
Bayesian Optimisation

Cédric Archambeau
cedrica@amazon.com

Imperial College, London, 2017

Democratising machine learning

Abstract away algorithms

Abstract away feature engineering

Abstract away memory constraints

Abstract away network constraints

Abstract away computing infrastructure

Democratising machine learning

Abstract away algorithms

Abstract away feature engineering

Abstract away memory constraints

Abstract away network constraints

Abstract away computing infrastructure

Democratising machine learning

Abstract away algorithms

Abstract away feature engineering

Abstract away memory constraints

Abstract away network constraints

Abstract away computing infrastructure

Machine learning aims to estimate (learn) a statistical data model
to make predictions (generalise) about unseen data

1 Model the application (assuming labeled emails were collected)
Spam detection:

I Is this a (binary) classification problem?
I Shall I use logistic regression or a SVM?
I How should I represent emails?

2 Learn the model parameters from the data
Estimate weights of logistic regression model:

I Iterative least squares?
I Stochastic gradient descent?
I Adagrad?

3 Make predictions about new data with the trained model
Decide if this new email is spam or not?

I Shall I optimise for precision?
I Shall I optimise for recall?

Machine learning aims to estimate (learn) a statistical data model
to make predictions (generalise) about unseen data

1 Model the application (assuming labeled emails were collected)
Spam detection:

I Is this a (binary) classification problem?
I Shall I use logistic regression or a SVM?
I How should I represent emails?

2 Learn the model parameters from the data
Estimate weights of logistic regression model:

I Iterative least squares?
I Stochastic gradient descent?
I Adagrad?

3 Make predictions about new data with the trained model
Decide if this new email is spam or not?

I Shall I optimise for precision?
I Shall I optimise for recall?

Machine learning aims to estimate (learn) a statistical data model
to make predictions (generalise) about unseen data

1 Model the application (assuming labeled emails were collected)
Spam detection:

I Is this a (binary) classification problem?
I Shall I use logistic regression or a SVM?
I How should I represent emails?

2 Learn the model parameters from the data
Estimate weights of logistic regression model:

I Iterative least squares?
I Stochastic gradient descent?
I Adagrad?

3 Make predictions about new data with the trained model
Decide if this new email is spam or not?

I Shall I optimise for precision?
I Shall I optimise for recall?

Machine learning aims to estimate (learn) a statistical data model
to make predictions (generalise) about unseen data

1 Model the application (assuming labeled emails were collected)
Spam detection:

I Is this a (binary) classification problem?
I Shall I use logistic regression or a SVM?
I How should I represent emails?

2 Learn the model parameters from the data
Estimate weights of logistic regression model:

I Iterative least squares?
I Stochastic gradient descent?
I Adagrad?

3 Make predictions about new data with the trained model
Decide if this new email is spam or not?

I Shall I optimise for precision?
I Shall I optimise for recall?

The performance of machine learning depends on meta-parameters that
have to be tuned with care...

Regularisation and (hyper)priors

Optimisation and sampling

Feature extraction

Model complexity

Decision

A toy example: digit classification with (binary) logistic regression

MNIST Sigmoid: σ(z) = 1
1+exp(−z)

.

Let x be an image and t its label.

Logistic link: P(t = “8”) = σ(y(x)).

Linear discriminant: y(x) = w>φ(x) + w0 .

Likelihood: P(t1, . . . , tn) =
∏n

i=1 Bernoulli (P(tn)).

Prior: P(w) = Gaussian(0, λI).

Maximum a posteriori learning with stochastic gradient descent.

f : x = (#epochs, learning rate, amount of regularisation) 7→ f (x) = AUC

A toy example: digit classification with (binary) logistic regression

MNIST Sigmoid: σ(z) = 1
1+exp(−z)

.

Let x be an image and t its label.

Logistic link: P(t = “8”) = σ(y(x)).

Linear discriminant: y(x) = w>φ(x) + w0 .

Likelihood: P(t1, . . . , tn) =
∏n

i=1 Bernoulli (P(tn)).

Prior: P(w) = Gaussian(0, λI).

Maximum a posteriori learning with stochastic gradient descent.

f : x = (#epochs, learning rate, amount of regularisation) 7→ f (x) = AUC

A toy example: digit classification with (binary) logistic regression

MNIST Sigmoid: σ(z) = 1
1+exp(−z)

.

Let x be an image and t its label.

Logistic link: P(t = “8”) = σ(y(x)).

Linear discriminant: y(x) = w>φ(x) + w0 .

Likelihood: P(t1, . . . , tn) =
∏n

i=1 Bernoulli (P(tn)).

Prior: P(w) = Gaussian(0, λI).

Maximum a posteriori learning with stochastic gradient descent.

f : x = (#epochs, learning rate, amount of regularisation) 7→ f (x) = AUC

A toy example: digit classification with (binary) logistic regression

MNIST Sigmoid: σ(z) = 1
1+exp(−z)

.

Let x be an image and t its label.

Logistic link: P(t = “8”) = σ(y(x)).

Linear discriminant: y(x) = w>φ(x) + w0 .

Likelihood: P(t1, . . . , tn) =
∏n

i=1 Bernoulli (P(tn)).

Prior: P(w) = Gaussian(0, λI).

Maximum a posteriori learning with stochastic gradient descent.

f : x = (#epochs, learning rate, amount of regularisation) 7→ f (x) = AUC

A toy example: digit classification with (binary) logistic regression

MNIST Sigmoid: σ(z) = 1
1+exp(−z)

.

Let x be an image and t its label.

Logistic link: P(t = “8”) = σ(y(x)).

Linear discriminant: y(x) = w>φ(x) + w0 .

Likelihood: P(t1, . . . , tn) =
∏n

i=1 Bernoulli (P(tn)).

Prior: P(w) = Gaussian(0, λI).

Maximum a posteriori learning with stochastic gradient descent.

f : x = (#epochs, learning rate, amount of regularisation) 7→ f (x) = AUC

A toy example: digit classification with (binary) logistic regression

MNIST Sigmoid: σ(z) = 1
1+exp(−z)

.

Let x be an image and t its label.

Logistic link: P(t = “8”) = σ(y(x)).

Linear discriminant: y(x) = w>φ(x) + w0 .

Likelihood: P(t1, . . . , tn) =
∏n

i=1 Bernoulli (P(tn)).

Prior: P(w) = Gaussian(0, λI).

Maximum a posteriori learning with stochastic gradient descent.

f : x = (#epochs, learning rate, amount of regularisation) 7→ f (x) = AUC

The performance of machine learning depends on meta-parameters that
have to be tuned with care...

Regularisation and (hyper)priors

Model complexity

Optimisation and sampling

Feature extraction

Decision

These parameters are known as hyperparameters or
system parameters and are tuned by human experts.

A second example: Is a product review positive or negative?

That’s a binary classification problem!

Logistic regression model with standard text features.

A second example: Is a product review positive or negative?

That’s a binary classification problem!

Logistic regression model with standard text features.

Revisiting sentiment analysis [YS15]

Revisiting sentiment analysis [YS15]

Acc.: accuracy

SVM: support vector machine
NN: neural network
LR: logistic regresion
CNN: convolutional neural network

Black-box optimisation

The function f we wish to optimise can be
non-concave.

The number of hyperparameters p is moderate
(typically < 20).

Our goal is to solve the following optimisation problem:

x? = argmin
x∈X

f (x).

Evaluating f (x) is expensive.

No analytical form or gradient.

Evaluations may be noisy.

Black-box optimisation

The function f we wish to optimise can be
non-concave.

The number of hyperparameters p is moderate
(typically < 20).

Our goal is to solve the following optimisation problem:

x? = argmin
x∈X

f (x).

Evaluating f (x) is expensive.

No analytical form or gradient.

Evaluations may be noisy.

Global optimisation for hyperparameter optimisation

1 Define an objective or metric to optimise
E.g.: generalisation error

2 Identify the knobs that impact this objective
E.g.: hyperparameters

3 Measure the quality of configurations
E.g.: cross-validation

This requires iterating over hyperparameter configurations.

Global optimisation for hyperparameter optimisation

1 Define an objective or metric to optimise
E.g.: generalisation error

2 Identify the knobs that impact this objective
E.g.: hyperparameters

3 Measure the quality of configurations
E.g.: cross-validation

This requires iterating over hyperparameter configurations.

Two straightforward approaches

(Figure by Bergstra and Bengio, 2012)

Exhaustive search on a regular or random grid

Complexity is exponential in p

Wasteful of resources, but easy to parallelise

Can we do better?

(Banksy, London)

Bayesian optimisation

Global optimisation technique that adopts
a probabilistic approach:

1 Builds a probabilistic model of the objective:
I Optimises a proxy instead of the objective
I Models the uncertainty

2 Performs an efficient grid search by balancing
exploration against exploitation!

Bayesian optimisation

Global optimisation technique that adopts
a probabilistic approach:

1 Builds a probabilistic model of the objective:
I Optimises a proxy instead of the objective
I Models the uncertainty

2 Performs an efficient grid search by balancing
exploration against exploitation!

Bayesian optimisation

Global optimisation technique that adopts
a probabilistic approach:

1 Builds a probabilistic model of the objective:
I Optimises a proxy instead of the objective
I Models the uncertainty

2 Performs an efficient grid search by balancing
exploration against exploitation!

Bayesian optimisation

Global optimisation technique that adopts
a probabilistic approach:

1 Builds a probabilistic model of the objective:
I Optimises a proxy instead of the objective
I Models the uncertainty

2 Performs an efficient grid search by balancing
exploration against exploitation!

Questions?

Bayesian (black-box) optimisation [MTZ78, SSW+16]

x? = argmin
x∈X

f (x)

Canonical algorithm:

Surrogate model M of f #cheaper to evaluate

Set of evaluated candidates C = {}
While some BUDGET available:

I Select candidate xnew ∈ X using M and C #exploration/exploitation
I Collect evaluation ynew of f at xnew #time-consuming
I Update C = C ∪ {(xnew, ynew)}
I Update M with C #Update surrogate model
I Update BUDGET

Bayesian (black-box) optimisation [MTZ78, SSW+16]

x? = argmin
x∈X

f (x)

Canonical algorithm:

Surrogate model M of f #cheaper to evaluate

Set of evaluated candidates C = {}
While some BUDGET available:

I Select candidate xnew ∈ X using M and C #exploration/exploitation
I Collect evaluation ynew of f at xnew #time-consuming
I Update C = C ∪ {(xnew, ynew)}
I Update M with C #Update surrogate model
I Update BUDGET

Bayesian (black-box) optimisation with Gaussian processes [JSW98]

1 Learn a probabilistic model of f , which is cheap to evaluate:

yi |f (xi) ∼ Gaussian
(
f (xi), ς2

)
, f (x) ∼ GP(0,K).

Bayesian (black-box) optimisation with Gaussian processes [JSW98]

1 Learn a probabilistic model of f , which is cheap to evaluate:

yi |f (xi) ∼ Gaussian
(
f (xi), ς2

)
, f (x) ∼ GP(0,K).

2 Given the observations y = (y1, . . . , yn), estimate the posterior mean and the posterior
standard deviation:

3 Repeatedly query f by balancing exploitation against exploration!

Bayesian (black-box) optimisation with Gaussian processes [JSW98]

1 Learn a probabilistic model of f , which is cheap to evaluate:

yi |f (xi) ∼ Gaussian
(
f (xi), ς2

)
, f (x) ∼ GP(0,K).

2 Given the observations y = (y1, . . . , yn), estimate the posterior mean and the posterior
standard deviation:

3 Repeatedly query f by balancing exploitation against exploration!

Ingredient 1: Gaussian processes for regression [RW06]

A multivariate Gaussian is density over D random variables based on correlations:

f ≡ (f1, . . . , fD)> ∼ Gaussian (m,K) .

A Gaussian process generalises the a multivariate Gaussian to infinitely many variables:

f (x) ∼ GP (m(x), k(x , ·)) .

I It defines a probability measure over random functions.
I The joint density of any finite subset is a consistent Gaussian density.

The posterior process is again a Gaussian process (if Gaussian likelihood):

f (x)|y ∼ GP (µ(x),Σ(x , ·)) ,

where
µ(x) = k>N (x)(KN + σ2IN)−1y ,

σ(x)2 = k(x , x)− k>N (x)(KN + σ2IN)−1kN(x).

Ingredient 1: Gaussian processes for regression [RW06]

A multivariate Gaussian is density over D random variables based on correlations:

f ≡ (f1, . . . , fD)> ∼ Gaussian (m,K) .

A Gaussian process generalises the a multivariate Gaussian to infinitely many variables:

f (x) ∼ GP (m(x), k(x , ·)) .

I It defines a probability measure over random functions.
I The joint density of any finite subset is a consistent Gaussian density.

The posterior process is again a Gaussian process (if Gaussian likelihood):

f (x)|y ∼ GP (µ(x),Σ(x , ·)) ,

where
µ(x) = k>N (x)(KN + σ2IN)−1y ,

σ(x)2 = k(x , x)− k>N (x)(KN + σ2IN)−1kN(x).

Ingredient 1: Gaussian processes for regression [RW06]

A multivariate Gaussian is density over D random variables based on correlations:

f ≡ (f1, . . . , fD)> ∼ Gaussian (m,K) .

A Gaussian process generalises the a multivariate Gaussian to infinitely many variables:

f (x) ∼ GP (m(x), k(x , ·)) .

I It defines a probability measure over random functions.
I The joint density of any finite subset is a consistent Gaussian density.

The posterior process is again a Gaussian process (if Gaussian likelihood):

f (x)|y ∼ GP (µ(x),Σ(x , ·)) ,

where
µ(x) = k>N (x)(KN + σ2IN)−1y ,

σ(x)2 = k(x , x)− k>N (x)(KN + σ2IN)−1kN(x).

Ingredient 1: Gaussian processes for regression [RW06]

Prior. Posterior.

Three random functions generated from (a) the prior GP and (b) the posterior GP. An observation is indicated

by a +, the mean function by a dashed line and the 3 standard deviation error bars by the shaded regions. We

used a squared exponential covariance function.

Where is the minimum of f?

(Image credit: Javier González)

Intuitive solution

(Image credit: Javier González)

Intuitive solution

(Image credit: Javier González)

Intuitive solution

(Image credit: Javier González)

Intuitive solution

(Image credit: Javier González)

Intuitive solution

(Image credit: Javier González)

Intuitive solution

(Image credit: Javier González)

Ingredient 2: Acquisition function

Let C = {xc , yc} denote a set of observed parameter-value pairs. The acquisition function is
defined as follows:

a : x 7→ a(x |C) = E (A(f , x)|C) .

Decide which are most promising regions in X\C
Get as quickly as possible to “the” optimum (unlike Bayesian experimental design)

Can be optimised with off the self solvers!

Makes the exploration-exploitation trade-off

Ingredient 2: Acquisition function

Let C = {xc , yc} denote a set of observed parameter-value pairs. The acquisition function is
defined as follows:

a : x 7→ a(x |C) = E (A(f , x)|C) .

Decide which are most promising regions in X\C
Get as quickly as possible to “the” optimum (unlike Bayesian experimental design)

Can be optimised with off the self solvers!

Makes the exploration-exploitation trade-off

Ingredient 2: Acquisition function

Let C = {xc , yc} denote a set of observed parameter-value pairs. The acquisition function is
defined as follows:

a : x 7→ a(x |C) = E (A(f , x)|C) .

Decide which are most promising regions in X\C
Get as quickly as possible to “the” optimum (unlike Bayesian experimental design)

Can be optimised with off the self solvers!

Makes the exploration-exploitation trade-off

Exploration-exploitation trade-off

Which slot machine should I pick?

Exploration-exploitation trade-off

Which slot machine should I pick?

Exploration-exploitation trade-off

Which slot machine should I pick?

Ingredient 2: Acquisition function

Evaluate all candidates according to an acquisition function a(x).

Rank them and pick the best one.

Examples of acquisition functions:

Let y? be the best value observed so far and f (x)|y ∼ Gaussian
(
µ(x), σ(x)2

)
:

I Lower confidence bound (GP-LCB) [SKKS09]:

a(x) = −µ(x) + ασ(x) (α > 0).

I Expected improvement (EI):

a(x) = E (max{0, y? − f (x)}) .

I Probability of improvement, Thompson sampling, entropy search, etc.

Ingredient 2: Acquisition function

Evaluate all candidates according to an acquisition function a(x).

Rank them and pick the best one.

Examples of acquisition functions:

Let y? be the best value observed so far and f (x)|y ∼ Gaussian
(
µ(x), σ(x)2

)
:

I Lower confidence bound (GP-LCB) [SKKS09]:

a(x) = −µ(x) + ασ(x) (α > 0).

I Expected improvement (EI):

a(x) = E (max{0, y? − f (x)}) .

I Probability of improvement, Thompson sampling, entropy search, etc.

Ingredient 2: Acquisition function

Evaluate all candidates according to an acquisition function a(x).

Rank them and pick the best one.

Examples of acquisition functions:

Let y? be the best value observed so far and f (x)|y ∼ Gaussian
(
µ(x), σ(x)2

)
:

I Lower confidence bound (GP-LCB) [SKKS09]:

a(x) = −µ(x) + ασ(x) (α > 0).

I Expected improvement (EI):

a(x) = E (max{0, y? − f (x)}) .

I Probability of improvement, Thompson sampling, entropy search, etc.

Bayesian optimisation in action

(Image credit: Javier González)

Bayesian optimisation in action

(Image credit: Javier González)

Bayesian optimisation in action

(Image credit: Javier González)

Bayesian optimisation in action

(Image credit: Javier González)

Bayesian optimisation in action

(Image credit: Javier González)

Bayesian optimisation in action

(Image credit: Javier González)

Bayesian optimisation in action

(Image credit: Javier González)

Bayesian optimisation in action

(Image credit: Javier González)

Bayesian optimisation in action

(Image credit: Javier González)

Summary

x? = argmin
x∈X

f (x)

Bayesian optimisation algorithm:

Surrogate model M of f #cheaper to evaluate

Set of evaluated candidates C = {}
While some BUDGET available:

I Select candidate xnew ∈ X using M and C #acquisition
I Collect evaluation ynew of f at xnew #time-consuming
I Update C = C ∪ {(xnew, ynew)}
I Update M with C #GP posterior
I Update BUDGET

Questions?

How do we handle the hyperparameters of the surrogate model?

Let us denote the kernel parameters by θ. We view the latent functions as nuisance
parameters and maximise the log-marginal wrt ς2 and θ.

The log-marginal likelihood is given by

ln p(y |ς,θ) = −n

2
ln 2π−1

2
ln |K (θ) + ς2In|︸ ︷︷ ︸

complexity penality

−1

2
y>(K (θ) + ς2In)−1y︸ ︷︷ ︸

data fit

.

The negative log-marginal surface is non-convex and the computational complexity for its
evaluation is O(n3).

How do we handle the hyperparameters of the surrogate model?

Let us denote the kernel parameters by θ. We view the latent functions as nuisance
parameters and maximise the log-marginal wrt ς2 and θ.

The log-marginal likelihood is given by

ln p(y |ς,θ) = −n

2
ln 2π−1

2
ln |K (θ) + ς2In|︸ ︷︷ ︸

complexity penality

−1

2
y>(K (θ) + ς2In)−1y︸ ︷︷ ︸

data fit

.

The negative log-marginal surface is non-convex and the computational complexity for its
evaluation is O(n3).

Can we handle hyperparameter transformations?

Can we handle hyperparameter transformations?

(Image credit: Snoek, et al., 2014)

Automatic input warping [SSZA14]:

ω : x 7→ ω(x) = BetaCDF(x ;α, β).

Learn α and β as the hyperparameters of the Gaussian process.

Many alternatives, such as Kumaraswamy distribution: ω(x) = 1− (1− xα)β .

How do we fill the hyperparameter space X ?

How do we fill the hyperparameter space X ?

(Image credit: Wikipedia)

Populate hypercube [0, 1]D as densely as possible (as well as it’s lower dimensional faces):

Find sequence {xi} such that lim
n→∞

1

n

n∑
i=1

f (xi) =

∫
[0,1]D

f (x).

Quasi random sequence generators, such as Sobol sequences, are better than random.

Are there other choices for the surrogate model?

Are there other choices for the surrogate model?

(Image credit: [SSW+16])

Bayesian (black-box) optimisation with Random Forests [HHLB11]:

y(x) = RF, f (x)|y ∼ Gaussian (µ(x),Σ(µ(x)) .

where µ(x) ≈ 1
B

∑
i yi (x) and Σ(x) ≈ 1

B−1

∑
i (yi (x)− µ(x))2.

But very competitive baseline!

Reference material

Review paper by Shahriari, et al. (2016): Taking the Human Out of the Loop: A Review of
Bayesian Optimization. Proceedings of the IEEE 104(1):148–175.

Slides by Ryan Adams (2014): A Tutorial on Bayesian Optimization for Machine Learning.
CIFAR NCAP Summer School.

Slides by Peter Frazier (2010): Tutorial: Bayesian Methods for Global and Simulation
Optimization. INFORMS Annual Meeting.

Very brief historical overview

Closely related to optimal design of experiments, dating back to Kirstine Smith (1918).

As Bayesian optimisation, studied first by Kushner (1964), then by Mockus (1978), and
more recently by Jones, et al. (1998).

Multiple workshops at NIPS (bayesopt.com) and ICML (www.automl.org)

Open source software:
SMAC (http://www.cs.ubc.ca/labs/beta/Projects/SMAC/) – RF,
HyperOpt (http://jaberg.github.io/hyperopt/) – TPE,
Spearmint (https://github.com/JasperSnoek/spearmint) – GP,
GPyOpt (https://github.com/SheffieldML/GPyOpt) – GP,
BayesOpt (http://rmcantin.bitbucket.org/) – GP,

Challenges and benchmarks (HPOLib: www.automl.org/hpolib.html)!

Very brief historical overview

Closely related to optimal design of experiments, dating back to Kirstine Smith (1918).

As Bayesian optimisation, studied first by Kushner (1964), then by Mockus (1978), and
more recently by Jones, et al. (1998).

Multiple workshops at NIPS (bayesopt.com) and ICML (www.automl.org)

Open source software:
SMAC (http://www.cs.ubc.ca/labs/beta/Projects/SMAC/) – RF,
HyperOpt (http://jaberg.github.io/hyperopt/) – TPE,
Spearmint (https://github.com/JasperSnoek/spearmint) – GP,
GPyOpt (https://github.com/SheffieldML/GPyOpt) – GP,
BayesOpt (http://rmcantin.bitbucket.org/) – GP,

Challenges and benchmarks (HPOLib: www.automl.org/hpolib.html)!

Very brief historical overview

Closely related to optimal design of experiments, dating back to Kirstine Smith (1918).

As Bayesian optimisation, studied first by Kushner (1964), then by Mockus (1978), and
more recently by Jones, et al. (1998).

Multiple workshops at NIPS (bayesopt.com) and ICML (www.automl.org)

Open source software:
SMAC (http://www.cs.ubc.ca/labs/beta/Projects/SMAC/) – RF,
HyperOpt (http://jaberg.github.io/hyperopt/) – TPE,
Spearmint (https://github.com/JasperSnoek/spearmint) – GP,
GPyOpt (https://github.com/SheffieldML/GPyOpt) – GP,
BayesOpt (http://rmcantin.bitbucket.org/) – GP,

Challenges and benchmarks (HPOLib: www.automl.org/hpolib.html)!

Questions?

Black-box optimisation with (tree-structured) dependencies [JAGS17]

The function f we wish to optimise can be
non-concave.

The number of hyperparameters p is moderate
(typically < 20).

Our goal is to solve the following optimisation problem:

x? = argmin
x∈X

f (x).

Evaluating f (x) is expensive.

No analytical form or gradient.

Evaluations may be noisy.

The domain X is structured.

Example 1: Data analytics pipeline [THHLB13, FKE+15, ZBSS16]

Input Feature
Construction

Missing Value
Processing

Feature
Rescaling

Sample
Balancing

Feature
Preprocessing Classification Output

Figure 1: A typical data analytic pipeline.

Tuning hyperparameters of a single algorithm can be viewed as an optimization problem of a
black-box objective function, which is noisy and often expensive to evaluate. Here the input of
black-box are the hyperparameters, and the objective function is the output performance such as
accuracy, precision and recall. To tackle this problem, simple methods have been applied such as
grid or random search [5, 3]. While on di�cult problems where these simple approaches are not
e�cient, a more promising model-based approach is Bayesian optimization [32, 27, 7, 39]. The high-
level idea of Bayesian optimization is to define a relatively cheap surrogate function and use that
to search the hyperparameter space. Indeed, there exist other global optimization methods, such
as evolutionary algorithms [2] and optimistic optimization [33]. We choose Bayesian optimization
framework due to its great performance in practice. Recently, Bayesian optimization methods have
been shown to outperform other methods on various tasks, and in some cases even beat human
domain experts to achieve better performance via tuning hyperparameters [42, 4].

Despite its success, applying Bayesian optimization for tuning analytic pipelines faces several
significant challenges: Existing Bayesian optimization methods are usually based on nonparametric
models, such as Gaussian process and random forest. A major drawback of these methods is that
they require a large number of observations to find reasonable solutions in high-dimensional space.
When tuning a single algorithm with several hyperparameters, Bayesian optimization works well
with just a few observations. However, when it comes to pipeline tuning, thousands of possible
combinations of algorithms plus their hyperparameters jointly create a large hierarchical high-
dimensional space to search over, whereas existing methods tend to become ine�cient. Wang et
al. [46] tackled the high-dimensional problem by making a low e↵ective dimensional assumption.
However, it is still a flat Bayesian optimization method and not able to handle the exploding
dimensionality problem caused by hierarchically structured hyperparameters in analytic pipeline
tuning.
Motivating example: We build an analytic pipeline for classification task (details in Section 4). If
we give 10 trials for each hyperparameter over 1,456 unique pipeline paths and 102 hyperparameters,
we have more than 2 million configurations, which can take years to complete with a brute-force
search. Even with the state-of-the-art Bayesian optimization algorithm such as Sequential Model-
based Algorithm Configuration (SMAC) [22], the process can still be slow as shown in Figure 2.
If we know the optimal algorithms ahead time (Oracle) with just hyperparameter tuning of the
optimal algorithms, we can obtain significant time saving, which is however not possible. Finally,
our proposed method FLASH can converge towards the oracle performance much more quickly
than SMAC.

In this paper, we propose a two-layer Bayesian optimization algorithm called Fast LineAr SearcH
(FLASH): the first layer for selecting algorithms, and the second layer for tuning the hyperparame-
ters of selected algorithms. FLASH is able to outperform the state-of-the-art Bayesian optimization
algorithms by a large margin, as shown in Figure 2. By designing FLASH, we make three main
contributions:

• We propose a linear model for propagation of error (or other quantitative metrics) in analytic

2

f (x) measures the quality of entire pipeline with hyperparameter(s) x

Evaluating f (x) is possibly costly

The search space X can be large:
I Feature processing parameters
I Dimensionality reduction method
I Dimensionality reduction parameters
I Classifier type
I Classifier hyperparameters
I . . .

Example 1: Data analytics pipeline [THHLB13, FKE+15, ZBSS16]

Input Feature
Construction

Missing Value
Processing

Feature
Rescaling

Sample
Balancing

Feature
Preprocessing Classification Output

Figure 1: A typical data analytic pipeline.

Tuning hyperparameters of a single algorithm can be viewed as an optimization problem of a
black-box objective function, which is noisy and often expensive to evaluate. Here the input of
black-box are the hyperparameters, and the objective function is the output performance such as
accuracy, precision and recall. To tackle this problem, simple methods have been applied such as
grid or random search [5, 3]. While on di�cult problems where these simple approaches are not
e�cient, a more promising model-based approach is Bayesian optimization [32, 27, 7, 39]. The high-
level idea of Bayesian optimization is to define a relatively cheap surrogate function and use that
to search the hyperparameter space. Indeed, there exist other global optimization methods, such
as evolutionary algorithms [2] and optimistic optimization [33]. We choose Bayesian optimization
framework due to its great performance in practice. Recently, Bayesian optimization methods have
been shown to outperform other methods on various tasks, and in some cases even beat human
domain experts to achieve better performance via tuning hyperparameters [42, 4].

Despite its success, applying Bayesian optimization for tuning analytic pipelines faces several
significant challenges: Existing Bayesian optimization methods are usually based on nonparametric
models, such as Gaussian process and random forest. A major drawback of these methods is that
they require a large number of observations to find reasonable solutions in high-dimensional space.
When tuning a single algorithm with several hyperparameters, Bayesian optimization works well
with just a few observations. However, when it comes to pipeline tuning, thousands of possible
combinations of algorithms plus their hyperparameters jointly create a large hierarchical high-
dimensional space to search over, whereas existing methods tend to become ine�cient. Wang et
al. [46] tackled the high-dimensional problem by making a low e↵ective dimensional assumption.
However, it is still a flat Bayesian optimization method and not able to handle the exploding
dimensionality problem caused by hierarchically structured hyperparameters in analytic pipeline
tuning.
Motivating example: We build an analytic pipeline for classification task (details in Section 4). If
we give 10 trials for each hyperparameter over 1,456 unique pipeline paths and 102 hyperparameters,
we have more than 2 million configurations, which can take years to complete with a brute-force
search. Even with the state-of-the-art Bayesian optimization algorithm such as Sequential Model-
based Algorithm Configuration (SMAC) [22], the process can still be slow as shown in Figure 2.
If we know the optimal algorithms ahead time (Oracle) with just hyperparameter tuning of the
optimal algorithms, we can obtain significant time saving, which is however not possible. Finally,
our proposed method FLASH can converge towards the oracle performance much more quickly
than SMAC.

In this paper, we propose a two-layer Bayesian optimization algorithm called Fast LineAr SearcH
(FLASH): the first layer for selecting algorithms, and the second layer for tuning the hyperparame-
ters of selected algorithms. FLASH is able to outperform the state-of-the-art Bayesian optimization
algorithms by a large margin, as shown in Figure 2. By designing FLASH, we make three main
contributions:

• We propose a linear model for propagation of error (or other quantitative metrics) in analytic

2

f (x) measures the quality of entire pipeline with hyperparameter(s) x

Evaluating f (x) is possibly costly

The search space X can be large:
I Feature processing parameters
I Dimensionality reduction method
I Dimensionality reduction parameters
I Classifier type
I Classifier hyperparameters
I . . .

Example 1: Data analytics pipeline [THHLB13, FKE+15, ZBSS16]

Input Feature
Construction

Missing Value
Processing

Feature
Rescaling

Sample
Balancing

Feature
Preprocessing Classification Output

Figure 1: A typical data analytic pipeline.

Tuning hyperparameters of a single algorithm can be viewed as an optimization problem of a
black-box objective function, which is noisy and often expensive to evaluate. Here the input of
black-box are the hyperparameters, and the objective function is the output performance such as
accuracy, precision and recall. To tackle this problem, simple methods have been applied such as
grid or random search [5, 3]. While on di�cult problems where these simple approaches are not
e�cient, a more promising model-based approach is Bayesian optimization [32, 27, 7, 39]. The high-
level idea of Bayesian optimization is to define a relatively cheap surrogate function and use that
to search the hyperparameter space. Indeed, there exist other global optimization methods, such
as evolutionary algorithms [2] and optimistic optimization [33]. We choose Bayesian optimization
framework due to its great performance in practice. Recently, Bayesian optimization methods have
been shown to outperform other methods on various tasks, and in some cases even beat human
domain experts to achieve better performance via tuning hyperparameters [42, 4].

Despite its success, applying Bayesian optimization for tuning analytic pipelines faces several
significant challenges: Existing Bayesian optimization methods are usually based on nonparametric
models, such as Gaussian process and random forest. A major drawback of these methods is that
they require a large number of observations to find reasonable solutions in high-dimensional space.
When tuning a single algorithm with several hyperparameters, Bayesian optimization works well
with just a few observations. However, when it comes to pipeline tuning, thousands of possible
combinations of algorithms plus their hyperparameters jointly create a large hierarchical high-
dimensional space to search over, whereas existing methods tend to become ine�cient. Wang et
al. [46] tackled the high-dimensional problem by making a low e↵ective dimensional assumption.
However, it is still a flat Bayesian optimization method and not able to handle the exploding
dimensionality problem caused by hierarchically structured hyperparameters in analytic pipeline
tuning.
Motivating example: We build an analytic pipeline for classification task (details in Section 4). If
we give 10 trials for each hyperparameter over 1,456 unique pipeline paths and 102 hyperparameters,
we have more than 2 million configurations, which can take years to complete with a brute-force
search. Even with the state-of-the-art Bayesian optimization algorithm such as Sequential Model-
based Algorithm Configuration (SMAC) [22], the process can still be slow as shown in Figure 2.
If we know the optimal algorithms ahead time (Oracle) with just hyperparameter tuning of the
optimal algorithms, we can obtain significant time saving, which is however not possible. Finally,
our proposed method FLASH can converge towards the oracle performance much more quickly
than SMAC.

In this paper, we propose a two-layer Bayesian optimization algorithm called Fast LineAr SearcH
(FLASH): the first layer for selecting algorithms, and the second layer for tuning the hyperparame-
ters of selected algorithms. FLASH is able to outperform the state-of-the-art Bayesian optimization
algorithms by a large margin, as shown in Figure 2. By designing FLASH, we make three main
contributions:

• We propose a linear model for propagation of error (or other quantitative metrics) in analytic

2

f (x) measures the quality of entire pipeline with hyperparameter(s) x

Evaluating f (x) is possibly costly

The search space X can be large:
I Feature processing parameters
I Dimensionality reduction method
I Dimensionality reduction parameters
I Classifier type
I Classifier hyperparameters
I . . .

Example 1: Data analytics pipeline [THHLB13, FKE+15, ZBSS16]

Input Feature
Construction

Missing Value
Processing

Feature
Rescaling

Sample
Balancing

Feature
Preprocessing Classification Output

Figure 1: A typical data analytic pipeline.

Tuning hyperparameters of a single algorithm can be viewed as an optimization problem of a
black-box objective function, which is noisy and often expensive to evaluate. Here the input of
black-box are the hyperparameters, and the objective function is the output performance such as
accuracy, precision and recall. To tackle this problem, simple methods have been applied such as
grid or random search [5, 3]. While on di�cult problems where these simple approaches are not
e�cient, a more promising model-based approach is Bayesian optimization [32, 27, 7, 39]. The high-
level idea of Bayesian optimization is to define a relatively cheap surrogate function and use that
to search the hyperparameter space. Indeed, there exist other global optimization methods, such
as evolutionary algorithms [2] and optimistic optimization [33]. We choose Bayesian optimization
framework due to its great performance in practice. Recently, Bayesian optimization methods have
been shown to outperform other methods on various tasks, and in some cases even beat human
domain experts to achieve better performance via tuning hyperparameters [42, 4].

Despite its success, applying Bayesian optimization for tuning analytic pipelines faces several
significant challenges: Existing Bayesian optimization methods are usually based on nonparametric
models, such as Gaussian process and random forest. A major drawback of these methods is that
they require a large number of observations to find reasonable solutions in high-dimensional space.
When tuning a single algorithm with several hyperparameters, Bayesian optimization works well
with just a few observations. However, when it comes to pipeline tuning, thousands of possible
combinations of algorithms plus their hyperparameters jointly create a large hierarchical high-
dimensional space to search over, whereas existing methods tend to become ine�cient. Wang et
al. [46] tackled the high-dimensional problem by making a low e↵ective dimensional assumption.
However, it is still a flat Bayesian optimization method and not able to handle the exploding
dimensionality problem caused by hierarchically structured hyperparameters in analytic pipeline
tuning.
Motivating example: We build an analytic pipeline for classification task (details in Section 4). If
we give 10 trials for each hyperparameter over 1,456 unique pipeline paths and 102 hyperparameters,
we have more than 2 million configurations, which can take years to complete with a brute-force
search. Even with the state-of-the-art Bayesian optimization algorithm such as Sequential Model-
based Algorithm Configuration (SMAC) [22], the process can still be slow as shown in Figure 2.
If we know the optimal algorithms ahead time (Oracle) with just hyperparameter tuning of the
optimal algorithms, we can obtain significant time saving, which is however not possible. Finally,
our proposed method FLASH can converge towards the oracle performance much more quickly
than SMAC.

In this paper, we propose a two-layer Bayesian optimization algorithm called Fast LineAr SearcH
(FLASH): the first layer for selecting algorithms, and the second layer for tuning the hyperparame-
ters of selected algorithms. FLASH is able to outperform the state-of-the-art Bayesian optimization
algorithms by a large margin, as shown in Figure 2. By designing FLASH, we make three main
contributions:

• We propose a linear model for propagation of error (or other quantitative metrics) in analytic

2

f (x) measures the quality of entire pipeline with hyperparameter(s) x

Evaluating f (x) is possibly costly

The search space X can be large:
I Feature processing parameters
I Dimensionality reduction method
I Dimensionality reduction parameters
I Classifier type
I Classifier hyperparameters
I . . .

Example 2: Deep learning [SLA12, SRS+15, KFB+16]

LeNet5 [LBBH98]

f (x) measures the quality of deep neural network with hyperparameter(s) x

Evaluating f (x) is very costly ≈ up to weeks

The search space X can be large:
I Architecture: # hidden layers, activation functions, . . .
I Model complexity: regularization, dropout, . . .
I Optimisation parameters: learning rates, momentum, batch size, . . .

Example 2: Deep learning [SLA12, SRS+15, KFB+16]

LeNet5 [LBBH98]

f (x) measures the quality of deep neural network with hyperparameter(s) x

Evaluating f (x) is very costly ≈ up to weeks

The search space X can be large:
I Architecture: # hidden layers, activation functions, . . .
I Model complexity: regularization, dropout, . . .
I Optimisation parameters: learning rates, momentum, batch size, . . .

Example 2: Deep learning [SLA12, SRS+15, KFB+16]

LeNet5 [LBBH98]

f (x) measures the quality of deep neural network with hyperparameter(s) x

Evaluating f (x) is very costly ≈ up to weeks

The search space X can be large:
I Architecture: # hidden layers, activation functions, . . .
I Model complexity: regularization, dropout, . . .
I Optimisation parameters: learning rates, momentum, batch size, . . .

Example 2: Deep learning [SLA12, SRS+15, KFB+16]

LeNet5 [LBBH98]

f (x) measures the quality of deep neural network with hyperparameter(s) x

Evaluating f (x) is very costly ≈ up to weeks

The search space X can be large:
I Architecture: # hidden layers, activation functions, . . .
I Model complexity: regularization, dropout, . . .
I Optimisation parameters: learning rates, momentum, batch size, . . .

What is a structured search space X ?

The search space X exhibits conditional relationships, such that

X = X0 ×X1 × · · · × XK .

Depending on some values in Xi , values in Xj are irrelevant:

I Data analytics pipeline:

X = X0︸︷︷︸
classifier type

×
hyperparams LR︷︸︸︷
X1 × X2︸︷︷︸

hyperparams RF

× · · · × XK

I Feedforward neural nets:

X = X0︸︷︷︸
hidden layers

×
hyperparams layer 1︷︸︸︷

X1 × X2︸︷︷︸
hyperparams layer 2

× · · · × XK

What is a structured search space X ?

The search space X exhibits conditional relationships, such that

X = X0 ×X1 × · · · × XK .

Depending on some values in Xi , values in Xj are irrelevant:

I Data analytics pipeline:

X = X0︸︷︷︸
classifier type

×
hyperparams LR︷︸︸︷
X1 × X2︸︷︷︸

hyperparams RF

× · · · × XK

I Feedforward neural nets:

X = X0︸︷︷︸
hidden layers

×
hyperparams layer 1︷︸︸︷

X1 × X2︸︷︷︸
hyperparams layer 2

× · · · × XK

Tuning of feedforward neural nets

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2017

L � 0

�0, "0, ⌘0, nor0(·) L � 1

X1 L � 2

X2 L � 3

X3 X4

L = 0 L > 0

L = 1 L > 1

L = 2 L > 2

L = 3 L = 4

Xk ,
n
�k, {u

(k)
j }k

j=1, "k, ⌘k, nork(·), actk(·)
o

L � 0, ", ⌘, nor(·)

�0 L � 1, act(·), u1

�1 L � 2, u2

�2 L � 3, u3

�3 �4, u4

L = 0 L > 0

L = 1 L > 1

L = 2 L > 2

L = 3 L = 4

Figure 3. Conditional relationships for MLP tuning. L refers to the
number of hidden layers, uj is the number of units of the j-th layer,
�k controls the `2 regularization of a network with k hidden layers,
⌘ and " are respectively the learning rate and stopping criterion
of the Adam optimizer, while nor(·) and act(·) respectively stand
for the normalization of the dataset and the activation function.
Top: An independent topology where the domain Xk of each leaf
is made of duplicated parameters (indexed by k in the figure).
Bottom: A topology where the parameters (in blue) are shared
across leaves, following Section 2.4..

�k per number k of hidden layer(s) of the network. We do
so to account for the fact that the �k’s regularize matrices of
different dimensions. In between those two extreme settings,
we could consider intermediate modeling assumptions (e.g.,
a learning rate ⌘linear for the case with no hidden layers and
a shared learning rate ⌘non-linear otherwise).

To provide a robust evaluation of the different competing
methods, we consider a subset of the datasets from the
Libsvm repository (Chang & Lin, 2011). More specifi-
cally, we consider all the datasets whose number of features
is smaller than 106, which results in 45 data sets. In absence
of pre-defined default train-test split, we took a random
80%�20% split. To limit the overall computational burden,
we cap the training and test set sizes to a maximum of re-
spectively 103 and 104 instances (randomly selected when
the subsampling applies). Note that this subsampling step
is not related to a computational limitation of our approach,
but is a practical consideration only modifying the properties
of the black-box function we optimize. We use the MLP im-

Figure 4. Tuning of a MLP for binary classification. Average rank
aggregated over 45 datasets versus the number of iterations (lower
is better; see text for details). Top: Comparison of independent
with the tree-based independent topology (see bottom tree of
Figure 3). Bottom: Comparison of all the methods based on the
shared topology (see top tree of Figure 3). Best seen in color.

plementation of scikit-learn (Pedregosa et al., 2011)
and we add a CPU-time constraint of 5 minutes to each
evaluation, beyond which the worst classification error 1.0
is returned. Under this constraint, the total computational
time of the experiment was roughly 100 CPU days.

We run all the methods for 85 iterations and initialize them
with one random choice for each of the 5 conditional paths.
We aggregate the average classification errors per dataset by
displaying the average rank of each method as a function of
the number of iterations, the best achievable value being a
rank of 1 (e.g., see (Feurer et al., 2015) for the use of similar
metrics). We can draw the following conclusions:

Effect of z>p c without shared variables: The top panel
in Figure 4 compares independent with tree-based
method when it is defined on the independent topology
shown in Figure 3(top). Since there are no shared variables
in the inner nodes, the sharing mechanism of tree only
happens via the term z>p c which contributes to the mean. As
expected, sharing results in tree making faster progress
towards the optimum. However, when more observations
are collected independent outperforms tree because
it better explores all the leafs (though, at a higher com-

L: Number of hidden layers in {0, 1, 2, 3, 4}
λ: Regularization parameter

uj : Number of units in j-th layer

ε, η: Stopping criterion and learning rate of Adam [KB14]

nor(·): Normalization of the dataset

act(·): Activation function

Naive approach: Agnostic to the structure

For x ∈ X ,

f (x) ∼ GP(0,K)

y |f (x) ∼ N (f (x), ς2)

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2017

L � 0

�0, "0, ⌘0, nor0(·) L � 1

X1 L � 2

X2 L � 3

X3 X4

L = 0 L > 0

L = 1 L > 1

L = 2 L > 2

L = 3 L = 4

Xk ,
n
�k, {u

(k)
j }k

j=1, "k, ⌘k, nork(·), actk(·)
o

L � 0, ", ⌘, nor(·)

�0 L � 1, act(·), u1

�1 L � 2, u2

�2 L � 3, u3

�3 �4, u4

L = 0 L > 0

L = 1 L > 1

L = 2 L > 2

L = 3 L = 4

Figure 3. Conditional relationships for MLP tuning. L refers to the
number of hidden layers, uj is the number of units of the j-th layer,
�k controls the `2 regularization of a network with k hidden layers,
⌘ and " are respectively the learning rate and stopping criterion
of the Adam optimizer, while nor(·) and act(·) respectively stand
for the normalization of the dataset and the activation function.
Top: An independent topology where the domain Xk of each leaf
is made of duplicated parameters (indexed by k in the figure).
Bottom: A topology where the parameters (in blue) are shared
across leaves, following Section 2.4..

�k per number k of hidden layer(s) of the network. We do
so to account for the fact that the �k’s regularize matrices of
different dimensions. In between those two extreme settings,
we could consider intermediate modeling assumptions (e.g.,
a learning rate ⌘linear for the case with no hidden layers and
a shared learning rate ⌘non-linear otherwise).

To provide a robust evaluation of the different competing
methods, we consider a subset of the datasets from the
Libsvm repository (Chang & Lin, 2011). More specifi-
cally, we consider all the datasets whose number of features
is smaller than 106, which results in 45 data sets. In absence
of pre-defined default train-test split, we took a random
80%�20% split. To limit the overall computational burden,
we cap the training and test set sizes to a maximum of re-
spectively 103 and 104 instances (randomly selected when
the subsampling applies). Note that this subsampling step
is not related to a computational limitation of our approach,
but is a practical consideration only modifying the properties
of the black-box function we optimize. We use the MLP im-

Figure 4. Tuning of a MLP for binary classification. Average rank
aggregated over 45 datasets versus the number of iterations (lower
is better; see text for details). Top: Comparison of independent
with the tree-based independent topology (see bottom tree of
Figure 3). Bottom: Comparison of all the methods based on the
shared topology (see top tree of Figure 3). Best seen in color.

plementation of scikit-learn (Pedregosa et al., 2011)
and we add a CPU-time constraint of 5 minutes to each
evaluation, beyond which the worst classification error 1.0
is returned. Under this constraint, the total computational
time of the experiment was roughly 100 CPU days.

We run all the methods for 85 iterations and initialize them
with one random choice for each of the 5 conditional paths.
We aggregate the average classification errors per dataset by
displaying the average rank of each method as a function of
the number of iterations, the best achievable value being a
rank of 1 (e.g., see (Feurer et al., 2015) for the use of similar
metrics). We can draw the following conclusions:

Effect of z>p c without shared variables: The top panel
in Figure 4 compares independent with tree-based
method when it is defined on the independent topology
shown in Figure 3(top). Since there are no shared variables
in the inner nodes, the sharing mechanism of tree only
happens via the term z>p c which contributes to the mean. As
expected, sharing results in tree making faster progress
towards the optimum. However, when more observations
are collected independent outperforms tree because
it better explores all the leafs (though, at a higher com-

Single, joint model

Ignores conditional dependencies:
X =

((((((((((X0 ×X1 × · · · × XK .

Complexity: O
(
(
∑

p np)3
)
.

Naive approach: Agnostic to the structure

For x ∈ X ,

f (x) ∼ GP(0,K)

y |f (x) ∼ N (f (x), ς2)

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2017

L � 0

�0, "0, ⌘0, nor0(·) L � 1

X1 L � 2

X2 L � 3

X3 X4

L = 0 L > 0

L = 1 L > 1

L = 2 L > 2

L = 3 L = 4

Xk ,
n
�k, {u

(k)
j }k

j=1, "k, ⌘k, nork(·), actk(·)
o

L � 0, ", ⌘, nor(·)

�0 L � 1, act(·), u1

�1 L � 2, u2

�2 L � 3, u3

�3 �4, u4

L = 0 L > 0

L = 1 L > 1

L = 2 L > 2

L = 3 L = 4

Figure 3. Conditional relationships for MLP tuning. L refers to the
number of hidden layers, uj is the number of units of the j-th layer,
�k controls the `2 regularization of a network with k hidden layers,
⌘ and " are respectively the learning rate and stopping criterion
of the Adam optimizer, while nor(·) and act(·) respectively stand
for the normalization of the dataset and the activation function.
Top: An independent topology where the domain Xk of each leaf
is made of duplicated parameters (indexed by k in the figure).
Bottom: A topology where the parameters (in blue) are shared
across leaves, following Section 2.4..

�k per number k of hidden layer(s) of the network. We do
so to account for the fact that the �k’s regularize matrices of
different dimensions. In between those two extreme settings,
we could consider intermediate modeling assumptions (e.g.,
a learning rate ⌘linear for the case with no hidden layers and
a shared learning rate ⌘non-linear otherwise).

To provide a robust evaluation of the different competing
methods, we consider a subset of the datasets from the
Libsvm repository (Chang & Lin, 2011). More specifi-
cally, we consider all the datasets whose number of features
is smaller than 106, which results in 45 data sets. In absence
of pre-defined default train-test split, we took a random
80%�20% split. To limit the overall computational burden,
we cap the training and test set sizes to a maximum of re-
spectively 103 and 104 instances (randomly selected when
the subsampling applies). Note that this subsampling step
is not related to a computational limitation of our approach,
but is a practical consideration only modifying the properties
of the black-box function we optimize. We use the MLP im-

Figure 4. Tuning of a MLP for binary classification. Average rank
aggregated over 45 datasets versus the number of iterations (lower
is better; see text for details). Top: Comparison of independent
with the tree-based independent topology (see bottom tree of
Figure 3). Bottom: Comparison of all the methods based on the
shared topology (see top tree of Figure 3). Best seen in color.

plementation of scikit-learn (Pedregosa et al., 2011)
and we add a CPU-time constraint of 5 minutes to each
evaluation, beyond which the worst classification error 1.0
is returned. Under this constraint, the total computational
time of the experiment was roughly 100 CPU days.

We run all the methods for 85 iterations and initialize them
with one random choice for each of the 5 conditional paths.
We aggregate the average classification errors per dataset by
displaying the average rank of each method as a function of
the number of iterations, the best achievable value being a
rank of 1 (e.g., see (Feurer et al., 2015) for the use of similar
metrics). We can draw the following conclusions:

Effect of z>p c without shared variables: The top panel
in Figure 4 compares independent with tree-based
method when it is defined on the independent topology
shown in Figure 3(top). Since there are no shared variables
in the inner nodes, the sharing mechanism of tree only
happens via the term z>p c which contributes to the mean. As
expected, sharing results in tree making faster progress
towards the optimum. However, when more observations
are collected independent outperforms tree because
it better explores all the leafs (though, at a higher com-

Single, joint model

Ignores conditional dependencies:
X =

((((((((((X0 ×X1 × · · · × XK .

Complexity: O
(
(
∑

p np)3
)
.

Baseline: Independent models [BBBK11]

For x ∈ Xp0 ,

fp0 (x) ∼ GP(0,Kp0)

y |fp0 (x) ∼ N (fp0 (x), ςp0

2)

For x ∈ Xp1 ,

fp1 (x) ∼ GP(0,Kp1)

y |fp1 (x) ∼ N (fp1 (x), ςp1

2)
...

For x ∈ Xp4 ,

fp4 (x) ∼ GP(0,Kp4)

y |fp4 (x) ∼ N (fp4 (x), ςp4

2)

No sharing of information across leaves

Compare leaves via utility functions

O
(∑

p n
3
p

)
vs. O

(
(
∑

p np)3
)
.

Baseline: Independent models [BBBK11]

For x ∈ Xp0 ,

fp0 (x) ∼ GP(0,Kp0)

y |fp0 (x) ∼ N (fp0 (x), ςp0

2)

For x ∈ Xp1 ,

fp1 (x) ∼ GP(0,Kp1)

y |fp1 (x) ∼ N (fp1 (x), ςp1

2)
...

For x ∈ Xp4 ,

fp4 (x) ∼ GP(0,Kp4)

y |fp4 (x) ∼ N (fp4 (x), ςp4

2)

No sharing of information across leaves

Compare leaves via utility functions

O
(∑

p n
3
p

)
vs. O

(
(
∑

p np)3
)
.

Tree-structured sharing

Joint prior on the mean:: c = [c1, . . . , cV] ∼ N (0,Σc)

For x ∈ Xp0 ,

fp0 (x) ∼ GP(0,Kp0)

y |fp0 (x), c ∼ N (fp0 (x) +
∑

v∈p0
cv , ςp0

2)

For x ∈ Xp1 ,

fp1 (x) ∼ GP(0,Kp1)

y |fp1 (x), c ∼ N (fp1 (x) +
∑

v∈p1
cv , ςp1

2)

...

For x ∈ Xp4 ,

fp4 (x) ∼ GP(0,Kp4)

y |fp4 (x), c ∼ N (fp4 (x) +
∑

v∈p4
cv , ςp4

2)

Sharing of information across leaves:
if p similar to p′,

∑
v∈p cv ≈

∑
v∈p′ cv .

O
(∑

p n
3
p + V 3

)
vs. O

(
(
∑

p np)3
)
.

Tree-structured sharing

Joint prior on the mean:: c = [c1, . . . , cV] ∼ N (0,Σc)

For x ∈ Xp0 ,

fp0 (x) ∼ GP(0,Kp0)

y |fp0 (x), c ∼ N (fp0 (x) +
∑

v∈p0
cv , ςp0

2)

For x ∈ Xp1 ,

fp1 (x) ∼ GP(0,Kp1)

y |fp1 (x), c ∼ N (fp1 (x) +
∑

v∈p1
cv , ςp1

2)

...

For x ∈ Xp4 ,

fp4 (x) ∼ GP(0,Kp4)

y |fp4 (x), c ∼ N (fp4 (x) +
∑

v∈p4
cv , ςp4

2)

Sharing of information across leaves:
if p similar to p′,

∑
v∈p cv ≈

∑
v∈p′ cv .

O
(∑

p n
3
p + V 3

)
vs. O

(
(
∑

p np)3
)
.

Tree-structured sharing

Joint prior on the mean:: c = [c1, . . . , cV] ∼ N (0,Σc)

For x ∈ Xp0 ,

fp0 (x) ∼ GP(0,Kp0)

y |fp0 (x), c ∼ N (fp0 (x) +
∑

v∈p0
cv , ςp0

2)

For x ∈ Xp1 ,

fp1 (x) ∼ GP(0,Kp1)

y |fp1 (x), c ∼ N (fp1 (x) +
∑

v∈p1
cv , ςp1

2)

...

For x ∈ Xp4 ,

fp4 (x) ∼ GP(0,Kp4)

y |fp4 (x), c ∼ N (fp4 (x) +
∑

v∈p4
cv , ςp4

2)

Sharing of information across leaves:
if p similar to p′,

∑
v∈p cv ≈

∑
v∈p′ cv .

O
(∑

p n
3
p + V 3

)
vs. O

(
(
∑

p np)3
)
.

The induced kernel corresponds to the intersection kernel

Let H = [Hp] ∈ RV×n be stacked binary masks and Kblock ∈ Rn×n be the block-diagonal
matrix with blocks Kp.

The marginal likelihood is given by

P(y) =

∫
f,c

P(y, f, c) =N
(
0,H>ΣcH + Kblock + diag{ς2}

)
.

If we assume that Σc = σ2
c IV , then

H>ΣcH =
[
σ2
c (h>p hp′)1np1

>
np′

]
p,p′

.

Diagonal blocks are proportional to the length of path p.

Off-diagonal blocks are proportional to the path overlap between p and p′.

The induced kernel corresponds to the intersection kernel

Let H = [Hp] ∈ RV×n be stacked binary masks and Kblock ∈ Rn×n be the block-diagonal
matrix with blocks Kp.

The marginal likelihood is given by

P(y) =

∫
f,c

P(y, f, c) =N
(
0,H>ΣcH + Kblock + diag{ς2}

)
.

If we assume that Σc = σ2
c IV , then

H>ΣcH =
[
σ2
c (h>p hp′)1np1

>
np′

]
p,p′

.

Diagonal blocks are proportional to the length of path p.

Off-diagonal blocks are proportional to the path overlap between p and p′.

The induced kernel corresponds to the intersection kernel

Let H = [Hp] ∈ RV×n be stacked binary masks and Kblock ∈ Rn×n be the block-diagonal
matrix with blocks Kp.

The marginal likelihood is given by

P(y) =

∫
f,c

P(y, f, c) =N
(
0,H>ΣcH + Kblock + diag{ς2}

)
.

If we assume that Σc = σ2
c IV , then

H>ΣcH =
[
σ2
c (h>p hp′)1np1

>
np′

]
p,p′

.

Diagonal blocks are proportional to the length of path p.

Off-diagonal blocks are proportional to the path overlap between p and p′.

Two-step acquisition function to reduce complexity

(x?, p?) = argmax
p∈P,x∈Xp

a(x , p|Dn).

Exploit the tree structure through a path acquisition function:

p? = argmax
p∈P

a(p|Dn), x? = argmax
x∈Xp?

a(x , p?|Dn).

The path EI is given by

a(p|Dn) = E
(

max{0, y? − h>p c}
)
.

Two-step acquisition function to reduce complexity

(x?, p?) = argmax
p∈P,x∈Xp

a(x , p|Dn).

Exploit the tree structure through a path acquisition function:

p? = argmax
p∈P

a(p|Dn), x? = argmax
x∈Xp?

a(x , p?|Dn).

The path EI is given by

a(p|Dn) = E
(

max{0, y? − h>p c}
)
.

Two-step acquisition function to reduce complexity

(x?, p?) = argmax
p∈P,x∈Xp

a(x , p|Dn).

Exploit the tree structure through a path acquisition function:

p? = argmax
p∈P

a(p|Dn), x? = argmax
x∈Xp?

a(x , p?|Dn).

The path EI is given by

a(p|Dn) = E
(

max{0, y? − h>p c}
)
.

Experiment with feedforward neural network for classification

0 10 20 30 40 50 60 70 80 90
Iterations

1

2

3

4

5

6

7

M
e
a
n
 r

a
n
k

Rank across all datasets (shared topology)
arc
gp-baseline
independent
random
smac
tree

Binary classification: 45 datasets from LIBSVM repository

Mean rank based on mean classification accuracy for each dataset (25 replications)

Arc [SDS+14], Smac [HHLB11], Random [BB12]

Conclusion

Bayesian optimisation automates machine learning:

Algorithm tuning

Model tuning

Pipeline tuning

Bayesian optimisation is a model-based approach that
can leverage side information:

For example, it can exploit dependency structure

Approach can leverage shared variables (aka
features) at inner nodes #see paper [JAGS17]

https://sheffieldml.github.io/GPyOpt/

Conclusion

Bayesian optimisation automates machine learning:

Algorithm tuning

Model tuning

Pipeline tuning

Bayesian optimisation is a model-based approach that
can leverage side information:

For example, it can exploit dependency structure

Approach can leverage shared variables (aka
features) at inner nodes #see paper [JAGS17]

https://sheffieldml.github.io/GPyOpt/

Conclusion

Bayesian optimisation automates machine learning:

Algorithm tuning

Model tuning

Pipeline tuning

Bayesian optimisation is a model-based approach that
can leverage side information:

For example, it can exploit dependency structure

Approach can leverage shared variables (aka
features) at inner nodes #see paper [JAGS17]

https://sheffieldml.github.io/GPyOpt/

References I

James Bergstra and Yoshua Bengio.

Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13:281–305, 2012.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.

Algorithms for hyper-parameter optimization.

In Advances in Neural Information Processing Systems, volume 24, pages 2546–2554, 2011.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter.

Efficient and robust automated machine learning.

In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 2962–2970, 2015.

F. Hutter, H. H. Hoos, and K. Leyton-Brown.

Sequential model-based optimization for general algorithm configuration.

In Proceedings of LION-5, page 507?523, 2011.

References II

Rodolphe Jenatton, Cedric Archambeau, Javier González, and Matthias Seeger.

Bayesian optimization with tree-structured dependencies.

In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 1655–1664, International
Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

Donald R Jones, Matthias Schonlau, and William J Welch.

Efficient global optimization of expensive black-box functions.

Journal of Global optimization, 13(4):455–492, 1998.

Diederik Kingma and Jimmy Ba.

Adam: A method for stochastic optimization.

Technical report, preprint arXiv:1412.6980, 2014.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter.

Fast Bayesian optimization of machine learning hyperparameters on large datasets.

Technical report, preprint arXiv:1605.07079, 2016.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11):2278–2324, 1998.

References III

Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas.

The application of Bayesian methods for seeking the extremum.

Towards Global Optimization, 2(117-129):2, 1978.

Carl Rasmussen and Chris Williams.

Gaussian Processes for Machine Learning.

MIT Press, 2006.

Kevin Swersky, David Duvenaud, Jasper Snoek, Frank Hutter, and Michael A Osborne.

Raiders of the lost architecture: Kernels for Bayesian optimization in conditional parameter spaces.

Technical report, preprint arXiv:1409.4011, 2014.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger.

Gaussian process optimization in the bandit setting: No regret and experimental design.

Technical report, preprint arXiv:0912.3995, 2009.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.

Practical Bayesian optimization of machine learning algorithms.

In Advances in Neural Information Processing Systems, pages 2960–2968, 2012.

References IV

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Md Patwary, Mostofa Ali, Ryan P Adams, et al.

Scalable Bayesian optimization using deep neural networks.

Technical report, preprint arXiv:1502.05700, 2015.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Freitas.

Taking the human out of the loop: A review of Bayesian optimization.

Proceedings of the IEEE, 104(1):148–175, 2016.

Jasper Snoek, Kevin Swersky, Richard S Zemel, and Ryan P Adams.

Input warping for Bayesian optimization of non-stationary functions.

Technical report, preprint arXiv:1402.0929, 2014.

Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.

Auto-weka: Combined selection and hyperparameter optimization of classification algorithms.

In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 847–855, 2013.

Dani Yogatama and Noah A Smith.

Bayesian optimization of text representations.

Technical report, preprint arXiv:1503.00693, 2015.

References V

Yuyu Zhang, Mohammad Taha Bahadori, Hang Su, and Jimeng Sun.

Flash: Fast bayesian optimization for data analytic pipelines.

In Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu Aggarwal, Dou Shen, and Rajeev
Rastogi, editors, ACM SIGKDD international conference on knowledge discovery and data mining, pages
2065–2074. ACM, 2016.

cedrica@amazon.com

