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Abstract: We consider the problem of area coverage for robot teams operating under resource constraints, while model-
ing spatio-temporal environmental phenomena. The aim of the mobile robot team is to avoid exhaustive search and only
visit the most important locations that can improve the prediction accuracy of a spatio-temporal model. We use a Gaussian
Process (GP) to model spatially varying and temporally evolving dynamics of the target phenomenon. Each robot of the
team is allocated a dedicated search area wherein the robot autonomously optimizes its prediction accuracy. We present
this as a Decentralized Computation and Centralized Data Fusion approach wherein the trajectory sampled by the robot is
generated using our proposed Resource-Constrained Decentralized Active Sensing (RC-DAS). Since each robot possesses
its own independent prediction model, at the end of robot’s mission time, we fuse all the prediction models from all robots
to have a global model of the spatio-temporal phenomenon. Previously, all robots and GPs needed to be synchronized,
such that the GPs can be jointly trained. However, doing so defeats the purpose of a fully decentralized mobile robot team.
Thus, we allow the robots to independently gather new measurements and update their model parameters irrespective of
other members of the team. To evaluate the performance of our model, we compare the trajectory traced by the robot
using active and passive (e.g., nearest neighbor selection) sensing. We compare the performance and cost incurred by a
resource constrained optimization with the unconstrained entropy maximization version.
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1. INTRODUCTION
Environmental monitoring has been a core area of re-

search in geostatistics [1], [2], [3]. Recently, the robotics
community started aiding this research by providing au-
tonomous mobile sensor nodes that can assist in making
scrupulous models of complex spatio-temporal environ-
mental phenomena [4], [5], [6], [7]. In the past, this
problem was mostly posed as a static sensor placement
problem [4]. In this case, the target phenomenon cov-
ers a wide area and due to intrinsic variations, the sensor
nodes may have to be moved from time-to-time in order
to obtain the most informative measurements [7]. This
problem was later solved by using mobile sensor nodes
like UAVs, AUVs, UGVs etc. With the involvement of
robots, we get the benefit of covering wide areas and
even wider domains of environmental sensing, e.g., oil
spill monitoring, phytoplankton density monitoring [8],
some urban problems like road traffic [9] and ambulance
demand monitoring [10] alongside the classical weather
forecasting problems and pollution management.

Formulating a parametric model and identifying its
parameters are complicated for spatio-temporal dynamic
phenomena. Therefore, we choose a non-parametric
Bayesian framework for modeling spatio-temporal phe-
nomena. In particular, we use Gaussian processes
(GPs) [11] for this purpose. GPs exhibit the desirable
property of increasing flexibility (as more data becomes
available) while not being prone to over-fitting. Further-
more, low-level parameters (e.g., the degree of the poly-

nomial for regression) are no longer necessary. Instead,
high-level parameters (e.g., smoothness) are determined
more easily. The GP’s predictions are naturally equipped
with variances, which allow us to determine whether a
prediction is made with high confidence.

Using a standard GP framework incurs computation
and memory costs, which scale cubically and quadrati-
cally in the size of the data set, respectively. Therefore,
many researchers are proposing new covariance struc-
tures [12] or trying to propose scalable GPs [13], [14],
which can handle a large number of training instances.
This is particularly useful for the case of mobile sensor
nodes that gather large amount of measurements, which
must be analyzed. Also, instead of using an offline
model, researchers like to use an Online version of GP
with Sparse Approximations, such that the model is up-
dated as the new data comes in without incurring any ad-
ditional memory cost [15], [16], [9]. In this paper, we use
the Distributed Gaussian Process (DGP) framework [14],
an offline GP method. In the DGP, the training points
are distributed among multiple GPs, which reduces the
burden of computation. Since in the DGP framework the
computation is Decentralized we harness this aspect of
the model to endow our team of mobile robots with a fully
Decentralized active sensing scheme. Here, we extend
the work of [14] by using active sensing, such that we
can choose inputs to improve model performance rather
than relying on a fixed training set.

In order to optimize the resource utilization, e.g., the



Fig. 1 Sensing Scenario. Illustration of centralized data fusion of the prediction model generated by all GPs in order to
fuse them into a global prediction [14]. Images from http://tiny.cc/jkpfby, http://tiny.cc/qkpfby, http://tiny.cc/ykpfby

battery life of the robot, we propose a Resource Con-
strained Decentralized Active Sensing called RC-DAS.
Our sensing scenario is illustrated in Fig. 1 for four
robots: We partition the sensing area into four zones, i.e.,
one dedicated sensing zone per robot. The robots are only
allowed to gather data within their own sensing zones but
they can predict for any location in any zone. All loca-
tions available for sensing and predicting are known to
all robots. The robots then use either full DAS or RC-
DAS active sensing schemes, in order to move around
and collect the most informative measurements. Upon
termination of exploration the robots (GPs) make a pre-
diction for the inputs that remain unobserved. Since each
robot visited different locations in its respective sensing
zone, it may predict differently for the unobserved set.
Thus, we need to fuse all such predictions into a single
global prediction model, which is done as a terminal step
of exploration by the base station.

The contribution of our paper is a novel Active Sens-
ing scheme, the Resource Constrained Decentralized Ac-
tive Sensing (RC-DAS). In this approach, the robots ac-
tively select the most informative sensing locations to en-
hance the prediction performance of the model being gen-
erated whilst simultaneously conserving the utilization of
resources like battery, travel distance, etc.

1.1 Problem Statement
The problem addressed in this paper is as follows:

Given a team of robots and an unknown spatio-temporal
phenomenon, we seek a decentralized strategy to im-
prove their respective predictive models under resource
constraints. We propose to actively explore the spatio-
temporal phenomenon. The local models of this decen-
tralized robotic system are fused to a global model so that
we can predict measurements at any unobserved location.

We wish to model a spatio-temporal phenomenon
z = f(x) + ε, where x ∈ D ⊂ Rd are tuples
<Latitude,Longitude,Time> and ε ∼ N (0, σ2

n) is i.i.d.
Gaussian measurement noise. We place a Gaussian pro-
cess (GP) prior on the spatio-temporal phenomenon f
and write f ∼ GP . For each input x ∈ D, the associated
measurement is denoted by zx if the input was visited and
the measurement was observed. Otherwise we define Zx
as a random variable, which we wish to predict at unob-
served locations. Then, {Zx}x∈D is a GP, and any of its
finite subsets is a multivariate Gaussian distribution [11].

We propose to (a) model the spatio-temporal phe-
nomenon using a probabilistic GP and (b) exploit the
GP’s predictive variance for active sensing, such that the
robot only visits the most informative inputs rather than
exhaustively searching through the whole zone. Active
sensing usually encourages the robot to visit the most un-
certain inputs [9], [8], but for a real robot setup, it could
mean that the robot might end up choosing locations,
which are prohibitively far away. We pose this as a fully
Decentralized Active Sensing (DAS, similar to [9]) prob-
lem and propose a Resource Constrained Decentralized
Active Sensing (RC-DAS) wherein the robot trades-off
the model performance to travel distance.

2. MODELING A SPATIO-TEMPORAL
ENVIRONMENTAL PHENOMENON

In this Section, we explain how to model the spatio-
temporal field as GP and how to distribute the computa-
tion over multiple robots and fuse the prediction models
in order to create a global prediction model using DGP.

2.1 Gaussian Process
GPs are a rich class of probabilistic non-parametric

Bayesian models, which allow us to model spatio-



temporal phenomenon f . GPs consistently quantify the
uncertainty associated with predictions, which can be ex-
ploited by active sensing schemes for exploration and ob-
taining the Next Best Location for each robot.

A GP is a generalization of a Gaussian distribution
and fully defined by a mean function µ(·) = E[f(x)] =
E[Zx] and covariance function k(·, ·). The covariance
function (kernel), defines the spatio-temporal correla-
tion structure of the function to be modeled and is
parametrized by a set of hyper-parameters θ. A common
covariance function is the squared exponential

σxx′ =σ2
sig exp

(
− 1

2 (x− x′)TL−1(x− x′)
)

+ σ2
nδxx′

where x, x′ ∈ D, L = diag(l21, . . . , l
2
D) and the li are

characteristic length scales, which determine the rele-
vance of the corresponding input dimension for model-
ing the spatio-temporal phenomenon. σsig corresponds to
the amplitude of the signal to be modeled whereas σn de-
scribes the magnitude of the noise. The hyper-parameters
θ =∆ {σ2

sig, σ
2
n, l1, l2, . . . , ld} are trained using the stan-

dard procedure of evidence (type-II marginal likelihood)
maximization [11]. Evidence maximization avoids over-
fitting by trading off data fit and model complexity.

When a column vector zO of realized measurements
becomes available for a set O ⊂ D of inputs, we can ex-
ploit these measurements to train the GP and predict the
measurements at a set of unobserved inputs U ⊆ D [9],
[8]1. The corresponding Gaussian posterior predictive
distribution is

µU |O,θ =∆ µU + ΣUO|θΣ
−1
OO|θ(zO − µO) (1)

ΣUU |O,θ =∆ ΣUU |θ − ΣUO|θΣ
−1
OO|θΣOU |θ (2)

where µU |O,θ is a column vector of means of the pre-
dicted (posterior) measurements of spatio-temporal field
and ΣUU |O,θ is the corresponding predictive posterior co-
variance matrix. Here, we define the short-hand notation
ΣUO = k(O,U), ΣOO = k(O,O), ΣUU = k(UU) for
the corresponding covariance matrices.

2.2 Distributed Prediction Model
We learn the hyper-parameters of the GP by evidence

maximization. For training the GP, we need to invert the
covariance matrix ΣOO, which requires O(|O|3) time,
where |O| is the size of the training data set. At pre-
diction time, we exploit a cached Σ−1

OO, but the compu-
tational demand is still O(|O|2) time for the predictive
variance in Eq. (2). To lower this computational burden,
we use an approximation proposed in the DGP frame-
work [14]. The intuition of this approach is to split the
training data set into M subsets and to train individual
GP experts using these subsets. Then, if the kth GP gets
nk data points for training, the computation time incurred
1For the current time instance, the predictions are only made for the
locations not visited, but the predictions could also include the training
locations should we choose to make the prediction for the future

is just O(|nk|3) � O(|O|3). The process can be par-
allelized straightforwardly. Besides computational and
memory advantages, the DGP allows us to model local
variations of the spatio-temporal function using a “local
GP expert” and decentralize predictions.

Model. The DGP architecture is a framework for
product-of-GP-experts models, which unifies the Product
of GP experts (PoE) [17], the generalized Product of GP
Experts (gPoE) [18], the Bayesian Committee Machine
(BCM) [19] and the robust BCM [14], where the poste-
rior prediction is a weighted product of the posterior pre-
dictions of all GP experts. The weights are determined
based on each expert’s confidence.

Training. In [14], the authors jointly trained all GP
experts, which shared a single set of hyper-parameters θ.
In the context of our decentralized robotics scenario, we
assume that each robot independently optimizes its own
set of hyper-parameters, such that we obtain a super-set of
hyper-parameters Θ = [θ1, θ2, . . . , θK ]. This approach is
more flexible than a shared set of hyper-paremeters and
allows the robots to model local variations.

Prediction. In our model, the posterior predictive
mean (predicted measurements over all the unobserved
locations in set U ) and the posterior covariance for the
rBCM model for K robots (GP experts) are given by

µrBCMU |O,Θ =∆ ΣrBCMUU |O,θk

∑K

k=1
βkΣ−1

UU |Ok,θk
µU |Ok

, (3)

(ΣrBCMUU |O,Θ)−1 =∆
∑K

k=1
βkΣ−1

UU |Ok,θk

+
(
(1−

∑K

k=1
βk)Σ−1

UU |θk

)
, (4)

respectively, where the subscript k denotes a quan-
tity related to the kth expert (e.g., the predictive mean
or variance). In Eq.(3) and Eq.(4), the confidence
of the ith model is encoded in its weight βi =∆

0.5(HZUk
−HZUk

|zOk
,θk) where HZUk

refers to the prior
entropy and HZUk

|ZOk
,θk refers to the posterior entropy

of the prediction model.

2.2.1 Centralized Data Fusion
In our experiment, we allow each robot to gather

unique training samples from its dedicated sensing zone
and the unvisited/unobserved locations at the end of mis-
sion time are classified as testing set for the correspond-
ing agent. Since, the number of feasible locations are
fixed a priori, each robot’s test set will have some loca-
tions which intersect with the other robot’s test set. Thus,
we need to fuse the predictions from all robots to make a
global model of prediction such that we have a prediction
over unobserved locations never visited by any robot.

To combine these predictions into a single prediction,
we exploit the idea of [14] and build a global prediction
at the base station by a weighted combination of individ-
ual predictions. This is illustrated in Fig. (1): Every GP
expert i transmits its predicted mean µi, variance, Σi and



weight βi to the base station, which combines individual
predictions to a global prediction.

When combining the prediction models at the base sta-
tion, we are interested in only these mutually common lo-
cations thus, we define Uglobal =∆ {U1 ∩ U2 ∩ . . . ∩ UK}
as the super set of all unobserved inputs that were never
visited by any robot. Similarly, we define Oglobal =∆

{O1 ∪ O2 ∪ . . . ∪ OK} as the super set of all observed
inputs that were visited by all robots. Then the global
prediction for any unobserved input in Uglobal is given by
the fused predictions from all robots:

p(ZUglobal
|zOglobal

) =

∏K
k=1

(
pβk

k (ZUk
|zOk

, θk)
)

p
∑K

k=1 βk−1(ZUglobal
)

. (5)

Note that in Eq. (5) predictions from every robot are taken
into account to form a global prediction without boundary
effects. Each robot’s prediction pk is weighted by βk,
which depends on the confidence of the prediction.

3. ACTIVE SENSING

The DGP framework, which we use for predictions,
assumes batch data for training. In this paper, we gen-
eralize this framework to the sequential setting by using
active sensing under resource constraints. We use the un-
certainty of the global GP model to determine the next-
best location to visit while taking limited resources (e.g.,
battery) into account. In particular, we propose an Active
Sensing approach with two variants: fully Decentralized
Active Sensing (full DAS) [9] and Resource-Constrained
DAS (RC-DAS), which are detailed below.

Active Sensing integrates Path Planning and Mapping.
In active sensing, the robot (or GP) is endowed with a de-
cision making capability, such that it can choose the most
informative training data, instead of visiting all available
locations sequentially. This ensures that a robot does not
end up performing exhaustive search, which is of particu-
lar interest if we have resource constraints, e.g., sampling
budget. Once the robot has evaluated the next best loca-
tion it wants to move to, a path planner helps the robot
to reach the desired target. Upon successfully reaching
the target, the new measurement observed and the cor-
responding input location are added to the training set
(zO, O), and the GP model of the map is updated. Note
that in order to maximize the model the Next Best Loca-
tion may be prohibitively far away from the robot, which
could critically reduce the number of measurements that
the robot can gather in mission time. In order to effec-
tively allocate resources, whilst not compromising the
model performance, we propose optimizing the travel
distance alongside the choice of Next Best Location. This
gives rise to Resource Constrained Decentralized Active
Sensing (RC-DAS), which is detailed in Section 3.3.

3.1 Multi-Robot Centralized Active Sensing (CAS)
In a centralized active sensing approach, the base sta-

tion must jointly coordinate all robot trajectories. Con-
sider a network ofK mobile sensor nodes (robots), which
are actively moving and gathering data to accurately pre-
dict a target phenomenon, e.g., the variation in ozone con-
centration, which is modeled with a Distributed GP [14].
In a fully centralized active sensing approach, the base
node selects the most informative walks w∗1 , w

∗
2 , . . . , w

∗
K

of length L of all K robots, such that each robot can
gather the most informative measurements that affect the
overall performance of the fused GP model, i.e.,

(w∗1 , w
∗
2 , . . . , w

∗
K) = arg max

w1,...,wK

H [ZUk
|zOk

] . (6)

In Eq. (6), Uk =∆
⋃K
k=1 Uwk

represents the set of (un-
observed) locations visited by robot k during its walk
wk and similarly the observations are represented by
Ok =∆

⋃K
k=1Owk

. H [ZUk
|zOk

] refers to the Entropy
(a measure of prediction uncertainty) as defined in Eq.
(7) Other measures of uncertainty are available, e.g.,
trace(ΣUU|O,θ), but these measures lose the correlations
between measurements. Hence, we will be relying on en-
tropy as a measure of uncertainty [9].

HZUk
|zOk

,θk =∆ |Uk|
2 ln(2πe) + 1

2 ln(|ΣUkUk|Ok,θk |) (7)

However, such a Centralized Active Sensing (CAS)
approach requires the evaluation of an exponential num-
ber of combinations of all possible joint walks. Further-
more, it relies on all measurements collected by all robots
in this distributed system. Thus, to ease this computa-
tional burden, a widely used approach is decentralized
active sensing.

3.2 Multi-Robot Decentralized Active Sensing (DAS)
In order to remedy the exponential computation of a

fully centralized approach, we employ a fully decentral-
ized approach wherein each robot optimizes its own walk
at its own digression. In such a setup, the active sensing
problem can be reformulated as

w∗K = arg max
wK

H[ZUwk
|zOwk

] . (8)

As opposed to Eq. (6), in Eq. (8), each robot k locally
optimizes its own trajectory wk based on its observations
Owk

. Since the robots do not communicate and coor-
dinate with each other, their walks may become corre-
lated, and robots may end up exploring overlapping ar-
eas, which leads to resource wastage. This induces cor-
relations in the measurements being gathered, which vio-
lates the conditional independence between observations
of each GPs, which is important for us to fuse the outputs
obtained from multiple GPs. To harness the strengths of
full decentralization while avoiding violations of condi-
tional independence assumption such that no two robots



visit the same input, we partition the sensing area, such
that each robot is bounded within its own sensing zone
that does not interfere or overlap with that of its neigh-
bors.This also ensures robots avoid collision. However,
every robot can predict in any other region, which was is
used by the full DAS.

3.3 Multi-Robot Resource-Constrained Decentralized
Active Sensing (RC-DAS)

Entropy maximization is a widely used greedy crite-
rion to choose the next-best location to move to. How-
ever, using such a cost function in a real robot imple-
mentation could force the robot to select new locations
far away, which will cost the robot a substantial time
and energy to reach. Thus, while selecting the next lo-
cation to move to, the robot must trade-off the informa-
tiveness of the location and its distance from the current
location.Unfortunately, this problem is NP-hard [20].

To find an approximate solution to this problem we
propose a new cost function, which is a combination of
Entropy Maximization and travel distance. For this, we
first define two costs that are incurred every time a new
measurement is taken: 1) A sensing cost CS(x), which is
the cost incurred by the robot when taking a measurement
at location x; 2) a travel cost CT (x, x′), which is the cost
incurred by the robot when moving from current location
x to the Next-Best-Location x′ [21]. Our sampling budget
has an upper-limit B.

The total cost (called as Path Cost from here on) in-
curred during a walk wk of length L by robot k is

C(wk) =
∑L

i=1
CS(xi) +

∑L

i=2
CT (xi−1, xi) (9)

With the sampling budgetB and the path costs in Eq. (9),
we redefine our DAS problem as a Resource-Constrained
DAS (RC-DAS), which is formulated as

w∗K = arg max
wK

(
αH[ZUwk

|zOwk
]− (1− α) ln‖x− x∗‖

)
(10)

where x ∈ O and x∗ ∈ U. If α = 1 Eq. (10) becomes
similar to our full DAS setup in Eq. (8). For α = 0,
the equation reduces to nearest neighbor selection routine
without any active sensing. Thus, at α = 0.752 our cost
function trades-off the travel distance against the Entropy
Maximization.

4. EXPERIMENTS
To demonstrate our RC-DAS approach on a real-life

scenario, we used the US Ozone Dataset. This dataset
includes ozone concentration (in parts per billion) col-
lected by US Environmental Protection Agency 3[22].
For data pre-processing, we followed the steps similar to
those proposed by the authors in [12]. However, in the
2arbitrary choice for this paper
3https://www.epa.gov/castnet

Table 1 Performance Evaluation: Performance of DGP
when running on full DAS vs RC-DAS.

Robot 1 Robot 2 Robot 3 Robot 4
NN 17.4360 20.1437 13.0039 18.3455

RC-DAS 16.3071 20.1437 13.0039 17.2355RMSE
full DAS 14.5139 20.1412 18.9157 17.3427

NN 1.9185 6.3260 6.0406 3.6612
RC-DAS 2.0083 6.3260 6.0406 3.5652Path Cost
full DAS 8.4230 7.9660 5.4497 9.1475

light of active sensing perspective of a real robot imple-
mentation, we do not split the data into testing and train-
ing set. Instead, we initialize an empty training set, which
we call as the Observed setO ⊂ D, and put all admissible
locations into another set called Unobserved set U ⊂ D
such that U ∩O = ∅. As the robot moves from one loca-
tion to its Next Best Sensing Location, we move locations
from U and add them to O. Since the measurement sig-
nal is noisy, we have to gather a few measurements and
take their average as a measurement sample for a spe-
cific geo-location. In terms of ozone dataset, this meant
taking a single measurement per month per location and
computing the average over the year.

To allocate the maximum budget B we evaluate the
maximum available spatial separation between any pair
of sensing locations and assign the natural logarithm of
this distance as B. Similarly, the minimum separation
is assigned as the sensing cost CS . We then evaluate
the performance of Active Sensing versus that of Short-
est Distance based Next Best Sensing Location selection
criterion as shown in Table 1. The RMSE results show
that if we just choose the different cost functions to de-
duce the Next Best Sensing Location then the GP predic-
tion accuracy is the affected but since the results are pre-
sented on a normalized scale, the values remain in close
proximity. We also contrast the trajectories sampled by
the robots when running on full DAS v/s RC-DAS as
shown in Fig. 2. The figure shows that our new RC-DAS
cost function penalizes the travel cost binding the robot
to visit the closest most uncertain locations first. This is
clear from the trajectories of Robots 1 and 4. However,
there are too few locations in the sensing zones of robots
2 and 3 so the trajectories remain unaffected. Globally,
RC-DAS incurs lesser path cost than full DAS.

5. CONCLUSION
In this paper, we considered a wide-area coverage

problem under resource constraints in the context of mo-
bile robots. In particular, we considered the problem of
exploring and modeling a spatio-temporal phenomenon.
For this purpose, we utilized a decentralized team of
mobile robots, each of which modeled the target phe-
nomenon locally using an independent Gaussian process
(GP) expert. Since GPs are data-driven models, the task
at hand was to obtain the best possible model perfor-
mance while conservatively utilizing the resource con-
straints (battery, travel distance, etc.) and efficiently trad-



Nearest Neighbor (NN)

full-DAS

RC-DAS

Fig. 2 Full DAS v/s Nearest Neighbor v/s RC-DAS:
Trajectory of robots while using different cost func-
tions to move to Next Best Location

ing off model quality with resource utilization.
We introduced Resource Constrained Decentralized

Active Sensing (RC-DAS), which trades off the selec-
tion of most informative sensing location with that of
the most energy-efficient location. We evaluated our ap-
proach empirically on a publicly available dataset for
Ozone concentration and compared the model perfor-
mance with that of an unconstrained entropy maximiza-
tion approach.
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