
Knowledge Transfer in Automatic Optimisation of
Reconfigurable Designs

Maciej Kurek, Marc Peter Deisenroth, Wayne Luk and Timothy Todman

Abstract—This paper presents a novel approach for automatic
optimisation of reconfigurable design parameters based on knowl-
edge transfer. The key idea is to make use of insights derived
from optimising related designs to benefit future optimisations.
We show how to use designs targeting one device to speed
up optimisation of another device. The proposed approach is
evaluated based on various applications including computational
finance and seismic imaging. It is capable of achieving up to 35%
reduction in optimisation time in producing designs with similar
performance, compared to alternative optimisation methods.

I. INTRODUCTION

Previous research on automatic optimisation of reconfig-
urable designs involves optimising both design parameters
and Computer Aided Design (CAD) tool parameters. Machine
learning can be used to tune CAD tools or design parameters for
faster optimisation [1], [2]. Bayesian optimisation can be used
to treat noise in benchmark outputs [3], allowing parallelism to
speedup optimisation time. Yet, no matter how refined, all of the
above approaches are wasteful: When an optimisation finishes,
the gathered knowledge is discarded. Manually embedding
designers knowledge within an optimisation algorithm is a
possibility [4]. However, how can we directly use insight,
actionable information derived from previous designs, to
optimise new designs? Our solution, presented in Figure 1,
is to capture the re-usable information from design synthesis
and benchmark outputs for optimising future designs with
our novel Auto-Transfer algorithm. The algorithm is based on
knowledge transfer, which is related to transfer learning [5].
Transfer learning tackles the problem of transferring knowledge
from one problem onto another. The difference between our
approach and transfer learning is that we only transfer old data.
In transfer learning, the knowledge learned, such as optimised
hyperparameters, is also transferred. Our contributions include:
• Statement of the problem of knowledge transfer in
reconfigurable design optimisation, inspired by related
work [3], [6]. (Section III)
• Presentation of an Auto-Transfer algorithm for knowl-

edge transfer in automatic optimisation of reconfigurable
designs. The Auto-Transfer algorithm is based on Bayesian
optimisation [3]. (Section IV)
• Evaluation of the Auto-Transfer algorithm using two case

studies: a quadrature design for financial computation [7]
and a seismic imaging design [8]. (Section V)

II. BACKGROUND

Developing reconfigurable designs usually starts with coding
in a language which can be compiled into hardware descriptions.

This is followed by design parameterization, along with
constraint and optimisation goal specifications. Lastly, either
a set of analytical models are constructed and the design is
manually optimised [7], [8] or an automatic tool is used [1],
[2], [3]. The manual approach the has advantage of being
tailored to a particular problem and making use of designer’s
experience, while a tool has the advantage of being generic
and automated. The main problem in automatic optimisation of
reconfigurable designs is hardware generation time. Bayesian
optimisation addresses this problem by modeling the target
fitness using a Gaussian Process (GP) [9], and has shown
promise in the context of reconfigurable designs [3]. In case of
GP regression, the target function f : X → R is used to obtain
noisy observations y. The goal is to obtain for an unseen point
x∗ ∈ X the predictive distribution of the modeled function
p(f |x,X,y, θ), where θ are GP models hyperparameters and
the observed data is X = {xi}n1 and y = {yi}n1 . The designer
chooses a suitable model, and its hyperparameters are typically
optimised by maximizing the marginal likelihood [9].

New Design 
repository

New Design
and its

Benchmarks

Design 
Database

Design C 
Repository
Related

Design A 
repository

Design B 
repository

Design D 
repository

Update database
after optimisation

finishes
Designer provides

code

Designer indicates 
related design

AUTO-TRANSFER
ALGORITHM

Finds optimal design configuration
using provided benchmark

Fig. 1: Knowledge transfer approach.
The advantage of GP over probabilistic regression techniques

in the global optimisation context is the prediction uncertainty
encapsulated in the predictive distribution. In Bayesian op-
timisation, this information is used to define an acquisition
function a : X → R, which is used to determine designs to
evaluate. It automatically manages exploration and exploitation
of the parameter space. Exploration happens when areas of
high uncertainty are evaluated, and exploitation when areas
with high expected utility are evaluated. Parallel asynchronous
Expected Improvement (EI) can be used as an acquisition
function, E[I(µ,λ)(Xλ)] [10]. At any given time µ nodes
are busy and λ nodes are idle. The goal is to find a set of
designs Xλ = {xi}λi=1 with highest expected improvement
I(µ,λ)(Xλ) over the currently best found solution and to
evaluate them using the idle nodes, while µ designs are
being evaluated on the busy nodes. Automatic Reconfigurable
Design Efficient Global Optimization (ARDEGO) uses a
constrained acquisition function E[I

(µ,λ)
v (Xλ)] [3], based on

the constrained improvement function:



I
(µ,λ)
v (Xλ) =

{
I(µ,λ)(Xλ), ∀xi ∈ Xλ : d(xi) = 0

0, otherwise
,

where the decision function d : X → T predicts constraint
failures, and d(xi) = 0 indicates a valid design. A support
vector machine (SVM) classifier is suggested to build d [3],
trained using X and the target labels t, where t = {ti}n1 .

III. PROBLEM STATEMENT

The problem of optimizing reconfigurable design can be
considered as the optimisation of noisy black box functions
defined over the design’s parameter space X . The parameter
space is a discrete metric space with D parameters X ⊆ RD.
A design configuration x resides in the design parameter space
x ∈ X . A benchmark function f : X → R is used to obtain
noisy observations of design performance y = f(x)+ ε, where
ε ∼ N (0, σn

2) is Gaussian i.i.d. noise with variance σ2
n. A

reconfigurable deign can fail to meet various constraints, like
accuracy, timing or resource limitations. Constraint violation
is encoded in an exit code using the constraint function
c : X → T , where T is the set of possible exit codes.
For example, exit code t = 0 indicates that all constraints
are satisfied, while t = 1 indicates inaccurate design and
t = 2 failed timing constraints. For simplicity, due to the
effect of random processes like Place and Route (PAR), it is
assumed that c is a random process that consists of a number
of nonidentical independent random variables, each following
a distribution with an unknown probability density function
px(t) = p(c(x) = t). Exit code depends on a set of latent
constraint functions: the functions hi : X → R, i = 1, .., k,
such as resource consumption or accuracy, and the binary func-
tions gj : X → [0, 1], j = 1, .., r, for example PAR or timing
success. The region of the parameter space that has a non-
zero probability of satisfying all constraints is called the valid
region V = {x|∃x ∈ X : [px(1) > 0]}. The configurations,
which have a 0% probability of meeting constraints, belong
to the invalid region I = {x|∃x ∈ X : [px(1) = 0]}. A good
example is a configuration that overmaps on resources. The
goal is to find the configuration xopt that satisfies all constraints
and has the highest possible fitness xopt = argmax

x∈V
f(x).

A designer often has the opportunity to create a design
similar to an existing one, using their prior experience to
improve its efficiency. The same process can be adopted in
automated optimisation. There are two designs, an old design
and a new one. Can both the information learned and the old
data be used to speed up new design optimisations? Three
challenges have to be addressed to transfer knowledge: (a)
“what to transfer”, (b) “when to transfer” and (c) “how to
transfer” [5]. The old design was optimised with an old design
benchmark function fold and old valid region Vold. It is based
on the old latent constraint functions hold,i and gold,j .

IV. AUTO-TRANSFER ALGORITHM

The goal of the Auto-Transfer algorithm is to enable faster
optimisation of reconfigurable designs by extracting valuable

information from a previous optimisation attempt. The approach
is illustrated in Figure 1. It requires two inputs. The first input
is an old design optimisation result. The task of selecting an
old design from the database suitable for knowledge transfer is
not currently automated, an old design believed to be related
to the new design is manually selected. The second input is a
script. For a given parameter configuration of the new design,
the script builds the design for a specific Field Programmable
Gate Array (FPGA) device, compiles benchmarks to assess
performance of that configuration. Depending on the outcome,
the script outputs an exit code indicating whether the design
with a given configuration meets all the design constraints
or not. Those constraints range from resource constraints to
design specific constraints such as output accuracy. The script
produces performance metrics — like execution time or power
consumption. This packaging of the design generation and
assessment processes allows parallel optimisation of a range
of designs with different toolchains and test data.

1. KNOWLEDGE TRANSFER

2. GP + SVM TRAINING

3. FIND CONFIGURATION(s)
argmax
Xλ∈Xλ

E[I
(µ,λ)
v (Xλ)]

4. EVALUATE
y0 = f(x0)

4. EVALUATE
y1 = f(x1) ...

TERMINATE

Fig. 2: The Auto-Transfer algorithm.

The Auto-Transfer algorithm (Figure 2.) starts with the
knowledge transfer step, during which an initial GP and
Support Vector Machines (SVM) surrogate model of the design
behavior is constructed, based on the old design experiments.
Then the algorithm iteratively improves the surrogate model
through experiments indicated by the acquisition function
E[I

(µ,λ)
v (Xλ)], driving optimisation. The function accounts

for constraints and allows for asynchronous parallelism during
optimisation.

The knowledge transfer step has three phases, each address-
ing one of the previously mentioned challenges. An example
is shown in Figure 3 and the step is presented in Figure 4. The
step tests if there is a relationship between performance f and
each of the latent constraint functions hi, such as accuracy
or resource utilization. If any are identified, the previously
collected data are reused accordingly. For example, it is likely
that if a design is ported across devices, the Lookup Table
(LUT) utilization is going to grow in a similar fashion on both
devices. If the relationship between utilization is uncovered, it
can be possible to predict resource overmapping on the new
device more accurately.



(a) Phase 1 (b) Phase 2 (c) Phase 3 (d) Optimisation

Fig. 3: Knowledge transfer step. There are six designs in Xold, of which three are used for hypothesis testing (a). In (b) three
new configurations are evaluated taking substantial amount of time, and the relationship hypothesis is tested. As hypothesis is
not rejected, and cheap regression ẑ is constructed, old data are mapped and treated as if they come from new experiments (c).
The benefit is clear when an accurate model is constructed with six data points, after only three configuration evaluations (d).

Phase 1
1 Choose a random set XH of designs from Xold for hypothesis testing
2 Evaluate XH designs using benchmark

Phase 2
3 for f , all g and h do
4 Test Hl using vold,i and vi
5 Test Hm using vold,i and vi

Phase 3
6 for f , all g and h do
7 if Hl not rejected at significance level α then
8 Calculate linear least square regression ẑi
9 Map yold or vold,i using the regression ẑi

10 a.) If f , insert the results into the vector y
11 b.) If hi, evaluate constraints using the mapping and insert exit

codes into the vector t
12 else if Hm not rejected at significance level α then
13 Calculate Isotonic regression ẑi
14 Map yold or vold,i using the regression ẑi
15 a.) If f , insert the results to the vector y
16 b.) If hi, evaluate constraints using the mapping and insert exit

codes into the vector t

Fig. 4: Knowledge Transfer, Step 1 of Auto-Transfer algorithm.

1) Phase 1: “What to Transfer” – The goal is to identify
the relationship between the old and the new design using as
few design evaluations as possible. There are two relatively
easily verifiable relationships. The algorithm allows for either
linear or monotonic relationships between the old and new f
and hi. The process starts by re-evaluation of a random subset
of nH parameter settings XH, which are present in Xold; they
can be evaluated on the new platform. This subset is used for
hypothesis testing. If there is no such subset, then knowledge
transfer cannot proceed. The information re-used will typically
consists of LUT, flip-flop, Block RAM (BRAM), Digital Signal
Processor (DSP) block utilization and design performance.

2) Phase 2: “When to Transfer” – First a test is performed to
verify if there is a linear relationship between any of the old and
new functions f and hi. To test the linear relationship hypothe-
sis Hl, the Pearson product-moment correlation coefficient [11]
is calculated between old and new data sets for a given function.
For example, accuracy of the results for the same configuration
on two devices might be linearly mapped between each other.
If the linear relationship hypothesis Hl is rejected at an α-
significance level or indicates a weak correlation, a monotonic
relationship hypothesis Hm is tested. To test the hypothesis
Hm the Spearman rank correlation is calculated [12]. Similar to
the Pearson correlation, the double sided p-value is calculated.

If Hm is rejected at an α-significance level or there is a weak
correlation, it is assumed that the null hypothesis H0 holds
and that there is no relation between the two tested functions.
Each function f and hi is tested separately, as for example it
is possible that two devices follow a similar flip-flop utilization
pattern but not LUT.

3) Phase 3: “How to Transfer” – Knowledge is transferred
differently depending on which hypothesis holds. If the linear
relationship hypothesis Hl is accepted, the old data collected
for one of the function f or hi are mapped to the new design.
This is done by calculating a least-squares linear regression to
recover a mapping function zi for either f or hi. The mapping
function regression ẑi ≈ zi becomes ẑj(v) = av + b, which is
then used for the mapping ẑj(vold,i) = vi treating the data from
previous optimisations as if they originated from the new design.
If the linear relationship hypothesis Hl does not hold, but the
monotonic Hm does, isotonic regression is performed [13].
For example, if flip-flop consumption grows slightly differently
between the two related designs, vold = [0.1, 0.2, 0.3] and
v = [0.1, 0.4, 0.9] the trend is similar but Hl does not hold.
At the same time Hm holds and an isotonic regression is used
to map the old data.

V. EVALUATION

To assess the benefit of knowledge transfer, a comparison is
made between the new Auto-Transfer algorithm and ARDEGO
[3]. Two benchmarks are used: a quadrature-based financial
design with customizable precision [7] and a high performance
Reverse Time Migration (RTM) design with seven parameters
[8]. Each design is first optimised for the Maxeler MPC-X1000
system with Xilinx Virtex-6 XC6VSX475T FPGA. Afterwards,
optimisation for Maxeler MPC-X2000 with an Altera Stratix
V GS 5SGSD8 FPGA follows. The Auto-Transfer algorithm
uses up to 5 D parameter settings to construct XH. α is set to
1%, and correlations weaker than ±0.95 are rejected.

4) Quadrature-based Financial Computation: The
quadrature-based financial design [7] has three parameters
and an associated throughput benchmark. It can be used
to compute integrals for various financial applications. The
design offers a trade-off between accuracy and throughput.
The parameters are mantissa width mw of the floating point



operators, the number of computational cores κ and the density
factor df . A larger number of mw bits increases computation
accuracy, but limits κ due to the increased size of an individual
core and the resource constraints. The number of quadratures
used for integral estimation is regulated by df . By increasing
the parameter a larger number of quadratures is used for an
estimation of an integral. This increases both the computation
cost and the accuracy of the results. The optimization goal
is to find the design with the highest throughput using the
provided benchmark. A latent constraint accuracy function
exists which specifies the maximum acceptable error εrms.

Fig. 5: Optimisation of the quadrature-based financial design
throughput benchmark for εrms = 0.001.

Transfer knowledge speeds up optimisation in nearly all
of the cases during the early stages of optimisation as seen
in Figure 5. This is due to transferred knowledge induced
inaccuracies. When εrms = 0.001 and P = 4 the average
optimization time reduces by 35%, from 133 hours to 86
hours. The reduction for P = 2 and P = 1 is 33% and 35%
respectively. Although both designs run at the same clock
frequency, and the accuracy constraint functions of the design
on both platforms are identical, this is not the case for the
fitness function. As the df parameter is decreased, the problem
becomes communication bound instead of compute bound. This
is especially prominent when εrms = 0.1 or εrms = 0.01 as
transfer knowledge does not offer as big an improvement.

5) Reverse Time Migration: The RTM design [8] is a stencil-
based design used for seismic imaging and it involves seven
parameters. The parameters determine parallelism, numerical
precision and balancing of computation and communication
through changing of the design architecture. They are bit-width
optimisation ratio B, dimension and kernel parallelism Pt, Pknl
and Pdp as well as blocking ratios α and β and arithmetic
operation transformation ratio T . Depending on the device
there are 20 or 81 million possible configurations. The globally
optimal configuration offers execution time over 100 times
shorter than the basic configuration. Latent constraint functions
involve resource utilization and communication bandwidth.

Figure 6 shows there is a clear benefit from using information
derived from the old designs. The improvement is most
prominent when P > 1. The improvement when P = 4 is 45%
in design performance, as well as 11% shorter optimization
time. The initial large benefit comes from reevaluation of old
designs, which are all built on the old platform, and from
knowledge transfer.

Fig. 6: Optimisation of execution time of the RTM design.

VI. CONCLUSION

We present a new Auto-Transfer algorithm, which offers
substantial reduction in optimisation time. For the quadrature-
based financial design and the reverse time migration designs
we observe a reduction in optimisation time of up to 35%
compared to [3]. For the quadrature based design, the knowl-
edge transfer step helps improve optimisation speed despite the
large amount of noise introduced by the new platform. Current
and future work includes automating the selection of related
previous designs, and extending the evaluation of the proposed
approach by a wide range of applications.

Acknowledgement. This research has received funding
from European Union H2020 Programme with project ref-
erence 671653. The support of UK EPSRC (grant references
EP/I012036/1 and EP/L00058X/1), HiPEAC NoE, the Maxeler
University Program, Altera and Xilinx is gratefully acknowl-
edged. MPD has been supported by a Google Faculty Research
Award.

REFERENCES

[1] N. Kapre, B. Chandrashekaran, H. Ng, and K. Teo, “Driving timing
convergence of FPGA designs through machine learning and cloud
computing,” in FCCM, 2015.

[2] A. Mametjanov, P. Balaprakash, C. Choudary, P. Hovland, S. Wild, and
G. Sabin, “Autotuning FPGA design parameters for performance and
power,” in FCCM, 2015.

[3] M. Kurek, T. Becker, T. C. Chau, and W. Luk, “Automating optimization
of reconfigurable designs,” in FCCM, 2014.

[4] M. K. Papamichael, P. Milder, and J. C. Hoe, “Nautilus: Fast automated
IP design space search using guided genetic algorithms,” in DAC, 2015.

[5] S. J. Pan and Q. Yang, “A survey on transfer learning,” TKDE, vol. 22,
no. 10, pp. 1345–1359, 2010.

[6] M. A. Gelbart, J. Snoek, and R. P. Adams, “Bayesian optimization with
unknown constraints,” in UAI, 2014.

[7] A. H. Tse, G. C. Chow, Q. Jin, D. Thomas, and W. Luk, “Optimising
performance of quadrature methods with reduced precision,” in ARC,
2012.

[8] X. Niu, Q. Jin, W. Luk, Q. Liu, and O. Pell, “Exploiting run-time
reconfiguration in stencil computation,” in FCCM, 2012.

[9] C. Rasmussen and C. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

[10] J. Janusevskis, R. Le Riche, D. Ginsbourger, and R. Girdziusas, “Expected
improvements for the asynchronous parallel global optimization of
expensive functions: Potentials and challenges,” in LION 12, 2012.

[11] K. Pearson, “Note on regression and inheritance in the case of two
parents,” Proc. Roy. Soc., vol. 58, pp. 240–242, 1895.

[12] D. Zwillinger and S. Kokoska, CRC standard probability and statistics
tables and formulae. CRC, 1999.

[13] N. Chakravarti, “Isotonic median regression: A linear programming
approach,” Mathematics of Operations Research, vol. 14, no. 2, pp.
303–308, 1989.


