	
  corresponding	
  to	
  the	
  coin	
  being	
  heads	
  or	
  tails.	
  Cau<ous	
  
entailment	
  of	
  all	
  examples	
  in	
  this	
  case	
  is	
  too	
  strong	
  a	
  requirement.	
  We	
  need	
  to	
  be	
  
able	
  to	
  give	
  examples	
  of	
  what	
  is	
  true	
  in	
  some	
  Answer	
  Sets	
  but	
  not	
  all	
  Answer	
  Sets	
  of	
  
the	
  learned	
  program.	
  





Brave	
  induc<on	
  is	
  based	
  on	
  the	
  brave	
  seman<cs	
  of	
  ASP.	
  We	
  again	
  have	
  sets	
  of	
  atoms	
  
called	
  the	
  posi<ve	
  and	
  nega<ve	
  examples	
  (E+	
  and	
  E-­‐	
  )	
  and	
  a	
  background	
  knowledge	
  B	
  
which	
  is	
  an	
  ASP	
  program.	
  We	
  search	
  for	
  a	
  hypothesis	
  H	
  such	
  that	
  B	
  ⋃	
  H	
  has	
  at	
  least	
  
one	
  Answer	
  Set	
  which	
  contains	
  all	
  of	
  the	
  posi<ve	
  examples	
  and	
  contains	
  none	
  of	
  the	
  
nega<ve	
  examples.	
  We	
  denote	
  such	
  an	
  ILP	
  task	
  as	
  the	
  tuple	
  <B,	
  E+,	
  E-­‐	
  >.	
  
	
  
In	
  other	
  words,	
  we	
  search	
  for	
  a	
  hypothesis	
  such	
  that	
  B	
  ⋃	
  H	
  bravely	
  entails	
  the	
  posi<ve	
  
examples	
  and	
  the	
  nega<on	
  of	
  each	
  of	
  the	
  nega<ve	
  examples	
  (B	
  ⋃	
  H	
  ⊨b	
  (e1+	
  ⋀	
  …	
  ⋀	
  en+	
  ⋀	
  
(not	
  e1-­‐)	
  ⋀	
  …	
  ⋀	
  (not	
  em-­‐))	
  ).	
  
	
  
We	
  write	
  ILPb<B,	
  E+,	
  E-­‐	
  >	
  to	
  denote	
  the	
  set	
  of	
  hypotheses	
  which	
  are	
  brave	
  induc<ve	
  
solu<ons	
  of	
  the	
  task	
  <B,	
  E+,	
  E-­‐	
  >.	
  
	
  
Similarly	
  to	
  cau<ous	
  induc<on,	
  it	
  should	
  be	
  noted	
  that	
  the	
  original	
  defini<ons	
  of	
  
Brave	
  Induc<on	
  (Sakama	
  2008)	
  had	
  no	
  concept	
  of	
  nega<ve	
  examples.	
  We	
  present	
  the	
  
more	
  general	
  defini<on	
  here	
  as	
  it	
  coincides	
  with	
  the	
  task	
  used	
  by	
  the	
  algorithm	
  we	
  
will	
  study.	
  





Two	
  of	
  the	
  main	
  non-­‐monotonic	
  ILP	
  systems	
  which	
  have	
  been	
  implemented,	
  both	
  
compute	
  the	
  solu<ons	
  to	
  a	
  brave	
  induc<on	
  task.	
  These	
  are	
  XHAIL	
  -­‐	
  an	
  extension	
  of	
  
the	
  HAIL	
  system	
  studied	
  earlier	
  in	
  the	
  course	
  -­‐	
  and	
  ASPAL.	
  We	
  will	
  study	
  ASPAL	
  in	
  this	
  
course.	
  
	
  
ASPAL	
  solves	
  the	
  ILP	
  task	
  by	
  encoding	
  the	
  search	
  as	
  an	
  ASP	
  program.	
  





For	
  every	
  variable,	
  ASPAL	
  will	
  add	
  the	
  type	
  of	
  the	
  variable	
  to	
  the	
  body	
  of	
  the	
  rule	
  (as	
  
on	
  the	
  slide	
  with	
  bird(V1)).	
  This	
  enforces	
  that	
  the	
  rules	
  only	
  apply	
  to	
  terms	
  with	
  these	
  
types	
  and	
  also	
  means	
  that	
  ASPAL	
  does	
  not	
  have	
  to	
  worry	
  about	
  the	
  safety	
  of	
  rules	
  (all	
  
variables	
  will	
  certainly	
  appear	
  in	
  at	
  least	
  one	
  posi<ve	
  literal	
  in	
  the	
  body).	
  These	
  
addi<onal	
  atoms	
  do	
  not	
  count	
  towards	
  the	
  length	
  of	
  the	
  rules.	
  
	
  
By	
  using	
  skeleton	
  rules	
  where	
  the	
  constant	
  symbols	
  are	
  not	
  yet	
  ground,	
  ASPAL	
  shiWs	
  
the	
  burden	
  of	
  finding	
  the	
  ground	
  rules	
  to	
  the	
  ASP	
  solver.	
  Each	
  skeleton	
  rule	
  
represents	
  a	
  set	
  of	
  rules	
  where	
  the	
  variables	
  represen<ng	
  constants	
  have	
  been	
  
replaced	
  with	
  constants	
  of	
  the	
  correct	
  types.	
  



Given	
  a	
  set	
  of	
  mode	
  declara<ons	
  <Mh,	
  Mb>,	
  and	
  posi<ve	
  integers	
  Lmax	
  and	
  Vmax	
  
specifying	
  the	
  number	
  of	
  literals	
  allowed	
  to	
  appear	
  in	
  the	
  body	
  of	
  the	
  rule,	
  and	
  the	
  
number	
  of	
  unique	
  variables	
  allowed	
  in	
  the	
  rule,	
  ASPAL	
  constructs	
  a	
  set	
  of	
  skeleton	
  
rules	
  SM.	
  We	
  call	
  this	
  set	
  the	
  hypothesis	
  space.	
  
	
  
We	
  say	
  that	
  a	
  set	
  of	
  skeleton	
  rules	
  SM	
  is	
  maximal	
  given	
  <Mh,	
  Mb>,	
  Lmax	
  and	
  Vmax,	
  if	
  
any	
  rule	
  which	
  can	
  be	
  constructed	
  respec<ng	
  <Mh,	
  Mb>,	
  Lmax	
  and	
  Vmax	
  is	
  
equivalent	
  to	
  a	
  rule	
  already	
  in	
  SM.	
  
	
  
The	
  hypothesis	
  space	
  constructed	
  by	
  ASPAL	
  is	
  maximal.	
  We	
  will	
  not	
  cover	
  ASPAL's	
  
algorithm	
  for	
  genera<ng	
  a	
  maximal	
  hypothesis	
  space,	
  but	
  you	
  will	
  be	
  expected	
  to	
  
construct	
  a	
  maximal	
  hypothesis	
  space	
  for	
  given	
  mode	
  declara<ons	
  (this	
  does	
  not	
  
have	
  to	
  be	
  the	
  same	
  as	
  the	
  one	
  generated	
  by	
  ASPAL).	
  
	
  





ASPAL	
  encodes	
  an	
  ILP	
  task	
  as	
  a	
  meta	
  level	
  ASP	
  program.	
  The	
  Answer	
  Sets	
  
contain	
  atoms	
  represen<ng	
  each	
  of	
  the	
  rules	
  in	
  the	
  hypothesis.	
  This	
  
means	
  that	
  we	
  can	
  map	
  each	
  Answer	
  Set	
  of	
  the	
  meta	
  level	
  program	
  back	
  
to	
  an	
  induc<ve	
  solu<on	
  of	
  the	
  task.	
  
	
  
Each	
  skeleton	
  rule	
  R	
  in	
  the	
  hypothesis	
  space	
  SM	
  we	
  assign	
  a	
  unique	
  
iden<fier	
  RID.	
  The	
  atom	
  rule(RID,	
  c1,	
  …,	
  cn)	
  represents	
  the	
  skeleton	
  rule	
  R	
  
with	
  each	
  of	
  the	
  constant	
  variables	
  replaced	
  with	
  the	
  constants	
  c1,	
  …,	
  cn.	
  



The	
  aggregate,	
  {rule(1,	
  c1,	
  c2);	
  …	
  },	
  causes	
  one	
  Answer	
  Set	
  to	
  be	
  
generated	
  for	
  each	
  hypothesis	
  which	
  could	
  be	
  constructed	
  from	
  the	
  
skeleton	
  rules.	
  
	
  
By	
  adding	
  rule(RID,	
  C1,…,Cn)	
  to	
  each	
  rule	
  R,	
  we	
  cause	
  only	
  the	
  rules	
  in	
  the	
  
hypothesis	
  represented	
  by	
  a	
  par<cular	
  Answer	
  Set	
  of	
  the	
  meta	
  program	
  
to	
  be	
  effec<ve.	
  For	
  any	
  hypothesis	
  H,	
  for	
  each	
  Answer	
  Set	
  A	
  of	
  B∪H,	
  
there	
  is	
  an	
  Answer	
  Set	
  A’	
  of	
  the	
  meta	
  program	
  which	
  contains	
  all	
  of	
  the	
  
atoms	
  of	
  A	
  in	
  addi<on	
  to	
  the	
  atoms	
  rule(RID,	
  C1,…,Cn)	
  which	
  represent	
  the	
  
hypothesis	
  H.	
  
	
  
	
  



By	
  adding	
  the	
  rules:	
  
goal	
  :-­‐	
  e1+,	
  …,	
  en+,	
  not	
  e1-­‐,	
  …,	
  not	
  em-­‐.	
  
:-­‐	
  not	
  goal.	
  
we	
  rule	
  out	
  any	
  Answer	
  Set	
  of	
  the	
  meta	
  program	
  which	
  corresponds	
  to	
  an	
  Answer	
  
Set	
  of	
  BUH	
  which	
  does	
  not	
  contain	
  all	
  of	
  the	
  posi<ve	
  examples	
  or	
  contains	
  a	
  nega<ve	
  
example.	
  
	
  
This	
  means	
  that	
  if	
  there	
  is	
  an	
  Answer	
  Set	
  of	
  the	
  meta	
  program	
  corresponding	
  to	
  a	
  
par<cular	
  hypothesis	
  H,	
  then	
  BUH	
  must	
  have	
  at	
  least	
  one	
  Answer	
  Set	
  which	
  contains	
  
all	
  of	
  the	
  posi<ve	
  examples	
  or	
  none	
  of	
  the	
  nega<ve	
  examples	
  (otherwise,	
  all	
  Answer	
  
Sets	
  of	
  the	
  meta	
  program	
  which	
  correspond	
  to	
  H	
  would	
  have	
  been	
  rules	
  out	
  by	
  the	
  
goal	
  constraint).	
  
	
  
The	
  result	
  of	
  this	
  is	
  that	
  the	
  Answer	
  Sets	
  of	
  the	
  meta	
  program	
  correspond	
  exactly	
  to	
  
the	
  induc<ve	
  solu<ons	
  of	
  the	
  task.	
  This	
  is	
  exactly	
  how	
  ASPAL	
  computes	
  these	
  
solu<ons.	
  
	
  



ASPAL	
  uses	
  an	
  op<misa<on	
  statement	
  such	
  that	
  the	
  op<mal	
  Answer	
  Sets	
  
of	
  the	
  meta	
  level	
  program	
  correspond	
  exactly	
  to	
  the	
  op<mal	
  induc<ve	
  
solu<ons	
  of	
  the	
  task.	
  It	
  does	
  this	
  by	
  weigh<ng	
  each	
  of	
  the	
  rules	
  by	
  its	
  
length.	
  





Some	
  hypotheses	
  cannot	
  be	
  learned	
  using	
  brave	
  induc<on	
  alone;	
  for	
  example,	
  brave	
  
induc<on	
  cannot	
  be	
  used	
  to	
  learn	
  any	
  hypothesis	
  which	
  only	
  rules	
  out	
  Answer	
  Sets	
  
and	
  does	
  not	
  generate	
  anything	
  new.	
  
	
  
In	
  par<cular,	
  a	
  brave	
  induc<on	
  task	
  will	
  never	
  have	
  as	
  an	
  op<mal	
  solu<on,	
  a	
  
hypothesis	
  containing	
  a	
  constraint.	
  This	
  is	
  because,	
  if	
  the	
  hypothesis	
  is	
  a	
  solu<on	
  for	
  
the	
  brave	
  induc<on	
  task,	
  then	
  it	
  must	
  have	
  an	
  Answer	
  Set	
  which	
  contains	
  all	
  of	
  the	
  
posi<ve	
  and	
  none	
  of	
  the	
  nega<ve	
  examples.	
  As	
  constraints	
  only	
  rule	
  out	
  Answer	
  Sets,	
  
this	
  Answer	
  Set	
  will	
  s<ll	
  be	
  an	
  Answer	
  Set	
  of	
  the	
  program	
  without	
  the	
  constraint.	
  In	
  
fact,	
  one	
  of	
  the	
  advanced	
  ques<ons	
  on	
  your	
  tutorial	
  sheet	
  is	
  to	
  prove	
  this	
  property.	
  




