


In	
  previous	
  lectures,	
  we	
  have	
  seen	
  the	
  limita4ons	
  of	
  approached	
  using	
  only	
  brave	
  or	
  
cau4ous	
  induc4on	
  when	
  a:emp4ng	
  to	
  learn	
  Answer	
  Set	
  Programs.	
  In	
  this	
  lecture	
  we	
  
look	
  at	
  a	
  recent	
  framework	
  called	
  Learning	
  from	
  Answer	
  Sets	
  (Law,	
  	
  M;	
  Russo,	
  A;	
  
Broda,	
  K.	
  JELIA	
  2014).	
  We	
  will	
  also	
  cover	
  its	
  algorithm	
  ILASP	
  (Induc4ve	
  Learning	
  of	
  
Answer	
  Set	
  Programs)	
  and	
  see	
  how	
  it	
  can	
  be	
  applied	
  to	
  learn	
  the	
  rules	
  of	
  sudoku	
  as	
  
represented	
  in	
  ASP	
  in	
  an	
  earlier	
  lecture.	
  



In	
  previous	
  lectures,	
  we	
  have	
  considered	
  two	
  different	
  kinds	
  of	
  induc4on	
  in	
  ASP:	
  
brave	
  and	
  cau?ous.	
  We	
  have	
  studied	
  an	
  algorithm,	
  ASPAL,	
  which	
  is	
  able	
  to	
  compute	
  
the	
  solu4ons	
  of	
  a	
  brave	
  induc4on	
  task	
  and,	
  although	
  we	
  haven’t	
  considered	
  it	
  in	
  this	
  
course,	
  has	
  been	
  applied	
  to	
  real	
  applica4ons	
  such	
  as	
  learning	
  user	
  behaviours	
  from	
  
mobile	
  devices	
  (Markitanis,	
  A;	
  Corapi,	
  D;	
  Russo,	
  A;	
  Lupu,	
  E.	
  ILP	
  2011)	
  and	
  Robot-­‐
driven	
  rule	
  learning	
  in	
  non-­‐monotonic	
  domains	
  (Corapi,	
  D;	
  Sykes,	
  A;	
  Inoue,	
  K;	
  Russo,	
  A	
  
ICSE	
  2013).	
  
These	
  applica4ons	
  demonstrate	
  that	
  many	
  problems	
  can	
  be	
  solved	
  with	
  brave	
  
induc4on	
  alone;	
  however,	
  as	
  shown	
  in	
  previous	
  lectures,	
  there	
  are	
  programs	
  which	
  
cannot	
  be	
  learned	
  with	
  solely	
  brave	
  or	
  cau4ous	
  induc4on.	
  One	
  such	
  problem	
  is	
  to	
  
learn	
  the	
  rules	
  of	
  sudoku.	
  



Given	
  a	
  background	
  knowledge	
  containing	
  defini4ons	
  of	
  what	
  it	
  means	
  for	
  
two	
  different	
  cells	
  to	
  be	
  in	
  the	
  same	
  row,	
  column	
  and	
  block	
  (and	
  the	
  
defini4on	
  of	
  cell),	
  the	
  task	
  is	
  to	
  learn	
  an	
  ASP	
  program	
  whose	
  Answer	
  Sets	
  
correspond	
  exactly	
  with	
  the	
  valid	
  sudoku	
  boards	
  of	
  a	
  given	
  size.	
  The	
  program	
  
on	
  the	
  slide	
  is	
  one	
  possible	
  solu4on.	
  
If	
  we	
  were	
  to	
  try	
  to	
  learn	
  this	
  program	
  using	
  brave	
  induc4on,	
  we	
  would	
  not	
  be	
  
able	
  to	
  learn	
  the	
  constraint	
  which	
  rule	
  out	
  Answer	
  Sets	
  (as	
  discussed	
  in	
  
previous	
  lectures).	
  If	
  the	
  hypothesis	
  on	
  the	
  slide	
  is	
  an	
  induc4ve	
  solu4on	
  of	
  any	
  
given	
  brave	
  induc4on	
  task,	
  then	
  so	
  is	
  the	
  hypothesis	
  containing	
  only	
  the	
  first	
  
rule!	
  Conversely,	
  if	
  we	
  were	
  to	
  try	
  to	
  learn	
  the	
  hypothesis	
  using	
  only	
  cau4ous	
  
induc4on,	
  then	
  we	
  could	
  only	
  give	
  as	
  examples	
  atoms	
  which	
  are	
  either	
  true	
  in	
  
every	
  Answer	
  Set	
  of	
  the	
  program,	
  or	
  false	
  in	
  every	
  Answer	
  Set.	
  As	
  there	
  are	
  
many	
  different	
  sudoku	
  board,	
  there	
  is	
  no	
  atom	
  value(V,	
  C)	
  where	
  V	
  is	
  a	
  value	
  
between	
  1	
  and	
  4	
  and	
  C	
  is	
  a	
  cell,	
  which	
  has	
  the	
  same	
  truth	
  value	
  in	
  every	
  
Answer	
  Set	
  (as	
  there	
  is	
  no	
  cell	
  which	
  takes	
  the	
  same	
  value	
  in	
  every	
  possible	
  
sudoku	
  board).	
  We	
  therefore	
  cannot	
  learn	
  the	
  choice	
  rule	
  in	
  the	
  hypothesis.	
  



The	
  Answer	
  Set	
  Programming	
  paradigm	
  is	
  to	
  translate	
  the	
  problem	
  we	
  
want	
  to	
  solve	
  into	
  an	
  Answer	
  Set	
  Program	
  such	
  that	
  when	
  we	
  solve	
  the	
  
program	
  for	
  Answer	
  Sets,	
  these	
  Answer	
  Sets	
  can	
  then	
  be	
  translated	
  back	
  
into	
  solu4ons	
  to	
  the	
  original	
  problem.	
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To	
  solve	
  Sudoku	
  using	
  ASP	
  we	
  translate	
  the	
  problem	
  into	
  an	
  ASP	
  program	
  and	
  solve	
  
for	
  Answer	
  Sets.	
  These	
  Answer	
  Sets	
  can	
  then	
  be	
  mapped	
  back	
  into	
  the	
  valid	
  Sudoku	
  
boards.	
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Atoms	
  are	
  usually	
  given	
  as	
  examples	
  in	
  Induc4ve	
  Logic	
  Programming,	
  as	
  the	
  task	
  is	
  to	
  
learn	
  how	
  to	
  classify	
  similar	
  atoms	
  as	
  either	
  true	
  or	
  false;	
  however,	
  when	
  learning	
  an	
  
ASP	
  program,	
  the	
  task	
  is	
  not	
  to	
  learn	
  the	
  truth	
  value	
  of	
  par4cular	
  atoms,	
  but	
  to	
  learn	
  
what	
  should	
  (or	
  shouldn’t)	
  be	
  an	
  Answer	
  Set	
  of	
  the	
  program.	
  It	
  makes	
  sense	
  for	
  our	
  
examples	
  to	
  be	
  Answer	
  Sets	
  as	
  these	
  are	
  the	
  main	
  objects	
  for	
  reasoning	
  in	
  ASP.	
  
	
  
For	
  this	
  reason,	
  the	
  learning	
  task	
  we	
  are	
  going	
  to	
  see	
  in	
  this	
  lecture,	
  has	
  as	
  its	
  
examples	
  (par4al)	
  Answer	
  Sets	
  rather	
  than	
  atoms.	
  We	
  shall	
  see	
  that	
  this	
  new	
  learning	
  
task,	
  Learning	
  from	
  Answer	
  Sets,	
  is	
  in	
  fact,	
  capable	
  of	
  expressing	
  both	
  brave	
  and	
  
cau4ous	
  induc4on	
  within	
  a	
  single	
  learning	
  task.	
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For	
  example,	
  we	
  shouldn’t	
  try	
  to	
  learn	
  the	
  rules	
  of	
  Sudoku	
  by	
  examples	
  of	
  what	
  is	
  
allowing	
  in	
  a	
  par4cular	
  cell	
  as	
  technically	
  each	
  of	
  the	
  numbers	
  1	
  to	
  4	
  could	
  go	
  in	
  each	
  
cell	
  in	
  these	
  boards.	
  One	
  cell	
  on	
  its	
  own	
  doesn’t	
  help	
  us	
  much.	
  To	
  learn	
  the	
  rules	
  of	
  
Sudoku	
  we	
  need	
  examples	
  of	
  valid	
  and	
  invalid	
  boards	
  (or	
  at	
  least	
  par4al	
  boards).	
  This	
  
corresponds	
  to	
  example	
  par4al	
  Answer	
  Sets.	
  We	
  can	
  then	
  learn	
  an	
  ASP	
  program	
  
corresponding	
  to	
  the	
  rules	
  of	
  Sudoku.	
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Examples	
  in	
  Learning	
  from	
  Answer	
  Sets	
  are	
  par4al	
  interpreta4ons.	
  These	
  are	
  pairs	
  of	
  
sets	
  of	
  atoms,	
  the	
  inclusions	
  einc	
  and	
  the	
  exclusions	
  eexc.	
  A	
  Herbrand	
  Interpreta4on	
  
extends	
  a	
  par4al	
  interpreta4on	
  if	
  it	
  includes	
  all	
  of	
  the	
  inclusions	
  and	
  none	
  of	
  the	
  
exclusions.	
  	
  
	
  

In	
  Learning	
  from	
  Answer	
  Sets,	
  examples	
  are	
  covered	
  if	
  there	
  exists	
  and	
  Answer	
  Set	
  of	
  
B	
  union	
  H	
  which	
  extends	
  the	
  example.	
  



Learning	
  from	
  Answer	
  Sets	
  is	
  slightly	
  less	
  prescrip4ve	
  about	
  the	
  rules	
  in	
  its	
  hypothesis	
  
space	
  than	
  ASPAL	
  (or	
  other	
  tasks).	
  This	
  is	
  because,	
  while	
  other	
  tasks	
  targeted	
  Prolog	
  
where	
  floundering	
  is	
  a	
  problem,	
  floundering	
  is	
  not	
  an	
  issue	
  in	
  ASP.	
  LAS	
  allows	
  rules	
  so	
  
long	
  as	
  they	
  are	
  safe	
  (unsafe	
  rules	
  result	
  in	
  infinite	
  groundings	
  if	
  func4on	
  symbols	
  are	
  
present	
  anywhere	
  in	
  the	
  program	
  and	
  therefore	
  are	
  not	
  permi:ed	
  by	
  modern	
  ASP	
  
solvers).	
  
Other	
  than	
  this,	
  the	
  normal	
  rules	
  generated	
  by	
  LAS	
  are	
  similar	
  to	
  ASPAL.	
  For	
  reasons	
  
of	
  efficiency,	
  using	
  skeleton	
  rules	
  and	
  pushing	
  the	
  task	
  of	
  grounding	
  the	
  constant	
  
variables	
  to	
  the	
  ASP	
  solver	
  is	
  not	
  a	
  good	
  idea	
  for	
  the	
  algorithm	
  we	
  use	
  to	
  solve	
  LAS	
  
tasks	
  (this	
  is	
  because	
  the	
  meta	
  representa4on	
  in	
  LAS	
  must	
  be	
  solved	
  mul4ple	
  4mes,	
  
so	
  the	
  ASP	
  solver	
  would	
  be	
  grounding	
  the	
  constants	
  mul4ple	
  4mes;	
  whereas,	
  in	
  
ASPAL	
  the	
  meta	
  encoding	
  is	
  only	
  solved	
  once).	
  LAS	
  therefore	
  has	
  no	
  concept	
  of	
  
skeleton	
  rule	
  and	
  instead,	
  the	
  hypothesis	
  space	
  contains	
  rules	
  with	
  the	
  constant	
  
symbols	
  already	
  ground.	
  For	
  this	
  reason,	
  when	
  using	
  ILASP,	
  allowed	
  constants	
  (and	
  
their	
  types	
  must	
  be	
  specified	
  in	
  the	
  task).	
  
LAS	
  also	
  allows	
  two	
  previously	
  unconsidered	
  types	
  of	
  rule	
  in	
  its	
  hypothesis	
  space:	
  
choice	
  rules,	
  and	
  constraints.	
  Constraints	
  are	
  easily	
  generated	
  (just	
  like	
  normal	
  rules,	
  
but	
  with	
  no	
  head).	
  Choice	
  rules	
  have	
  an	
  aggregate	
  as	
  their	
  head;	
  their	
  body	
  is	
  
constructed	
  as	
  usual,	
  and	
  the	
  aggregate	
  can	
  contain	
  Hmin	
  –	
  Hmax	
  atoms.	
  There	
  is	
  
one	
  instance	
  of	
  the	
  rule	
  for	
  each	
  set	
  of	
  appropriate	
  bounds.	
  
The	
  lengths	
  of	
  normal	
  rules	
  and	
  constraints	
  is	
  obvious,	
  we	
  just	
  count	
  the	
  number	
  of	
  
literals.	
  For	
  aggregates,	
  it	
  is	
  less	
  clear.	
  We	
  will	
  not	
  consider	
  aggregate	
  length	
  in	
  this	
  
course,	
  but	
  if	
  you	
  run	
  ILASP	
  and	
  get	
  a	
  hypothesis	
  which	
  is	
  less	
  op4mal	
  (using	
  the	
  
metric	
  of	
  coun4ng	
  literals)	
  than	
  you	
  were	
  expec4ng,	
  this	
  is	
  why	
  (all	
  hypotheses	
  are	
  
s4ll	
  correct	
  induc4ve	
  solu4ons).	
  
	
  



As	
  ILASP	
  does	
  not	
  make	
  use	
  of	
  input	
  and	
  output	
  variable	
  in	
  its	
  mode	
  declara4ons	
  (not	
  
needing	
  to	
  prevent	
  rules	
  which	
  would	
  cause	
  floundering	
  in	
  Prolog),	
  it	
  uses	
  slightly	
  
different	
  nota4on	
  for	
  its	
  mode	
  declara4ons.	
  For	
  a	
  literal	
  to	
  be	
  compa4ble	
  with	
  a	
  
mode	
  declara4on,	
  it	
  must	
  replace	
  all	
  var(type)	
  terms	
  with	
  variables	
  and	
  all	
  
const(type)	
  with	
  constants	
  of	
  that	
  type.	
  All	
  instances	
  of	
  a	
  variable	
  within	
  a	
  rule	
  must	
  
belong	
  to	
  the	
  same	
  type.	
  
	
  
Here,	
  to	
  make	
  computa4on	
  simpler	
  for	
  you,	
  we	
  use	
  Hmin	
  as	
  the	
  minimum	
  number	
  of	
  
atoms	
  within	
  an	
  aggregate.	
  





A	
  Learning	
  from	
  Answer	
  Sets	
  task	
  (LAS)	
  is	
  a	
  tuple	
  <B,	
  SM,	
  E+,	
  E-­‐	
  >	
  where	
  B	
  is	
  an	
  Answer	
  
Set	
  program	
  called	
  the	
  background	
  knowledge,	
  SM	
  is	
  the	
  set	
  of	
  rules	
  with	
  which	
  we	
  
are	
  allowed	
  to	
  construct	
  our	
  hypotheses	
  (these	
  are	
  normal	
  rules,	
  choice	
  rules	
  and	
  
constraints)	
  and	
  E+	
  and	
  E-­‐	
  are	
  par4al	
  interpreta4ons.	
  
	
  
The	
  hypothesis	
  space	
  SM	
  is	
  usually	
  constructed	
  from	
  a	
  set	
  of	
  mode	
  declara4ons	
  M.	
  
Unlike	
  ASPAL	
  and	
  similar	
  systems,	
  as	
  LAS	
  is	
  aimed	
  at	
  learning	
  ASP	
  rather	
  than	
  Prolog,	
  
LAS	
  has	
  no	
  concept	
  of	
  input	
  and	
  output	
  variables.	
  The	
  only	
  restric4on	
  is	
  that	
  the	
  rules	
  
in	
  SM	
  are	
  safe.	
  The	
  search	
  space	
  is	
  therefore	
  bigger	
  in	
  general.	
  LAS	
  also	
  allows	
  for	
  
constraints	
  and	
  choice	
  rules	
  (rules	
  with	
  a	
  coun4ng	
  aggregate	
  in	
  the	
  head).	
  The	
  heads	
  
of	
  choice	
  rules	
  are	
  allowed	
  to	
  be	
  any	
  aggregate	
  with	
  all	
  atoms	
  compa4ble	
  with	
  mode	
  
declara4ons	
  in	
  Mh.	
  
	
  
A	
  hypothesis	
  H	
  is	
  an	
  induc4ve	
  solu4on	
  (wri:en	
  H	
  ∈	
  ILPLAS<B,	
  SM,	
  E+,	
  E-­‐	
  >)	
  if	
  and	
  only	
  
if	
  it	
  is	
  constructed	
  from	
  the	
  rules	
  in	
  SM,	
  and	
  each	
  posi4ve	
  example	
  is	
  extended	
  by	
  at	
  
least	
  one	
  Answer	
  Set	
  of	
  B	
  ⋃	
  H	
  (this	
  can	
  be	
  a	
  different	
  Answer	
  Set	
  for	
  each	
  posi4ve	
  
example)	
  and	
  no	
  nega4ve	
  example	
  is	
  extended	
  by	
  any	
  Answer	
  Set	
  of	
  B	
  ⋃	
  H.	
  	
  





A	
  brave	
  induc4on	
  task	
  is	
  sa4sfied	
  by	
  a	
  hypothesis	
  H	
  if	
  and	
  only	
  if	
  there	
  is	
  at	
  least	
  one	
  
Answer	
  Set	
  of	
  B	
  ∪	
  H	
  which	
  includes	
  all	
  of	
  the	
  posi4ve	
  examples	
  E+	
  and	
  none	
  of	
  the	
  
nega4ve	
  examples	
  E-­‐.	
  This	
  is	
  equivalent	
  to	
  there	
  being	
  an	
  Answer	
  Set	
  of	
  B	
  ∪	
  H	
  which	
  
extends	
  the	
  par4al	
  interpreta4on	
  <E+,	
  E-­‐>,	
  which	
  is,	
  in	
  turn,	
  equivalent	
  to	
  H	
  being	
  an	
  
induc4ve	
  solu4on	
  of	
  a	
  Learning	
  from	
  Answer	
  Sets	
  task	
  with	
  the	
  single	
  (posi4ve)	
  
example	
  <E+,	
  E-­‐>.	
  
	
  
For	
  this	
  comparison,	
  we	
  ignore	
  the	
  hypothesis	
  space	
  of	
  Learning	
  from	
  Answer	
  Sets,	
  as	
  
(because	
  it	
  had	
  no	
  concrete	
  implementa4on)	
  brave	
  induc4on	
  never	
  had	
  a	
  fixed	
  
hypothesis	
  space.	
  





A	
  cau4ous	
  induc4on	
  task	
  is	
  sa4sfied	
  by	
  a	
  hypothesis	
  H	
  if	
  and	
  only	
  if	
  every	
  Answer	
  Set	
  
of	
  B	
  ∪	
  H	
  includes	
  all	
  of	
  the	
  posi4ve	
  examples	
  E+	
  and	
  none	
  of	
  the	
  nega4ve	
  examples	
  
E-­‐	
  (and	
  B	
  ∪	
  H	
  has	
  at	
  least	
  one	
  Answer	
  Set).	
  	
  This	
  is	
  equivalent	
  to	
  there	
  being	
  no	
  
Answer	
  Set	
  of	
  B	
  ∪	
  H	
  which	
  contains	
  any	
  nega4ve	
  example,	
  and	
  for	
  each	
  posi4ve	
  
example,	
  no	
  Answer	
  Set	
  which	
  does	
  not	
  contain	
  that	
  example	
  (and	
  B	
  ∪	
  H	
  having	
  at	
  
least	
  one	
  Answer	
  Set).	
  This	
  is	
  equivalent	
  to	
  B	
  ∪	
  H	
  having	
  no	
  Answer	
  Set	
  which	
  
extends	
  any	
  of	
  the	
  par4al	
  interpreta4ons	
  <∅,	
  e+1>,	
  …,	
  <∅,	
  e+m>,	
  <e-­‐1,	
  ∅>,	
  …,	
  <e-­‐n,	
  ∅>	
  	
  
(and	
  at	
  least	
  one	
  Answer	
  Set	
  which	
  extends	
  <∅,	
  ∅>)	
  which	
  is,	
  in	
  turn,	
  equivalent	
  to	
  H	
  
being	
  an	
  induc4ve	
  solu4on	
  of	
  the	
  Learning	
  from	
  Answer	
  Sets	
  task	
  shown	
  on	
  the	
  slide.	
  
	
  
For	
  this	
  comparison,	
  we	
  ignore	
  the	
  hypothesis	
  space	
  of	
  Learning	
  from	
  Answer	
  Sets,	
  as	
  
(because	
  it	
  had	
  no	
  concrete	
  implementa4on)	
  cau4ous	
  induc4on	
  never	
  had	
  a	
  fixed	
  
hypothesis	
  space.	
  







Induc4ve	
  Learning	
  of	
  Answer	
  Set	
  Programs	
  (ILASP)	
  is	
  a	
  sound	
  and	
  complete	
  algorithm	
  
for	
  finding	
  the	
  op4mal	
  induc4ve	
  solu4ons	
  of	
  a	
  give	
  LAS	
  task.	
  It	
  relies	
  on	
  two	
  
fundamental	
  concepts:	
  posi?ve	
  solu?ons	
  and	
  viola?ng	
  solu?ons.	
  
	
  
Posi4ve	
  solu4ons	
  are	
  hypotheses	
  which	
  cover	
  all	
  of	
  the	
  posi4ve	
  examples	
  (for	
  each	
  
of	
  the	
  posi4ve	
  examples,	
  there	
  is	
  an	
  Answer	
  Set	
  of	
  BUH	
  which	
  extends	
  that	
  posi4ve	
  
example).	
  The	
  viola4ng	
  solu4ons	
  are	
  exactly	
  those	
  posi4ve	
  solu4ons	
  which	
  are	
  not	
  
induc4ve	
  solu4ons	
  (this	
  means	
  that	
  they	
  have	
  at	
  least	
  one	
  Answer	
  Set	
  which	
  extends	
  
a	
  nega4ve	
  example).	
  
	
  
The	
  induc4ve	
  solu4ons	
  of	
  any	
  par4cular	
  length	
  n	
  are	
  equal	
  to	
  the	
  posi4ve	
  solu4ons	
  
of	
  length	
  n	
  which	
  are	
  not	
  viola4ng	
  solu4ons.	
  This	
  is	
  the	
  fundamental	
  principle	
  which	
  
ILASP	
  works	
  on.	
  It	
  first	
  constructs	
  the	
  viola4ng	
  solu4ons	
  of	
  length	
  n	
  and	
  then	
  uses	
  
these	
  to	
  constrain	
  the	
  search	
  for	
  posi4ve	
  solu4ons.	
  



I	
  will	
  upload	
  the	
  full	
  version	
  of	
  these	
  slides	
  (with	
  solu4ons)	
  ader	
  the	
  lecture.	
  



Given	
  an	
  ILPLAS	
  task	
  and	
  an	
  integer	
  n,	
  ILASP	
  is	
  able	
  to	
  calculate	
  the	
  set	
  of	
  induc4ve	
  solu4ons	
  of	
  T	
  of	
  
length	
  n.	
  It	
  does	
  this	
  by	
  mapping	
  T	
  into	
  a	
  meta	
  level	
  representa4on	
  in	
  ASP	
  called	
  the	
  task	
  program	
  
Tnmeta.	
  We	
  will	
  not	
  consider	
  how	
  to	
  construct	
  the	
  task	
  program	
  in	
  this	
  course,	
  but	
  its	
  proper4es	
  are	
  
that:	
  
	
  
1)  The	
  Answer	
  Sets	
  of	
  Tnmeta	
  can	
  be	
  mapped	
  to	
  the	
  posi4ve	
  solu4ons	
  of	
  the	
  task.	
  
2)  There	
  may	
  be	
  many	
  Answer	
  Sets	
  of	
  Tnmeta	
  which	
  correspond	
  to	
  each	
  posi4ve	
  solu4on,	
  but	
  if	
  the	
  

solu4on	
  is	
  viola4ng	
  then	
  at	
  least	
  one	
  of	
  these	
  Answer	
  Sets	
  will	
  contain	
  the	
  atom	
  viola>ng.	
  
3)  Therefore	
  the	
  Answer	
  Sets	
  of	
  Tnmeta	
  U	
  {	
  :-­‐	
  not	
  viola?ng}	
  can	
  be	
  mapped	
  to	
  the	
  viola4ng	
  solu4ons	
  

of	
  the	
  task.	
  

ILASP	
  constructs	
  the	
  induc4ve	
  solu4ons	
  of	
  length	
  n	
  by	
  solving	
  the	
  program	
  Tnmeta	
  U	
  {	
  :-­‐	
  not	
  viola?ng}	
  
and	
  mapping	
  the	
  Answer	
  Sets	
  into	
  the	
  set	
  of	
  viola4ng	
  solu4ons	
  of	
  length	
  n	
  (VS).	
  These	
  are	
  then	
  
converted	
  into	
  constraints	
  which,	
  when	
  added	
  back	
  into	
  the	
  task	
  program,	
  rule	
  out	
  all	
  of	
  the	
  viola4ng	
  
solu4ons.	
  Therefore	
  when	
  ILASP	
  solves	
  the	
  task	
  program	
  a	
  second	
  4me	
  (with	
  these	
  new	
  constraints	
  
and	
  without	
  the	
  constraint	
  :-­‐	
  not	
  viola?ng)	
  the	
  Answer	
  Sets	
  can	
  be	
  mapped	
  into	
  the	
  set	
  of	
  posi4ve	
  
solu4ons	
  which	
  it	
  didn’t	
  find	
  the	
  first	
  4me.	
  
These	
  are	
  exactly	
  the	
  set	
  of	
  induc4ve	
  solu4ons	
  of	
  length	
  n.	
  ILASP	
  starts	
  with	
  length	
  n	
  as	
  0	
  and	
  
increments	
  n	
  by	
  1	
  un4l	
  it	
  finds	
  a	
  non-­‐empty	
  set	
  of	
  induc4ve	
  solu4ons.	
  The	
  first	
  non-­‐empty	
  set	
  is	
  the	
  
set	
  of	
  all	
  op4mal	
  induc4ve	
  solu4ons	
  of	
  the	
  task	
  T.	
  
This	
  algorithm	
  (like	
  ASPAL),	
  is	
  sound	
  and	
  complete	
  with	
  respect	
  to	
  the	
  op4mal	
  induc4ve	
  solu4ons	
  of	
  
its	
  tasks.	
  This	
  is	
  something	
  of	
  a	
  rarity	
  in	
  ILP	
  systems,	
  which	
  seldom	
  complete.	
  
For	
  the	
  purposes	
  of	
  this	
  course,	
  you	
  need	
  only	
  know	
  how	
  the	
  algorithm	
  works	
  (i.e.	
  the	
  pseudo	
  code	
  on	
  
the	
  slide)	
  and	
  to	
  be	
  able	
  to	
  compute	
  the	
  posI4ve,	
  viola4ng	
  and	
  induc4ve	
  solu4ons	
  yourself;	
  you	
  do	
  not	
  
need	
  to	
  learn	
  the	
  proper4es	
  of	
  the	
  task	
  program.	
  
For	
  more	
  details	
  see	
  the	
  paper	
  Induc?ve	
  Learning	
  of	
  Answer	
  Set	
  Programs	
  (Law,	
  M;	
  Russo,	
  A;	
  Broda,	
  K.	
  
JELIA	
  2014).	
  
	
  







The	
  slide	
  shows	
  the	
  posi4ve	
  solu4ons	
  up	
  to	
  length	
  8	
  (there	
  are	
  8	
  of	
  them).	
  Any	
  
induc4ve	
  solu4on	
  must	
  be	
  a	
  posi4ve	
  solu4on,	
  but	
  some	
  posi4ve	
  solu4ons	
  are	
  
viola4ng	
  (not	
  induc4ve).	
  We	
  must	
  next	
  compute	
  the	
  viola4ng	
  solu4ons.	
  



This	
  slide	
  shows	
  the	
  viola4ng	
  solu4ons	
  of	
  up	
  to	
  length	
  8.	
  These	
  are	
  the	
  posi4ve	
  
solu4ons	
  which	
  are	
  not	
  induc4ve	
  solu4ons.	
  



Having	
  computed	
  both	
  the	
  posi4ve	
  and	
  the	
  viola4ng	
  solu4ons	
  we	
  can	
  not	
  compute	
  
the	
  induc4ve	
  solu4ons	
  be	
  simply	
  finding	
  those	
  posi4ve	
  solu4ons	
  which	
  are	
  not	
  
viola4ng;	
  these	
  are	
  shown	
  on	
  the	
  slide.	
  




