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Motivation

We live in an era of abundant data

Scientific, commercial and societal uses of this data drive the need for exploratory
data analysis and prediction methods, but there are too few experts statisticians
and data scientists to provide these services.

Many aspects of statistical inference can be automated, and one of the goals
of machine learning and artificial intelligence is to develop powerful tools for
understanding data that require minimal expert input.

By trying to build an “Automatic Statistician” we can

— provide a set of useful tools for understanding certain kinds of data

— uncover challenging research problems in automated inference, model
construction and comparison, and data visualisation and interpretation

— advance the field of machine learning in general



Ingredients

Probabilistic modelling

Model selection and marginal likelihoods
Bayesian nonparametrics

Gaussian processes

Change-point kernels



Probabilistic Modelling

e A model describes data that one could observe from a system

e If we use the mathematics of probability theory to express all
forms of uncertainty and noise associated with our model...

e ...then inverse probability (i.e. Bayes rule) allows us to infer
unknown quantities, adapt our models, make predictions and
learn from data.



Bayesian Machine Learning

Everything follows from two simple rules:
Sum rule: P(x)=>_, P(x,y)
Product rule: P(x,y) = P(x)P(y|x)

P(D|0,m) likelihood of parameters 6 in model m
P0|D,m) = P(D|0, m)P(0]m) P(0|m) prior probability of 0
P(D|m) P(0|D, m) posterior of 6 given data D
Prediction:
P(z|D,m) = /P(:L']H,D, m)P(0|D,m)dd
Model Comparison:
P(Dlm)P(m)
P(m|D) =

P(Dlm) = / P(D0, m)P(6]m) o



Model Comparison
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Bayesian Occam’s Razor and Model Comparison

Compare model classes, e.g. m and m/’, using posterior probabilities given D:

_ p(DJm) p(m)

. p(Dlm) = / p(D]6, m) p(6]m) d6

Interpretations of the Marginal Likelihood (“model evidence”):

e The probability that randomly selected parameters from the prior would generate D.

e Probability of the data under the model, averaging over all possible parameter values.

o log, (19(29—1|m)) is the number of bits of surprise at observing data D under model m.

A
Model classes that are too simple are unlikely
to generate the data set.
E
Model classes that are too complex can &
generate many possible data sets, so again, L “justright’
they are unlikely to generate that particular I 1

data set at random. D

All possible data sets of size n



Bayesian Model Comparison: Occam’s Razor at Work
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For example, for quadratic polynomials (m = 2): y = ag + a1z + asx?® + €, where
e ~ N(0,0%) and parameters 8 = (ag ay as o)

demo: polybayes



Parametric vs Nonparametric Models

Parametric models assume some finite set of parameters 6. Given the parameters,
future predictions, x, are independent of the observed data, D:

P(z|0,D) = P(x|0)
therefore 6 capture everything there is to know about the data.

So the complexity of the model is bounded even if the amount of data is
unbounded. This makes them not very flexible.

Non-parametric models assume that the data distribution cannot be defined in
terms of such a finite set of parameters. But they can often be defined by
assuming an infinite dimensional 6. Usually we think of 6 as a function.

The amount of information that # can capture about the data D can grow as
the amount of data grows. This makes them more flexible.




Bayesian nonparametrics

A simple framework for modelling complex data.

Nonparametric models can be viewed as having infinitely many parameters

Examples of non-parametric models:

Parametric

Non-parametric

Application

polynomial regression
logistic regression
mixture models, k-means
hidden Markov models

factor analysis / pPCA / PMF

Gaussian processes
Gaussian process classifiers
Dirichlet process mixtures

infinite HMMs
infinite latent factor models

function approx.
classification
clustering

time series
feature discovery




Nonlinear regression and Gaussian processes

Consider the problem of nonlinear regression:
You want to learn a function f with error bars from data D = {X,y}

A Gaussian process defines a distribution over functions p(f) which can be used for
Bayesian regression:

_ p(f)p(D|f)
Let £ = (f(x1), f(x2),..., f(x,)) be an n-dimensional vector of function values

evaluated at n points x; € X. Note, f is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset {z1,...,2,} C X,
the marginal distribution over that subset p(f) is multivariate Gaussian.



A picture
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Gaussian process covariance functions (kernels)

p(f) is a Gaussian process if for any finite subset {x1,...,2z,} C X, the marginal
distribution over that finite subset p(f) has a multivariate Gaussian distribution.

Gaussian processes (GPs) are parameterized by a mean function, u(z), and a
covariance function, or kernel, K (x,x').

p(f (@), f(2')) = N(s, %)

where (z) K(z,z) Kz
| pl B x,T x,T
“—[uw)] Z‘[K@m

and similarly for p(f(x1),..

., f(z,)) where now p is an n x 1 vector and X is an
n X n matrix.



Gaussian process covariance functions

Gaussian processes (GPs) are parameterized by a mean function, u(x), and
a covariance function, K(z,2’), where p(z) = E(f(z)) and K(x,2') =

Cov(f(z), f(z")).

An example covariance function:

K(SI},ZE/) — g exp {_ <M> } + U1 + V2 (Sij

r

with parameters (vg, v1, V2, 7, Q).

vg  signal variance
These kernel parameters are interpretable v, variance of bias

and can be learned from data: V5 noise variance

r  lengthscale
«  roughness

Once the mean and covariance functions are defined, everything else about GPs
follows from the basic rules of probability applied to mutivariate Gaussians.



Samples from GPs with different K (x,x’)
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Prediction using GPs with different K (x,2’)

A sample from the prior for each covariance function:

fix)

f(x)

50
X

X

50
X

Corresponding predictions, mean with two standard deviations:




Change Point Kernels

Assume fi(x) ~ GP(0,k1) and fa(x) ~ GP(0, k3). Define:

fle) =1 —o(@))fi(z) + o(z)fa(z)

Logistic Function

where o is a sigmoid function between 0 and
1, such as the logistic function: o(x) = 1/(1 +

exp(—))

o(z)

Then f ~ GP(0, k), where
k(z,2) = (1 —o(x)) ki(z,2") (1 —o(2")) + o(x) ka(x,2") o ()

We can parametrise the location 7 and abruptness a of the changepoint by replacing
o(xz) with o(a(z — 7)).

Intutively (in one-dimension), the function f behaves like fi before T and like fs
after T.
(cf. Garnett, Osborne and Roberts, 2009)



Change Windows

A change window (or interval) is simply defined as a changepoint from fi(z) to
fa(x) followed by a changepoint back to fi(z).

We can represent this via a product of two sigmoids with different offsets:

flx) = (I=(1=o(a(z—m)))o(a(zr—"1))) f1(z)+(1-0(a(z—T2)))o(a(z—71)) f2(2)

This looks a bit messy but it just smoothly switches on f> between 7 and 7.
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The Automatic Statistician



How do we learn the kernel?

e Usual approach: parametrise the kernel with a few hyperparameters and optimise
or infer these. An example covariance function:

K(z,z') = voexp{— (M) } + vy + v2 055

with parameters (vg, v1, V2, T, v).

e Our approach: Define a grammar over kernels and search over this grammar to
discover an appropriate and interpretable structure of the kernel.



Kernel Composition

By taking a few simple base kernels and two composition rules, kernel addition
and multiplication, we can span a rich space of structured kernels.

A

. SE x PER ..
functions periodic

LIN 4 PER periodic SE + PER periodic
with trend with noise
0 0

Squared- local varia- Periodic repeating 0

X SE tion
exp
increasing growing

(PER)
LiN x SE .. LiN x PER .
\ variation amplitude
0 : 1. . ::I A ? "

Linear linear func- Ratlonal— multi-scale f1(x14)4
(L) tions quadratic(RQ)variation SE1 + SE + fa(x2) SF1 X SE2

C
X

0

quadratic locally

LIN x LIN

N
i

;
b

structure

(w/ Duvenaud, Lloyd, Grosse, and Tenenbaum, ICML 2013)
see also (Wilson and Adams, ICML 2013)



Kernel

Kernel Composition

Function description

Motif

Example syntax

WN
C
LIN
SE
PER

White noise
Constant
Linear
Smooth
Periodic

Linear regression
Fourier analysis

Sparse spectrum GPs
Spectral kernels
Changepoints

Kernel smoothing
Heteroscedasticity
Trend cyclical irregular
Additive nonparametric

C + LIN

C+ > cos

> cos

> SE X cos

e.g. CP(SE, SE)

SE

e.g2. SE + LIN x WN
>.SE+ ) PER

> SE

Different kernels express a variety of covariance structures, such as local smoothness
or periodicity. New kernels can be constructed by taking the product of a set of
base kernels to express richer structures, (e.g. locally periodic, or heteroscedastic)

e Search starts with the base kernels for the GP, and applies different operations
(addition, multiplication, CP, CW) to explore kernels spanned by the grammar.

e For efficiency, kernel hyperparameters are optimised rather than integrated out

e Each resulting model is scored using the marginal likelihood penalised by a BIC
term for number of hyperparameters.
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Kernel Composition: Mauna Loa CO, Keeling Curve
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Kernel Composition: Mauna Loa CO, Keeling Curve

SE x ( Per + RQ)
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Kernel Composition: Mauna Loa CO, Keeling Curve

(SE + SE x (Per+RQ))
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Example: An automatic analysis
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Kernel Composition: predictive results

Mean Squared Error (MSE) Negative Log-Likelihood

Method bach concrete puma Servo housing | bach concrete puma Servo housing
Linear Regression | 1.031 0.404 0.641 0.523 0.289 2.430 1.403 1.881 1.678 1.052
GAM 1.259 0.149 0.598 0.281 0.161 1.708 0.467 1.195 0.800 0.457
HKL 0.199 0.147 0.346 0.199 0.151 - - - - -

cpP SE-ARD 0.045 0.157 0.317 0.126 0.092 —0.131 0.398 0.843 0.429 0.207
cP Additive 0.045 0.089 0.316 0.110 0.102 —0.131 0.114 0.841 0.309 0.194
Structure Search 0.044 0.087 0.315 0.102 0.082 —0.141 0.065 0.840 0.265 0.059




Predictive Results
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Automatic Statistician using Gaussian process structure search
trend-cyclical-irregular models (e.g. Lind et al., 2006)

spectral kernels (Wilson & Adams, 2013)

additive nonparametric regression (SE) (e.g. Buja et al., 1989)

change point modelling (CP) / multi resolution GP (e.g. Garnett et al., 2009)
equation learning using Eureqa (Nutonian, 2011)



Distributivity helps interpretability
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Generating text output from the Automatic Statistician

The structure search algorithm has identified nine additive components in the data. The first 4
additive components explain 92.3% of the variation in the data as shown by the coefficient of de-
termination (R?) values in table 1. The first 8 additive components explain 99.2% of the variation
in the data. After the first 5 components the cross validated mean absolute error (MAE) does not
decrease by more than 0.1%. This suggests that subsequent terms are modelling very short term
trends, uncorrelated noise or are artefacts of the model or search procedure. Short summaries of the
additive components are as follows:

e A constant.

o A constant. This function applies from 1644 until 1713.

A smooth function. This function applies until 1644 and from 1719 onwards.

e An approximately periodic function with a period of 10.8 years. This function applies until
1644 and from 1719 onwards.

e A ranidlv varvine emannth fiinction  Thic fiinection annliec nintil 1644 and froam 1710 an-

This component is constant. This component applies from 1644 until 1713.

This component explains 35.3% of the residual variance; this increases the total variance explained
from 0.0% to 35.3%. The addition of this component reduces the cross validated MAE by 29.42%
from 0.33 to 0.23.

Posterior of component 2 Sum of components up to component 2
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Figure 3: Posterior of component 2 (left) and the posterior of the cumulative sum of components
with data (right)

“Automatic Construction and Natural-language Description of Additive Nonparametric Models”
(w/ James Lloyd, David Duvenaud, Roger Grosse and Josh Tenenbaum, NIPS workshop, 2013 )



Example reports

Ol-airline.pdf
02-solar.pdf
O7-call-centre.pdf
09-gas-production.pdf



Challenges

Trading off predictive performance and interpretability

Expressing a large and flexible enough class of models so that different kinds of
data can be captured

The computational complexity of searching a huge space of models

Translating complex modelling constructs into the English language; automatically
generating relevant visualisations



Current and Future Directions

e Automatic Statistician for:

— multivariate nonlinear regression y = f(x)
— classification
— completing and interpreting tables and databases

e Probabilistic Programming

— probabilistic models are expressed in a general (Turing complete) programming
language (e.g. Church/Venture/Anglican)
— a universal inference engine can then be used to infer unobserved variables

given observed data
— this can be used to implement seach over the model space in an automated

statistician



Summary

The Automatic Statistician project aims to automate certain kinds of exploratory
and predictive modelling

Conceptually, we follow a Bayesian framework, relying in particular on Bayesian
nonparametric models for flexibility

The ultimate aim is to produce output that is interpretable by a reasonably
numerate non-statistician

We have a system that can produce readable 10-15 page reports from one
dimensional time series, capturing non-stationarity, change-points and change-
windows, periodicity, trends, etc

Predictive performance seems very competitive



Thanks

(| AT -.'”

James Lloyd  David Duvenaud Roger Grosse

Duvenaud, D., Lloyd, J. R., Grosse, R., Tenenbaum, J. B. and Ghahramani, Z. (2013) Structure
Discovery in Nonparametric Regression through Compositional Kernel Search. ICML 2013.

Lloyd, J. R., Duvenaud, D., Grosse, R., Tenenbaum, J. B. and Ghahramani, Z. (2013) Automatic
Construction and Natural-language Description of Additive Nonparametric Models. NIPS workshop
on Constructive Machine Learning

Ghahramani, Z. (2013) Bayesian nonparametrics and the probabilistic approach to modelling.
Philosophical Trans. Royal Society A 371: 20110553.



Appendix



Speeding up GP learning: Inducing point approximations
(Snelson and Ghahramani, 2006)

We can approximate GP through M < N inducing pomts f to obtain the Sparse
Pseudo-input Gaussian process (SPGP) a.k.a. FITC: p(f) = [df [, p(fnlf) p(f)

GP prior FITC prior

e FITC covariance inverted in O(M?N) < O(N?) = much faster

e FITC = GP with non-stationary covariance parameterlzed by X

e Given data {X,y} with noise 0%, predictive mean and variance can be computed
in O(M) and O(M?) per test case respectively

Builds on a large lit on sparse GPs (see Quifionero Candela and Rasmussen, 2006).



Speeding up GP learning: some developments since 2006

FITC (2006)

Unifying review (see Quifionero Candela and Rasmussen, 2006)

Combining local and global approximations (w/ Snelson, 2007)
Generalised FITC (for classification) (Naish-Guzman and Holden, 2007)
Variational learning of inducing variables in sparse GPs (Titsias, 2009)

Exploiting additive and Kronecker structure of kernels for very fast inference
(Saatci, 2011; Gilboa, Saatci, Cunningham 2013)

GPatt: Fast Multidimensional Pattern Extrapolation with GPs (Wilson, Gilboa,
Nehorai, Cunningham, 2013) learns very flexible stationary kernels on 380k points
using Kronecker structure

Gaussian Processes for Big Data (Hensman, Fusi, Lawrence, 2013) uses SVI to handle
million data points



