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Probabilistic graphical models (PGMs)
PGMs are important in a wide range of applications:

Self-driving vehicles.

Cooperative localisation.

Speech processing.

Communication systems.

Image segmentation.

etc.

Purpose with PGMs:
illustrate problem structure (conditional independencies),
exploit structure to design tractable inference algorithms.

Today’s focus: factor graphs, belief propagation and variational
inference.
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Why factor graphs?

Factor graphs are important/useful because:

they provide new perspectives on “old” algorithms,
 filtering, smoothing, dynamic programming, Viterbi
decoding, . . .
are all instances of factor graph algorithms!

they visualize the structure of the problem:
clarify “dependencies” and how we can split one complicated
function of many variables into simple functions.

there are efficient standard algorithms that we can use,
once we have defined the factor graph!

Chalmers University of Technology Factor graphs, BP and VB Lennart Svensson



Introducing factor graphs
Algorithms on factor graphs (trees)

Variational Bayes

Motivation and objectives
Defining FGs
Two important problems

Learning objectives

After this lecture you should be able to

formulate a factor graph (FG) given a factorization of a
function,

explain why it is important to make use of the
structure/sparseness of a problem,

describe how the sum-product algorithm works on a factor
graph (without loops),

summarize the basic ideas behind variational Bayes.
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What is a factor graph?

Example 1: given a factorization

g(x1, x2, x3) = fA(x1, x2)fB(x2, x3)fC (x3)

we obtain the factor graph:

x1 fA x2 fB x3 fC

A factor graph contains:
– one variable node for each variable,
– one factor node for each function,
– one edge between xi and fj if xi is a variable in fj .
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What is a factor graph?

Example 2: given a factorization

p(u,w , x , y) = pu(u)pw (w)px |u,w (x
∣∣u,w)py |x(y

∣∣x)

we obtain the factor graph:

pu u px|u,w x py |x y

w pw

A FG is a bipartite graph:
– it contains two types of nodes,
– edges always connect nodes of different types.

Functions do not have to be probability densities.
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What is a factor graph?

A DIY example: given a probability density function

p(x , y , z) = px(x)py |x(y
∣∣x)pz|x ,y (z

∣∣x , y),

we obtain the factor graph:

Optional: for comparison you can also draw the corresponding
Bayesian network.
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Two important problems

Marginal distributions
Find

p(xi
∣∣y) =

∑
∼xi

p(x
∣∣y)

where ∼ xi means “over all variables but xi ”.

Example: find p(xk
∣∣y1:k) from p(x1:k

∣∣y1:k), i.e., perform
filtering.

Maximization
Find

x̂i = argmax
xi

max
∼xi

p(x
∣∣y)

Example: find the most probable symbol in a communication
message. Often closely related to dynamic programming.
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Efficient marginalization

Example: consider a function
g(x1, x2, x3) = fA(x1)fB(x1, x2)fC (x2, x3)

where x1, x2, x3 ∈ {1, 2, . . . ,N}. Describe how to compute
g1(x1) =

∑
x2,x3

g(x1, x2, x3)

efficiently.
Solution: the trick is to “push in the summations”:∑

x2,x3

g(x1, x2, x3) = fA(x1)
∑
x2

fB(x1, x2)
∑
x3

fC (x2, x3)︸ ︷︷ ︸
µfC→x2 (x2)

= fA(x1)
∑
x2

fB(x1, x2)µfC→x2(x2)︸ ︷︷ ︸
µfB→x1 (x1)

=⇒ g1(x1) = fA(x1)µfB→x1(x1)
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Efficient marginalization

Example, DIY: describe how to compute

g2(x2) =
∑
x1,x3

fA(x1)fB(x1, x2)fC (x2, x3)

efficiently! (Remember to “push in” the summations.)
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Why is structure important?

Suppose
g(x1, x2, . . . , xk) = f2(x1, x2)f3(x2, x3) . . . fk(xk−1, xk),

where x1, x2, . . . , xk ∈ {1, 2, . . . ,N}.
How many calculations are needed to compute

g1(x1) =
∑
∼x1

g(x1, x2, . . . , xk)?

– Without using structure: one summation over k − 1 variables
⇒ Nk−1 terms for each value of x1, i.e., O(Nk) calculations.

– Pushing in summations: k − 1 summations over 1 variable
⇒ O(k × N2) calculations.

Example: k = 100 and N = 2 ⇒ Nk ≈ 1.3× 1030 and
k × N2 = 400,
 using the structure makes a massive difference!
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The sum-product algorithm

The sum-product algorithm

is also known as belief propagation,

computes marginal distributions by “pushing in summations”,

performs message passing on a graph,

is exact for linear graphs and trees, but often performs
remarkably well on general graphs (with loops),
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The sum-product algorithm

The sum-product update rule
The message sent from a node v on an edge e is the product of the
local function at v (or the unit function if v is a variable node) with
all messages received at v on edges other than e, summarized for
the variables not associated with e.
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The sum-product algorithm

Calculating marginal distributions of
g(x1, x2, x3) = fA(x1)fB(x1, x2)fC (x2, x3)

The sum-product algorithm operates in three phases:

Phase 1: initialization
Send messages from the edges of the graph

– messages from factor to variable: µfA→x1(x1) = fA(x1),
– messages from variable to factor: µx3→fC (x3) = 1.

fA x1

µfA→x1

−→
fB x2 fC x3

µx3→fC

←−
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The sum-product algorithm

Calculating marginal distributions of
g(x1, x2, x3) = fA(x1)fB(x1, x2)fC (x2, x3)

Phase 2: message passing
Compute outgoing messages when incoming message(s) are
available:

– messages from variable to factor: product of all incoming
messages, µx1→fB (x1) = µfA→x1(x1),

– messages from factor to variable: product of incoming
messages and factor, sum out previous variables:
µfC→x2(x2) =

∑
x3
µx3→fC (x3)fC (x2, x3).

fA x1

µfA→x1

−→
µx1→fB

−→
fB x2 fC

µfC→x2

←−
x3

µx3→fC

←−
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The sum-product algorithm

Calculating marginal distributions of

g(x1, x2, x3) = fA(x1)fB(x1, x2)fC (x2, x3)

Phase 2: message passing
Compute outgoing messages when incoming message(s) are
available:

– µfB→x2(x2) =
∑

x1
µx1→fB (x1)fB(x1, x2)

– µx2→fB (x2) = µfC→x2(x2)

fA x1

µfA→x1

−→
µx1→fB

−→
fB

µfB→x2

−→
←−
µx2→fB

x2 fC

µfC→x2

←−
x3

µx3→fC

←−
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The sum-product algorithm

Calculating marginal distributions of

g(x1, x2, x3) = fA(x1)fB(x1, x2)fC (x2, x3)

Phase 2: message passing
Compute outgoing messages when incoming message(s) are
available:

– µfB→x1(x1) =
∑

x2
µx2→fB (x2)fB(x1, x2)

– µx2→fC (x2) = µfB→x2(x2)

fA x1

µfA→x1

−→
µx1→fB

−→
fB

µfB→x2

−→
←−
µx2→fB

x2 fC

µfC→x2

←−
x3

µx3→fC

←−
←−
µfB→x1

−→
µx2→fC
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The sum-product algorithm

Calculating marginal distributions of

g(x1, x2, x3) = fA(x1)fB(x1, x2)fC (x2, x3)

Phase 2: message passing
Compute outgoing messages when incoming message(s) are
available:

– µx1→fA(x1) = µfB→x1(x1)
– µfC→x3(x3) =

∑
x2
µx2→fC (x2)fC (x2, x3)

fA x1

µfA→x1

−→
µx1→fB

−→
fB

µfB→x2

−→
←−
µx2→fB

x2 fC

µfC→x2

←−
x3

µx3→fC

←−
←−
µfB→x1

−→
µx2→fC

←−
µx1→fA

−→
µfC→x3
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The sum-product algorithm

Calculating marginal distributions of
g(x1, x2, x3) = fA(x1)fB(x1, x2)fC (x2, x3)

Phase 3: termination
A marginal distribution is the product of the incoming
messages to the variable node:

– g1(x1) =
∑

x2,x3
g(x1, x2, x3) = µfA→x1(x1)µfB→x1(x1)

– g2(x2) =
∑

x1,x3
g(x1, x2, x3) = µfB→x2(x2)µfC→x2(x2)

– g3(x3) =
∑

x1,x2
g(x1, x2, x3) = µfC→x3(x3).

fA x1

µfA→x1

−→
µx1→fB

−→
fB

µfB→x2

−→
←−
µx2→fB

x2 fC

µfC→x2

←−
x3

µx3→fC

←−
←−
µfB→x1

−→
µx2→fC

←−
µx1→fA

−→
µfC→x3
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The sum-product algorithm

DIY: verify that the sum-product algorithm computes g2(x2)
correctly.
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Remarks on the sum-product algorithm

We considered a linear graph, but the sum-product algorithm
(SPA) is exact also for trees, like

pu u px|u,w x py |x y

w pw

You get, e.g.,
µpx|u,w→x(x) =

∑
u,w

µw→px|u,w (w)µu→px|u,w (u)px |u,w (x |u,w)

If the variables are continuous you replace summations with
integrals.
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Factor graphs and maximization

We can find
max
∼xi

p(x
∣∣y)

using the max-product algorithm.

The max-product algorithm is identical to the sum-product
algorithm, but summations are “replaced by maximisations”.

For linear graphs, the max-product algorithm gives a version of
dynamic programming and Viterbi decoding.
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Factor graphs for SLAM

For many problems, the factor graph contains loops.
Simultaneous localization and mapping (SLAM): position
both a moving vehicle, x1, x2, . . . , and different stationary
landmarks, l1, l2, . . . .

px1|x0. . . x1 px2|x1

py1|x1

x2 px3|x2

py2|x2

x3 . . .

py3|x3

pz1|x1,l1

l1

pz2|x2,l1 pz4|x3,l2

l2

pz3|x2,l2
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Graphs with loops

Two important strategies for graphs with loops:

1 Use belief propagation (the sum-product algorithm). The
algorithm is no longer exact and needs to be iterated, but
often yields remarkably good performance in practice.

2 Exact marginalization. Often still a feasible alternative, but
it is important to marginalize the variables in the correct order.
We can still use the structure of the problem!
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A variational perspective on BP, and more

How can we approximate p(x) when exact inference is
intractable?

The variational idea
Find a tractable distribution q(x) ∈ Q which is close to p(x):

q(x) = arg min
q̃(x)∈Q

D(q̃(x)‖p(x)),

where D(q̃(x)‖p(x)) is small when q̃ ≈ p.

By modifying Q and/or D we can derive belief propagation
(BP), expectation propagation (EP), variational Bayes (VB),
TRW-BP, GBP, Power-EP, etc.

Chalmers University of Technology Factor graphs, BP and VB Lennart Svensson



Introducing factor graphs
Algorithms on factor graphs (trees)

Variational Bayes

Variational inference
Introducing Variational Bayes (VB)
Toy example

Motivating examples – estimation in SSMs

Let us study VB using a toy example:

Consider a state space model
xk = xk−1 + qk , qk ∼ N (0, τ−1

q )

yk = xk + rk , rk ∼ N (0, τ−1
r ).

Can we estimate τq and τr from
y1, . . . , yT ?

Difficulty: the state sequence
x1, . . . , xT is unknown!

Time [k]
0 5 10 15 20 25 30 35 40

M
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e
n
t,
 y

k

-8

-6

-4

-2

0

2

4

6
A sequence of measurements

Relevant?
Enables us to estimate parameters without knowing the true
state sequence.
In practice, models tend to be nonlinear and high-dimensional
which makes the problem less trivial.
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Intractable problems?

Let θ denote parameters of interest, y be our observations and
x represent the hidden variables.

– In toy example: θ contains mean and covariances, y are the
sampels and x denotes assignments: measurements ↔
Gaussian components.

Can we compute p(θ
∣∣y)?

An important complication is that we need x to express the
relation between y and θ:

p(y
∣∣θ) =

∑
x

p(y, x
∣∣θ),

which is often intractable.
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Variational Bayesian theory

Idea 1: find a distribution q(θ, x) that approximates p(θ, x
∣∣y)

well, in the sense that the Kullback-Leibler divergence (KLD)∫
q(θ, x) log

q(θ, x)

p(θ, x
∣∣y)

dθdx

is small.

If q(θ, x) has suitable properties, we can then easily find an
approximation to p(θ

∣∣y).

Note: the optimal approximation in the KLD sense is
q(θ, x) = p(θ, x

∣∣y), but this is not tractable.
 We need to restrict q(θ, x) to obtain a tractable solution!
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Variational Bayesian theory

Idea 2: seek the best approximation q(θ, x) ≈ p(θ, x
∣∣y)

among all distributions that factorise q(θ, x) = qθ(θ)qx(x).

Variational Bayesian – main results
Given qθ(θ), the optimal distribution qx(x) is

qx(x) ∝ exp
(
Eqθ(θ) [log [p(θ, y, x)]]

)
.

Given qx(x), the optimal distribution qθ(θ) is
qθ(θ) ∝ exp

(
Eqx (x) [log [p(θ, y, x)]]

)
.

A few remarks:
We use these results to iteratively minimize the KLD.
We handle the distribution of the parameters of interests θ and
the hidden variables x in the same way.
We take expected values of log [p(θ, y, x)] instead of p(θ, y, x),
which simplifies things considerably.

Chalmers University of Technology Factor graphs, BP and VB Lennart Svensson



Introducing factor graphs
Algorithms on factor graphs (trees)

Variational Bayes

Variational inference
Introducing Variational Bayes (VB)
Toy example

Example – VB solution (1)

Let us use VB to estimate parameters in a state space model.

We have a state space model
xk = xk−1 + qk , qk ∼ N (0, τ−1

q )

yk = xk + rk , rk ∼ N (0, τ−1
r ).

Parameters of interest are
θ = [τq τr ]

T . For simplicity, we
assume p(θ) ∝ 1.

y denotes the meas. sequence and x
the state sequence. Time [k]

0 5 10 15 20 25 30 35 40

M
e
a
s
u
re

m
e
n
t,
 y

k

-8

-6

-4

-2

0

2

4

6
A sequence of measurements

We get

p(x
∣∣θ) = p(x0)

T∏
k=1

p(xk
∣∣xk−1) = N (x0; x̄0,P0)

T∏
k=1

N (xk ; xk−1, τ
−1
q )

p(y
∣∣x,θ) = N (y; x, τ−1r I)
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Example – VB solution (2)

An important part of VB is:

log p(θ, y, x) = log p(y
∣∣x,θ)p(x

∣∣θ)p(θ)

= log p(y
∣∣x,θ) + log p(x

∣∣θ) + log p(θ)

Plugging in expressions from the previous slide yields:

log p(y
∣∣x,θ) = logN (y; x, τ−1r I)=

T

2
log(τr/(2π))−τr

2

T∑
k=1

(yk − xk)2

log p(x
∣∣θ) = logN (x0; x̄0,P0) +

T∑
k=1

logN (xk ; xk−1, τ
−1
q )

= log p(x0) +
T

2
log(τq/(2π))− τq

2

T∑
k=1

(xk − xk−1)2

Bottom line: the logarithm turns p(θ, y, x) into a simple sum!
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Example – VB solution (3)

According to the VB algorithm, we should set

qx(x) ∝ exp
(
Eqθ(θ) [log [p(θ, y, x)]]

)
.

We can rewrite this as

qx(x) ∝p(x0) exp

(
− Eqθ(θ)

[
τq
2

T∑
k=1

(xk − xk−1)2

])

exp

(
Eqθ(θ)

[
−τr

2

T∑
k=1

(yk − xk)2

])

∝p(x0) exp

(
−

Eqθ(θ)[τq]

2

T∑
k=1

(xk − xk−1)2

)

exp

(
−

Eqθ(θ) [τr ]

2

T∑
k=1

(yk − xk)2

)

Do you recognize this as something tractable?
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Example – VB solution (4)

Let us introduce the notations τ̄q = Eqθ(θ)[τq] and
τ̄r = Eqθ(θ)[τr ].

The previous equation can then be simplified to

qx(x) ∝p(x0)
T∏

k=1

N (xk ; xk−1, τ̄
−1
q )N (y; x, τ̄−1r I)

Conclusion: to compute qx(x) we simply perform
conventional (RTS) smoothing under the assumptions that
τq = τ̄q and τr = τ̄r .
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Example – VB solution (5)

According to the VB algorithm, we should set

qθ(θ) ∝ exp
(
Eqx (x) [log [p(θ, y, x)]]

)
.

This simplifies to qθ(θ) = qτr (τr )qτq(τq), where

qτr (τr ) ∝ exp

(
Eqx (x)

[
T

2
log(τr )− τr

2

T∑
k=1

(yk − xk)2

])

∝ τT/2r exp

(
−τr

2
Eqx (x)

[
T∑

k=1

(yk − xk)2

])

∝ Gam

(
τr ;

T + 2
2

,
1
2
Eqx (x)

[
T∑

k=1

(yk − xk)2

])
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Example – VB solution (6)

According to the VB algorithm, we should set

qθ(θ) ∝ exp
(
Eqx (x) [log [p(θ, y, x)]]

)
.

Using the above derivations, we can show that

qθ(θ) = Gam
(
τr ;

T + 2
2

,
1
2
br

)
Gam

(
τq;

T + 2
2

,
1
2
bq

)
where

br = Eqx (x)

[
T∑

k=1

(yk − xk)2

]
and bq = Eqx (x)

[
T∑

k=1

(xk − xk−1)2

]

It follows that Eqθ [θ] = (T + 2)

[
b−1r

b−1q

]
. Is this reasonable?
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Example – illustration of VB solution

We can now study how the algorithm performs on an example.

The true precisions were θ =

[
τr
τq

]
=

[
1/4
1

]
and we initiated the

algorithm with θ =

[
1/10
10

]
. That is, with very little motion noise.

Our θ estimates:
Iter. 1: θ̄ =

[
0.14 2.07

]T
Iter. 2: θ̄ =

[
0.18 1.32

]T
Iter. 3: θ̄ =

[
0.21 1.24

]T
Iter. 4: θ̄ =

[
0.23 1.26

]T
Iter. 5: θ̄ =

[
0.23 1.30

]T
...
Iter. 10: θ̄ =

[
0.23 1.34

]T
Chalmers University of Technology Factor graphs, BP and VB Lennart Svensson



Introducing factor graphs
Algorithms on factor graphs (trees)

Variational Bayes

Variational inference
Introducing Variational Bayes (VB)
Toy example

Final remarks on VB

Pros:
VB is simple to employ in a wide range of contexts and often
yields efficient algorithms.

It is decreases the KL-divergence in every iteration and is thus
guaranteed to converge (to a certain KLD).

There is an alternative perspective on VB, as a maximizer of a
lower bound on p(y). That bound is useful for model selection.

Cons:
It is a relatively crude approximation for at least two reasons:
1) the assumed factorisation breaks existing dependencies 2) it
minimises the “wrong” KLD.

For many problems, it is sensitive to initialization and may get
stuck in a local minima.
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Learning objectives

After this lecture you should be able to

formulate a factor graph (FG) given a factorization of a
function,

explain why it is important to make use of the
structure/sparseness of a problem,

describe how the sum-product algorithm works on a factor
graph (without loops),

summarize the basic ideas behind variational Bayes.

Chalmers University of Technology Factor graphs, BP and VB Lennart Svensson



Introducing factor graphs
Algorithms on factor graphs (trees)

Variational Bayes

Variational inference
Introducing Variational Bayes (VB)
Toy example

A selection of references
General introductions

Koller, Daphne, and Nir Friedman. Probabilistic graphical models: principles
and techniques. MIT press, 2009.

Bishop, C. M. Pattern recognition and machine learning. Springer, 2006.
Factor graphs and BP:

Kschischang, Frank R., Brendan J. Frey, and H-A. Loeliger. "Factor graphs and
the sum-product algorithm." IEEE Transactions on information theory 47.2
(2001): 498-519.

Yedidia, Jonathan S., William T. Freeman, and Yair Weiss. "Understanding
belief propagation and its generalizations." Exploring artificial intelligence in the
new millennium 8 (2003): 236-239.

Basic principles and ideas, VB:
Beal, M. J. Variational algorithms for approximate Bayesian inference.
University of London, 2003.

Winn, J. M., and Bishop, Christopher M.. "Variational message passing."
Journal of Machine Learning Research. 2005.

Deep learning:
Kingma, Diederik P., and Max Welling. "Auto-encoding Variational Bayes."
arXiv preprint arXiv:1312.6114 (2013).

Chalmers University of Technology Factor graphs, BP and VB Lennart Svensson


	anm0: 


