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Motivation

• We live in an era of abundant data

• Scientific, commercial and societal uses of this data drive the need for exploratory
data analysis and prediction methods, but there are too few experts statisticians
and data scientists to provide these services.

• Many aspects of statistical inference can be automated, and one of the goals
of machine learning and artificial intelligence is to develop powerful tools for
understanding data that require minimal expert input.

• By trying to build an “Automatic Statistician” we can

– provide a set of useful tools for understanding certain kinds of data
– uncover challenging research problems in automated inference, model

construction and comparison, and data visualisation and interpretation
– advance the field of machine learning in general



Ingredients

• Probabilistic modelling

• Model selection and marginal likelihoods

• Bayesian nonparametrics

• Gaussian processes

• Change-point kernels



Probabilistic Modelling

• A model describes data that one could observe from a system

• If we use the mathematics of probability theory to express all

forms of uncertainty and noise associated with our model...

• ...then inverse probability (i.e. Bayes rule) allows us to infer

unknown quantities, adapt our models, make predictions and

learn from data.



Bayesian Machine Learning

Everything follows from two simple rules:

Sum rule: P (x) =
∑
y P (x, y)

Product rule: P (x, y) = P (x)P (y|x)

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)

P (D|θ,m) likelihood of parameters θ in model m

P (θ|m) prior probability of θ

P (θ|D,m) posterior of θ given data D

Prediction:

P (x|D,m) =

∫
P (x|θ,D,m)P (θ|D,m)dθ

Model Comparison:

P (m|D) =
P (D|m)P (m)

P (D)

P (D|m) =

∫
P (D|θ,m)P (θ|m) dθ



Model Comparison
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Bayesian Occam’s Razor and Model Comparison

Compare model classes, e.g. m and m′, using posterior probabilities given D:

p(m|D) =
p(D|m) p(m)

p(D)
, p(D|m) =

∫
p(D|θ,m) p(θ|m) dθ

Interpretations of the Marginal Likelihood (“model evidence”):

• The probability that randomly selected parameters from the prior would generate D.

• Probability of the data under the model, averaging over all possible parameter values.

• log2

(
1

p(D|m)

)
is the number of bits of surprise at observing data D under model m.

Model classes that are too simple are unlikely
to generate the data set.

Model classes that are too complex can
generate many possible data sets, so again,
they are unlikely to generate that particular
data set at random.

too simple

too complex

"just right"

All possible data sets of size n

P
(D

|m
)

D



Bayesian Model Comparison: Occam’s Razor at Work
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For example, for quadratic polynomials (m = 2): y = a0 + a1x + a2x
2 + ε, where

ε ∼ N (0, σ2) and parameters θ = (a0 a1 a2 σ)

demo: polybayes



Parametric vs Nonparametric Models

• Parametric models assume some finite set of parameters θ. Given the parameters,
future predictions, x, are independent of the observed data, D:

P (x|θ,D) = P (x|θ)

therefore θ capture everything there is to know about the data.

• So the complexity of the model is bounded even if the amount of data is
unbounded. This makes them not very flexible.

• Non-parametric models assume that the data distribution cannot be defined in
terms of such a finite set of parameters. But they can often be defined by
assuming an infinite dimensional θ. Usually we think of θ as a function.

• The amount of information that θ can capture about the data D can grow as
the amount of data grows. This makes them more flexible.



Bayesian nonparametrics

A simple framework for modelling complex data.

Nonparametric models can be viewed as having infinitely many parameters

Examples of non-parametric models:

Parametric Non-parametric Application
polynomial regression Gaussian processes function approx.
logistic regression Gaussian process classifiers classification
mixture models, k-means Dirichlet process mixtures clustering
hidden Markov models infinite HMMs time series
factor analysis / pPCA / PMF infinite latent factor models feature discovery
...



Nonlinear regression and Gaussian processes

Consider the problem of nonlinear regression:
You want to learn a function f with error bars from data D = {X,y}

x

y

A Gaussian process defines a distribution over functions p(f) which can be used for
Bayesian regression:

p(f |D) =
p(f)p(D|f)

p(D)

Let f = (f(x1), f(x2), . . . , f(xn)) be an n-dimensional vector of function values
evaluated at n points xi ∈ X . Note, f is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset {x1, . . . , xn} ⊂ X ,
the marginal distribution over that subset p(f) is multivariate Gaussian.
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Gaussian process covariance functions (kernels)

p(f) is a Gaussian process if for any finite subset {x1, . . . , xn} ⊂ X , the marginal
distribution over that finite subset p(f) has a multivariate Gaussian distribution.

Gaussian processes (GPs) are parameterized by a mean function, µ(x), and a
covariance function, or kernel, K(x, x′).

p(f(x), f(x′)) = N(µ,Σ)

where

µ =

[
µ(x)
µ(x′)

]
Σ =

[
K(x, x) K(x, x′)
K(x′, x) K(x′, x′)

]

and similarly for p(f(x1), . . . , f(xn)) where now µ is an n × 1 vector and Σ is an
n× n matrix.



Gaussian process covariance functions

Gaussian processes (GPs) are parameterized by a mean function, µ(x), and
a covariance function, K(x, x′), where µ(x) = E(f(x)) and K(x, x′) =
Cov(f(x), f(x′)).

An example covariance function:

K(x, x′) = v0 exp

{
−
(|x− x′|

r

)α}
+ v1 + v2 δij

with parameters (v0, v1, v2, r, α).

These kernel parameters are interpretable
and can be learned from data:

v0 signal variance
v1 variance of bias
v2 noise variance
r lengthscale
α roughness

Once the mean and covariance functions are defined, everything else about GPs
follows from the basic rules of probability applied to mutivariate Gaussians.



Samples from GPs with different K(x, x′)
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Prediction using GPs with different K(x, x′)

A sample from the prior for each covariance function:
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Change Point Kernels

Assume f1(x) ∼ GP (0, k1) and f2(x) ∼ GP (0, k2). Define:

f(x) = (1− σ(x))f1(x) + σ(x)f2(x)

where σ is a sigmoid function between 0 and
1, such as the logistic function: σ(x) = 1/(1 +
exp(−x))
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Then f ∼ GP (0, k), where

k(x, x′) = (1− σ(x)) k1(x, x
′) (1− σ(x′)) + σ(x) k2(x, x

′)σ(x′)

We can parametrise the location τ and abruptness a of the changepoint by replacing
σ(x) with σ(a(x− τ)).

Intutively (in one-dimension), the function f behaves like f1 before τ and like f2
after τ .

(cf. Garnett, Osborne and Roberts, 2009)



Change Windows

A change window (or interval) is simply defined as a changepoint from f1(x) to
f2(x) followed by a changepoint back to f1(x).

We can represent this via a product of two sigmoids with different offsets:

f(x) = (1−(1−σ(a(x−τ2)))σ(a(x−τ1)))f1(x)+(1−σ(a(x−τ2)))σ(a(x−τ1))f2(x)

This looks a bit messy but it just smoothly switches on f2 between τ1 and τ2.
Raw data

1600 1700 1800 1900 2000
360

60.5

361

61.5

362

Solar irradiance data form 1600s showing the Maunder minimum

where sunspot activity was extremely rare.



The Automatic Statistician



How do we learn the kernel?

• Usual approach: parametrise the kernel with a few hyperparameters and optimise
or infer these. An example covariance function:

K(x, x′) = v0 exp

{
−
(|x− x′|

r

)α}
+ v1 + v2 δij

with parameters (v0, v1, v2, r, α).

• Our approach: Define a grammar over kernels and search over this grammar to
discover an appropriate and interpretable structure of the kernel.



Kernel Composition

By taking a few simple base kernels and two composition rules, kernel addition
and multiplication, we can span a rich space of structured kernels.
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(w/ Duvenaud, Lloyd, Grosse, and Tenenbaum, ICML 2013)

see also (Wilson and Adams, ICML 2013)



Kernel Composition
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Automatic construction and natural-language summarization of additive nonparametric models

Multiplication by linear kernels LIN has the form
k(x, x0) = a(x)a(x0). This can be used as follows: sup-
pose that f(x) ⇠ GP(0, k) and a : X ! Y is a determinis-
tic function. Then a(x)f(x) ⇠ GP (0, a(x)k(x, x0)a(x0)).
Therefore multiplying a kernel, k, by the linear kernel is
equivalent to multiplying f(x) ⇠ GP(0, k) by a linear func-
tion.

This allows us to describe any linear kernels separately.
For example, multiplying by a linear kernel means that the
amplitude of the function grows linearly away from a cen-
tral point. Multiplication by two linear kernels results in
quadratic growth, etc.

Changepoints and changewindows Representing
changepoints/windows as sigmoid functions as shown
in equation (3.2) also results in kernels of the form
a(x)k(x, x0)a(x0) where a(x) is a sigmoid (changepoint)
or product of sigmoids (changewindow). Therefore the
application of changepoint/window operators can be
described separately as multiplication of functions by
sigmoids. When the sigmoids transition between 0 and
1 sharply the effect is particularly trivial to express in
natural-language e.g. “this component applies from 1700
to 1800”.

We now only need to describe the base kernels and products
of the form SE ⇥Q

PER.

Base kernels The priors induced by the base kernels are
well understood, with simple descriptions of typical func-
tions.

Kernel Function description

WN White noise
C Constant

LIN Linear
SE Smooth
PER Periodic

SE ⇥ PER gives rise to functions which are locally peri-
odic: they only approximately repeat. More exactly, if the
input space is restricted to a grid with spacing equal to the
period of the periodic kernel, then SE⇥PER = SE. That is,
the functional form of the periodicity varies like SE, giving
rise to the local nature of the periodicity.

Products of multiple periodic kernels Suppose that
f1(x) ⇠ GP(0, k1) and f2(x) ⇠ GP(0, k2). Then

Cov [f1(x)f2(x), f1(x
0)f2(x

0)] = k1(x, x0)k2(x, x0).
(4.1)

Therefore PER ⇥ PER defines a prior on functions whose
covariance is the same as the product of independent pe-
riodic functions. However, note that a product of periodic

functions drawn from GP priors will not be distributed ac-
cording to a GP.

4.1. Ordering additive components

(!) Cut this to supplementary material? (20)
(20) RG: No -
keep

An automatic regression system would ideally report the
most interesting or important features of the data first. (?)

However, measuring importance is subjective. We make
the choice that additive components are important if they
produce accurate extrapolations and order the components
by this metric. See the supplementary material for details.

4.2. When is a description ‘correct’?

In the above we have described how to produce a descrip-
tion of the prior of a GP described by an arbitrary kernel.
The GPSS procedure attempts to find the best fitting model
for a data set subject to the constraints of its modeling lan-
guage. As with all statistical analysis, a data set may not be
well described by any model in this language and therefore
the natural-language description will be spurious.

(!) Help with the following paragraph requested

We have begun to experiment with using posterior predic-
tive checks to assess the models produced by GPSS fol-
lowing the techniques of (Gelman et al., 1996) (see reports
in the supplementary material). However, model checking
for Gaussian processes, even those with simple kernels, is
under-researched so we leave their description and more
detailed analysis for future work.

5. Related work
Equation learning In this work we have defined a search
space of statistical models, where each model is charac-
terised by a parametric covariance function. Previous work
has considered searching over parametric functions (e.g.
Schmidt & Lipson, 2009). Some functions are well ex-
plained parametrically e.g. a logistic function, whereas oth-
ers are best described by their covariance e.g. an approxi-
mately periodic function.

Searching over statistical models GPSS was originally
inspired by the search over matrix factorisation models by
(Grosse et al., 2012). This work and GPSS is possible
for the following reasons: we can define a large space of
models through a succinct langauge, inference can be per-
formed for all sentences in this language and a basic search
procedure is sufficient to find accurate models. (?) This is
also true of - can we also cite some sort of graphical model
work? (21)

(21) RG: Cite
Kemp + Tenen-
baum?

Standardised inference methods (22) The GPSS lan- (22) RG: How is
this relevant?
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Automatic construction and natural-language summarization of additive nonparametric models
X

SE ⇥ cos (3.5)

by appealing to Bochner’s theorem (Bochner, 1959). By
using this new periodic kernel our language of kernels also
attains this completeness property.

No power at zero frequency The kernel defined by
equation (3.3) has a Fourier transform of zero when eval-
uated at zero. Therefore, functions drawn from a GP with
this kernel will have zero mean. In contrast, the previous
periodic kernel defined a prior over a zero mean periodic
function plus an independent constant function. For the
purposes of translation we find it more interpretable to sep-
arate zero mean periodicity and constant functions. (?) cite
Sheffield’s orthogonal RKHS work?

3.4. A separate constant kernel

(!) Several small changes - how do we not bore the reader?

We also remove the constant component from LIN and in-
troduce the constant function as a separate base kernel to
improve interpretability.

3.5. No rational quadratic

(!) Several small changes - how do we not bore the reader?

The work of (Duvenaud et al., 2013) also included the ratio-
nal quadratic kernel which can be represented as a mixture
of SE with different lengthscales. In preliminary investi-
gations we found that this mixture of lengthscales could
result in individual components expressing smooth trends
and noise like components simultaneously. We have there-
fore removed this kernel on the grounds of interpretability.

3.6. A broad language of statistical models

With these additions to the modelling language we can ex-
press a wide variety of regression motifs, shown in table 1.

Motif Example syntax

Linear regression C + LIN
Fourier analysis C +

P
cos

Sparse spectrum GPs
P

cos
Spectral kernels

P
SE ⇥ cos

Changepoints e.g. CP(SE, SE)
Kernel smoothing SE
Heteroscedasticity e.g. SE + LIN ⇥ WN
Trend cyclical irregular

P
SE +

P
PER

Additive nonparametric
P

SE

Table 1: Syntax of common regression motifs expressible
in our language.

Algorithm 1 Describe kernel expression
Input: kernel expression e
e = ChangePointsToSumsAndProducts(e)
e = DistributeProducts(e)
for k in Summands(e) do

repeat
k = Simplify(k)

until k is unchanged
DescribeLinearComponents(k)
DescribeChangePointComponents(k)
DescribeStationaryComponents(k)

end for

3.7. Inference

We use the same inference techniques as (Duvenaud et al.,
2013) but we introduce new search operators to accommo-
date the changepoint and change window operators. The
search procedure is not the focus of this manuscript so we
defer the details to the supplementary material.

4. Translation of kernel functions
(17) (18)

(17) RG: Does
the algorithm
clarify anything?

(18) RG, JBT:
Section unclear

The extended GPSS language produces sentences com-
posed of 5 base kernels (section 2.1) and the arbitrary
application of addition, multiplication, change point and
change window operators. In this section, we describe how
the compositional properties of kernel functions reduce the
task of natural-language description into relatively simple
subproblems. The text follows the flow of algorithm 1.

Changepoints We use equation (3.2) to represent
changepoints (and similarly change windows) using sums,
products, base kernels and sigmoid functions.

Distributivity Pointwise multiplication is distributive
over addition for functions so we can convert any kernel
expression into a sum of products.

Sums of kernels are sums of functions If f1(x) ⇠
GP(0, k1) and f2(x) ⇠ GP(0, k2) then f1(x) + f2(x) ⇠
GP(0, k1 + k2). Therefore, a sum of kernels can be de-
scribed as a sum of functions. We now only need to de-
scribe arbitrary products of kernels.

Simplification At a syntactic (19) level, SE is idempotent (19) need a bet-
ter word - I’m
not sure family is
quite right either

i.e. SE ⇥ SE = SE (simply, the product of two SE kernels
is another SE kernel but with different parameters). For
stationary kernels, WN behaves like zero e.g. WN⇥ SE =
WN⇥PER = WN. The constant kernel C behaves like the
identity e.g. C ⇥ LIN = LIN

Different kernels express a variety of covariance structures, such as local smoothness
or periodicity. New kernels can be constructed by taking the product of a set of
base kernels to express richer structures, (e.g. locally periodic, or heteroscedastic)

• Search starts with the base kernels for the GP, and applies different operations
(addition, multiplication, CP, CW) to explore kernels spanned by the grammar.

• For efficiency, kernel hyperparameters are optimised rather than integrated out

• Each resulting model is scored using the marginal likelihood penalised by a BIC
term for number of hyperparameters.



Kernel Composition: Mauna Loa CO2 Keeling Curve
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Kernel Composition: Mauna Loa CO2 Keeling Curve

( Per + RQ )
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Kernel Composition: Mauna Loa CO2 Keeling Curve

SE × ( Per + RQ )
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Kernel Composition: Mauna Loa CO2 Keeling Curve

( SE + SE × ( Per + RQ ) )
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Example: An automatic analysis
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Kernel Composition: predictive results

Structure Discovery in Nonparametric Regression through Compositional Kernel Search

Table 1. Kernels used to generate synthetic data, dimensionality D of the input space, inferred kernels, and estimated
noise level.

True kernel D Inferred kernels Estimated �n (Truth = 0.1)
SE + RQ 1 RQ 0.090
Lin ⇥ Per 1 Lin ⇥ Per 0.098
SE1 + RQ2 2 SE1 + RQ2 0.094

SE1 + SE2 ⇥ Per1 + SE3 3 SE1 + SE2 ⇥ Per1 + SE3 ⇥ Lin2 0.082
SE1 ⇥ SE2 4 SE1 ⇥ SE2 ⇥ Lin1 0.103

SE1 ⇥ SE2 + SE2 ⇥ SE3 4 (SE1 ⇥ SE2 + SE2 ⇥ SE3) ⇥ Lin3 0.089
(SE1 + SE2) ⇥ (SE3 + SE4) 4 (SE1 + SE2) ⇥ (SE3 + SE4 ⇥ Lin4) 0.084

Table 2. Comparison of multidimensional regression performance. Bold results are not significantly di↵erent from the
best-performing method in each experiment, in a paired t-test with a p-value of 5%.

Mean Squared Error (MSE) Negative Log-Likelihood
Method bach concrete puma servo housing bach concrete puma servo housing
Linear Regression 1.031 0.404 0.641 0.523 0.289 2.430 1.403 1.881 1.678 1.052
GAM 1.259 0.149 0.598 0.281 0.161 1.708 0.467 1.195 0.800 0.457
HKL 0.199 0.147 0.346 0.199 0.151 - - - - -
gp SE-ARD 0.045 0.157 0.317 0.126 0.092 �0.131 0.398 0.843 0.429 0.207
gp Additive 0.045 0.089 0.316 0.110 0.102 �0.131 0.114 0.841 0.309 0.194
Structure Search 0.044 0.087 0.315 0.102 0.082 �0.141 0.065 0.840 0.265 0.059

to perform all experiments is available on github4.

8. Discussion

“It would be very nice to have a formal
apparatus that gives us some ‘optimal’ way of
recognizing unusual phenomena and invent-
ing new classes of hypotheses that are most
likely to contain the true one; but this re-
mains an art for the creative human mind.”

E. T. Jaynes, 1985

The ability to learn kernel parameters and combina-
tion weights automatically has been an important fac-
tor in enabling the widespread use of kernel methods.
For the most part, however, it has been up to the user
to choose the proper form for the kernel, a task which
requires considerable expertise.

Towards the goal of automating this process, we in-
troduced a space of composite kernels defined compo-
sitionally as sums and products of a small number of
base kernels. We proposed a search procedure for this
space of kernels which parallels the process of scientific
discovery.

We found that the learned structures are often capa-
ble of accurate extrapolation in complex time series
datasets and are competitive with widely used kernel
classes and kernel combination methods on a variety
of prediction tasks. The learned kernels often yield de-

4github.com/jamesrobertlloyd/gp-structure-search

compositions of a signal into diverse and interpretable
components, which provides an additional degree of re-
assurance that the learned structure reflects the world.
We believe that a data-driven approach to choosing
kernel structures automatically can help make non-
parametric regression and classification methods ac-
cessible to non-experts.

A. Appendix

Kernel definitions For scalar-valued inputs, the
squared exponential (SE), periodic (Per), linear
(Lin), and rational quadratic (RQ) kernels are defined
as follows:

kSE(x, x0) = �2 exp
⇣
� (x�x0)2

2`2

⌘

kPer(x, x0) = �2 exp
⇣
� 2 sin2(⇡|x�x0|/p)

`2

⌘

kLin(x, x0) = �2
b + �2

v(x � `)(x0 � `)

kRQ(x, x0) =
⇣
1 + (x�x0)2

2↵`2

⌘�↵

Posterior decomposition We can analytically de-
compose a gp posterior distribution over additive com-
ponents using the following identity: The conditional
distribution of a Gaussian vector f1 conditioned on its
sum with another Gaussian vector f = f1 + f2 where
f1 ⇠ N (µ1,K1) and f2 ⇠ N (µ2,K2) is given by

f1|f ⇠ N
�
µ1 + K1

T(K1 + K2)
�1 (f � µ1 � µ2) ,

K1 � K1
T(K1 + K2)

�1K1

�
.



Predictive Results
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Automatic construction and natural-language summarization of additive nonparametric models

TCI this corresponds to a forward selection algorithm.

We restricted to regression algorithms for comparability;
this excludes models which regress on previous values of
times series (e.g. Box et al., 2013). Producing model
construction algorithms for this class of time-series model
would be an interesting area for future research.

Interpolation To test the ability of the methods to in-
terpolate, we randomly divided each data set into equal
amounts of training data and testing data. We trained each
algorithm on the training half of the data, produced pre-
dictions for the remaining half and then computed the root
mean squared error (RMSE). The values of the RMSEs are
then standardised by dividing by the smallest RMSE for
each data set i.e. the best performance on each data set will
have a value of 1.

Figure 11 shows the standardised RMSEs for the differ-
ent algorithms (raw data and box plots) (32). The box(32) I will add

the raw data to the
supplementary
material

plots demonstrate that all quartiles of the distribution of
standardised RMSEs are lower for GPSS. The median for
GPSS is 1 and it was the best performing algorithm on 9
of the datasets. However, the largest outliers of GPSS, TCI
and SP are all quite similar in value.
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Figure 11: Raw data, and box plot of standardised interpo-
lation RMSE (best performance = 1).

CP performs slightly worse than SE despite being strictly
more general than SE. The introduction of changepoints
allows for more structured models, but it introduces para-
metric forms into the regression models (i.e. the sigmoids
expressing the changepoints). This results in worse interpo-
lations at the locations of the change points, suggesting that
a more robust modelling language would require a more

2We experimented with using unpenalised conditional likeli-
hood as the search criterion but observed overfitting as is to be
expected.

flexible class of changepoint shapes or improved inference
(e.g. fully Bayesian inference over the location and shape
of the changepoint(!) Cite something - anyone know any
good references?).

EL is not suited to this task and performs poorly. The mod-
els learned by EL tend to capture only broad trends of the
data since the fine details are not well explained by para-
metric forms.

Extrapolation To test extrapolation we trained all algo-
rithms on the first 90% of the data, and attempted to predict
the remaining 10%. Figure 12 shows the standardised log
RMSEs across algorithms. GPSS again has lower quartiles
than all other methods but the outliers of GPSS, TCI and
SP have similar values again.
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Figure 12: Raw data, and box plot of standardised extrapo-
lation RMSE (best performance = 1). Ordered by median.

SP suffered from a large outlier on a dataset with a large
and sharp discontinuity (see the call centre data in the sup-
plementary material) which violates its assumptions of sta-
tionarity. In contrast, GPSS was the best performing al-
gorithm on this dataset, correctly modelling the dataset as
locally stationary using change points.

Not shown on the plot is a very large outlier for EL of 274
(this was also on the call centre data). However, EL was
the best performing algorithm on the wages dataset which
shows an exponential increase after the industrial revolu-
tion. GPSS can approximate an exponential function with
a polynomial by combining LIN kernels but this is not a
succinct expression in the current language. (?) Combining
equation learning and the covariance learning of GPSS is
likely to be a profitable area of future research. (33)

(33) We could
just add the
exponential
function as a base
kernel - much like
linear - but where
do we stop?

Somewhat surprisingly, TCI performs well despite its re-
strictive modelling assumptions (smooth functions and ex-
act periodicity). Further inspection of the extrapolation has

Combined results over 13 time series data sets comparing 5 methods

GPSS: Automatic Statistician using Gaussian process structure search

TCI: trend-cyclical-irregular models (e.g. Lind et al., 2006)

SP: spectral kernels (Wilson & Adams, 2013)

SE: additive nonparametric regression (SE) (e.g. Buja et al., 1989)

CP: change point modelling (CP) / multi resolution GP (e.g. Garnett et al., 2009)

EL: equation learning using Eureqa (Nutonian, 2011)



Distributivity helps interpretability
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Generating text output from the Automatic Statistician

The structure search algorithm has identified nine additive components in the data. The first 4
additive components explain 92.3% of the variation in the data as shown by the coefficient of de-
termination (R2) values in table 1. The first 8 additive components explain 99.2% of the variation
in the data. After the first 5 components the cross validated mean absolute error (MAE) does not
decrease by more than 0.1%. This suggests that subsequent terms are modelling very short term
trends, uncorrelated noise or are artefacts of the model or search procedure. Short summaries of the
additive components are as follows:

• A constant.

• A constant. This function applies from 1644 until 1713.

• A smooth function. This function applies until 1644 and from 1719 onwards.

• An approximately periodic function with a period of 10.8 years. This function applies until
1644 and from 1719 onwards.

• A rapidly varying smooth function This function applies until 1644 and from 1719 on-

This component is constant. This component applies from 1644 until 1713.

This component explains 35.3% of the residual variance; this increases the total variance explained
from 0.0% to 35.3%. The addition of this component reduces the cross validated MAE by 29.42%
from 0.33 to 0.23.

Posterior of component 2
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Figure 3: Posterior of component 2 (left) and the posterior of the cumulative sum of components
with data (right)

“Automatic Construction and Natural-language Description of Additive Nonparametric Models”

(w/ James Lloyd, David Duvenaud, Roger Grosse and Josh Tenenbaum, NIPS workshop, 2013 )



Example reports

01-airline.pdf

02-solar.pdf

07-call-centre.pdf

09-gas-production.pdf



Challenges

• Trading off predictive performance and interpretability

• Expressing a large and flexible enough class of models so that different kinds of
data can be captured

• The computational complexity of searching a huge space of models

• Translating complex modelling constructs into the English language; automatically
generating relevant visualisations



Current and Future Directions

• Automatic Statistician for:

– multivariate nonlinear regression y = f(x)
– classification
– completing and interpreting tables and databases

• Probabilistic Programming

– probabilistic models are expressed in a general (Turing complete) programming
language (e.g. Church/Venture/Anglican)

– a universal inference engine can then be used to infer unobserved variables
given observed data

– this can be used to implement seach over the model space in an automated
statistician



Summary

• The Automatic Statistician project aims to automate certain kinds of exploratory
and predictive modelling

• Conceptually, we follow a Bayesian framework, relying in particular on Bayesian
nonparametric models for flexibility

• The ultimate aim is to produce output that is interpretable by a reasonably
numerate non-statistician

• We have a system that can produce readable 10-15 page reports from one
dimensional time series, capturing non-stationarity, change-points and change-
windows, periodicity, trends, etc

• Predictive performance seems very competitive
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Appendix



Speeding up GP learning: Inducing point approximations

(Snelson and Ghahramani, 2006)

We can approximate GP through M < N inducing points f̄ to obtain the Sparse
Pseudo-input Gaussian process (SPGP) a.k.a. FITC: p(f) =

∫
df̄
∏
n p(fn|f̄) p(f̄)

GP prior
N (0,KN) ≈

FITC prior
p(f) = N (0,KNMK−1M KMN + Λ)

≈ = +

• FITC covariance inverted in O(M2N)� O(N3) ⇒ much faster
• FITC = GP with non-stationary covariance parameterized by X̄
• Given data {X,y} with noise σ2, predictive mean and variance can be computed

in O(M) and O(M2) per test case respectively

Builds on a large lit on sparse GPs (see Quiñonero Candela and Rasmussen, 2006).



Speeding up GP learning: some developments since 2006

• FITC (2006)

• Unifying review (see Quiñonero Candela and Rasmussen, 2006)

• Combining local and global approximations (w/ Snelson, 2007)

• Generalised FITC (for classification) (Naish-Guzman and Holden, 2007)

• Variational learning of inducing variables in sparse GPs (Titsias, 2009)

• Exploiting additive and Kronecker structure of kernels for very fast inference
(Saatci, 2011; Gilboa, Saatci, Cunningham 2013)

• GPatt: Fast Multidimensional Pattern Extrapolation with GPs (Wilson, Gilboa,

Nehorai, Cunningham, 2013) learns very flexible stationary kernels on 380k points
using Kronecker structure

• Gaussian Processes for Big Data (Hensman, Fusi, Lawrence, 2013) uses SVI to handle
million data points


