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o o @ Abstract away algorithms

@ Abstract away feature engineering

@ Abstract away memory constraints

@ Abstract away network constraints
o o @ Abstract away computing infrastructure
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Machine learning aims to estimate (learn) a statistical data model
to make predictions (generalise) about unseen data

© Model the application (assuming labeled emails were collected)
Spam detection:
» Is this a (binary) classification problem?
» Shall | use logistic regression or a SVM?
» How should | represent emails?

@ Learn the model parameters from the data
Estimate weights of logistic regression model:

» lterative least squares?
» Stochastic gradient descent?
» Adagrad?
© Make predictions about new data with the trained model
Decide if this new email is spam or not?

» Shall | optimise for precision?
» Shall | optimise for recall?



Regularisation and (hyper)priors
Optimisation and sampling

Feature extraction

Model complexity

Decision
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@ Let x be an image and t its label.
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Maximum a posteriori learning with stochastic gradient descent.
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Maximum a posteriori learning with stochastic gradient descent.




Regularisation and (hyper)priors
Model complexity

Feature extraction

°
°
@ Optimisation and sampling
°
@ Decision

These parameters are known as hyperparameters or
system parameters and are tuned by human experts.




ﬁ A Knight of the Seven Kingdoms (A Song of Ice and Fire)
$20.43

In Stock. Ships from and sold by Amazon.com. Gift-wrap available.

T 1 quickly became absorbed in the tales of "Dunk and Egg" and the ancestors of the great houses of
Westeros

By Amazon Customer on November 24, 2015

Format: Kindle Edition | Verified Purchase

After reading Martin's other series, | was eager to find any and all related materials. This story is set about 100 years
before the main action in Westeros and introduces some new characters and fills in some blanks on ones who were
referred to in the later story. | quickly became absorbed in the tales of "Dunk and Egg" and the ancestors of the great
houses of Westeros. | loved the angle of Egg traveling around living as a regular child instead of a prince of the
realm. This book holds three short tales of adventures they have together and different lessons they both learn. My
only issue with it was that it was too short! | wanted more; | wanted to see how Dunk developed as a person because
he had a lot to learn about how noble power players might use hapless knights such as he. | hope there are plans to
continue this series because I'd like to see how Egg learned from his experiences living among the people and how
that changed the man he would become.

Comment 3 people found this helpful. Was this review helpful toyou? [ Yes || No | Reportabuse

TYrvrvri777 Ataste of game of thrones before 6th book!

By Steven M McLaughlin on December 5, 2015

Format: Kindle Edition  Verified Purchase

1 tore through the game of thrones series and have been waiting and waiting for the latest book. An associate told
me about this book and | was psyched. | was traveling and was thankful to download onto my kindle for a long flight
home. It was entertaining but | got lost with all the characters and couldn't really keep up with who was doing what.
Might need to go back and read again slowly to try to comprehend what happened! Didn't have this problem with
the other game of thrones books...

Comment 2 people found this helpful. Was this review helpful to you? [ ves No | Report abuse
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@ That's a binary classification problem!

@ Logistic regression model with standard text features.



YS15

Hyperparameter Values

Tomin {1,2,3}

T {Nminy -3}
weighting scheme {tf, tf-idf, binary}
remove stop words? {True, False}
regularization {1,452}
regularization strength | [1075,10°]

convergence tolerance

[1075,1073)




Method Acc.
SVM-unigrams 88.62
SVM-{1, 2}-grams 90.70
SVM-{1, 2, 3}-grams | 90.68
NN-unigrams 88.94
NN-{1, 2}-grams 91.10
NN-{1,2, 3}-grams | 91.24
LR (this work) 91.56
Bag of words CNN 91.58
Sequential CNN 92.22

YS15

Table 5: Comparisons on the Amazon electronics dataset.

Scores are as reported by Johnson and Zhang (2014).

Acc.: accuracy

SVM: support vector machine

NN: neural network

LR: logistic regresion

CNN: convolutional neural network
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Black-box optimisation

@ The function f we wish to optimise can be
non-concave.

@ The number of hyperparameters p is moderate
(typically < 20).

Our goal is to solve the following optimisation problem:

x, = argmin f(x).
xeX
e Evaluating f(x) is expensive.
o No analytical form or gradient.

@ Evaluations may be noisy.
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© Define an objective or metric to optimise
E.g.. generalisation error

@ Identify the knobs that impact this objective
E.g.: hyperparameters

© Measure the quality of configurations
E.g.. cross-validation




Global optimisation for hyperparameter optimisation

© Define an objective or metric to optimise

E.g.. generalisation error “.
@ Identify the knobs that impact this objective

E.g.: hyperparameters

© Measure the quality of configurations
E.g.. cross-validation

This requires iterating over hyperparameter configurations.



Two straightforward approaches

Grid Layout Random Layout

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

(Figure by Bergstra and Bengio, 2012)

@ Exhaustive search on a regular or random grid
o Complexity is exponential in p

o Wasteful of resources, but easy to parallelise



Can we do better?

(Banksy, London)
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Bayesian optimisation

Global optimisation technique that adopts
a probabilistic approach:
© Builds a probabilistic model of the objective:
» Optimises a proxy instead of the objective
» Models the uncertainty
@ Performs an efficient grid search by balancing

g exploration against exploitation!
—



Questions?
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x, = argmin f(x)
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Bayesian (black-box) optimisation [MTZ78, SSW*16|

x, = argmin f(x)
xcX

Canonical algorithm:
@ Surrogate model M of f #cheaper to evaluate

@ Set of evaluated candidates C = {}
@ While some BUDGET available:

» Select candidate X, € X using M and C #exploration/exploitation
Collect evaluation ynen of f at Xpey #time-consuming

Update C = C U {(Xnew> Ynew) }

Update M with C #Update surrogate model

Update BUDGET

vV vy VvVYyy



Bayesian (black-box) optimisation with Gaussian processes [JSW98]

@ Learn a probabilistic model of f, which is cheap to evaluate:

yilf(x;) ~ Gaussian (f(x,-),gZ) , f(x) ~ GP(0,K).
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@ Learn a probabilistic model of f, which is cheap to evaluate:
yilf(x;) ~ Gaussian (f(x,-),gZ) , f(x) ~ GP(0,K).

@ Given the observations y = (y1,...,Yyn), estimate the posterior mean and the posterior
standard deviation:
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Bayesian (black-box) optimisation with Gaussian processes [JSW98]
@ Learn a probabilistic model of f, which is cheap to evaluate:
yilf(x;) ~ Gaussian (f(x,-),g2) , f(x) ~ GP(0,K).

@ Given the observations y = (y1,...,Yyn), estimate the posterior mean and the posterior
standard deviation:

T a0

© Repeatedly query f by balancing exploitation against exploration!
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Ingredient 1: Gaussian processes for regression [RWO06]

@ A multivariate Gaussian is density over D random variables based on correlations:
f=(f,...,fp)" ~ Gaussian (m, K).
@ A Gaussian process generalises the a multivariate Gaussian to infinitely many variables:
f(x) ~GP(m(x),k(x.)).

» It defines a probability measure over random functions.
» The joint density of any finite subset is a consistent Gaussian density.

@ The posterior process is again a Gaussian process (if Gaussian likelihood):

f(X)|y ~GP (M(X), Z(X, )) )

where . ) .
p(x) = ky (x)(Kn + 07 In) "y,

o(x)? = k(x,x) — kj (x)(Ky + 0%1y) " ky(x).



Ingredient 1: Gaussian processes for regression [RWO06]

21 08 -06 -04 02 O 02 04 06 08 1 %1 08 -06 -04 02 0 02 04 06 08 1
x %

Prior. Posterior.

Three random functions generated from (a) the prior GP and (b) the posterior GP. An observation is indicated
by a 4, the mean function by a dashed line and the 3 standard deviation error bars by the shaded regions. We

used a squared exponential covariance function.
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Ingredient 2: Acquisition function
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defined as follows:
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Ingredient 2: Acquisition function

Let C = {xc, yc} denote a set of observed parameter-value pairs. The acquisition function is
defined as follows:

a:x— a(x|C) =E(A(f,x)|C).

Decide which are most promising regions in X'\C
Get as quickly as possible to “the” optimum (unlike Bayesian experimental design)
Can be optimised with off the self solvers!

Makes the exploration-exploitation trade-off



Exploration-exploitation trade-off

Which slot machine should | pick?



Exploration-exploitation trade-off

Return

v

4

Which slot machine should | pick?



Exploration-exploitation trade-off

Return

v

Which slot machine should | pick?
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e Evaluate all candidates according to an acquisition function a(x).

@ Rank them and pick the best one.
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Ingredient 2: Acquisition function

e Evaluate all candidates according to an acquisition function a(x).
@ Rank them and pick the best one.

@ Examples of acquisition functions:

Let y, be the best value observed so far and f(x)|y ~ Gaussian (u(x),o(x)?):
» Lower confidence bound (GP-LCB) [SKKS09]:

a(x) = —p(x) +ao(x) (a=0).
» Expected improvement (El):
a(x) = E(max{0, y, — f(x)}).

» Probability of improvement, Thompson sampling, entropy search, etc.
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Summary

X, = argmin f(x)
xcX

Bayesian optimisation algorithm:
@ Surrogate model M of f #cheaper to evaluate

@ Set of evaluated candidates C = {}
@ While some BUDGET available:

» Select candidate X, € X using M and C #acquisition
Collect evaluation ynen of f at Xpey #time-consuming
Update C = C U {(Xnew> Ynew) }

Update M with C #GP posterior

Update BUDGET

vV vy VvVYyy
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How do we handle the hyperparameters of the surrogate model?



How do we handle the hyperparameters of the surrogate model?

Let us denote the kernel parameters by 8. We view the latent functions as nuisance
parameters and maximise the log-marginal wrt <2 and 6.

The log-marginal likelihood is given by

n 1 1
Inp(yls,0) = -5 In 27 -5 In|K(6) + 21, —EyT(K(B) +¢31,) 7y

complexity penality data fit

The negative log-marginal surface is non-convex and the computational complexity for its
evaluation is O(n%).



Can we handle hyperparameter transformations?



Can we handle hyperparameter transformations?

02 0.4

(b) Exponential (c) Logarithmic (d) Sigmoidal

(Image credit: Snoek, et al., 2014)
@ Automatic input warping [SSZA14]:
w x = w(x) = BetaCDF(x; v, 3).

@ Learn o and 3 as the hyperparameters of the Gaussian process.

@ Many alternatives, such as Kumaraswamy distribution: w(x) =1 — (1 — x*)5.
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How do we fill the hyperparameter space X7

Random Sobol sequence
N 1 ¥

(Image credit: Wikipedia)

@ Populate hypercube [0,1]° as densely as possible (as well as it's lower dimensional faces):

n

1
Find sequence {x;} such that lim — f(x;) = / f(x).
{xi} an; (xi) oo (x)

@ Quasi random sequence generators, such as Sobol sequences, are better than random.



Are there other choices for the surrogate model?



Are there other choices for the surrogate model?

(Image credit: [SSW'16])

@ Bayesian (black-box) optimisation with Random Forests [HHLB11]:
y(x) =RE, f(x)|y ~ Gaussian (u(x), = (1(x)).

where p(x) ~ % > vi(x) and X(x) ~ ﬁ S i(yi(x) — u(x))?.
@ But very competitive baseline!



Reference material

Review paper by Shahriari, et al. (2016): Taking the Human Out of the Loop: A Review of
Bayesian Optimization. Proceedings of the IEEE 104(1):148-175.

Slides by Ryan Adams (2014): A Tutorial on Bayesian Optimization for Machine Learning.
CIFAR NCAP Summer School.

Slides by Peter Frazier (2010): Tutorial: Bayesian Methods for Global and Simulation
Optimization. INFORMS Annual Meeting.
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Very brief historical overview

Closely related to optimal design of experiments, dating back to Kirstine Smith (1918).

As Bayesian optimisation, studied first by Kushner (1964), then by Mockus (1978), and
more recently by Jones, et al. (1998).

Multiple workshops at NIPS (bayesopt.com) and ICML (www.autonl.org)

Open source software:
SMAC (http://www.cs.ubc.ca/labs/beta/Projects/SMAC/) — RF,
HyperOpt (http://jaberg.github.io/hyperopt/) — TPE,
Spearmint (https://github.com/JasperSnoek/spearmint) — GP,
GPyOpt (https://github.com/SheffieldML/GPyOpt) — GP,
BayesOpt (http://rmcantin.bitbucket.org/) — GP,

Challenges and benchmarks (HPOLib: www.automl.org/hpolib.html)!



Questions?



Black-box optimisation with (tree-structured) dependencies [JAGS17]

The domain X is structured.



Example 1: Data analytics pipeline [THHLB13, FKET15, ZBSS16|
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Example 1: Data analytics pipeline [THHLB13, FKET15, ZBSS16|

Feature | ,| Missing Value | | Feature L, Sample L, Feature

Construction Processing Rescaling Balancing Preprocessing | ClEstitaitn | ug Oty

Input >

@ f(x) measures the quality of entire pipeline with hyperparameter(s) x

e Evaluating f(x) is possibly costly
@ The search space X’ can be large:

» Feature processing parameters
Dimensionality reduction method
Dimensionality reduction parameters
Classifier type
Classifier hyperparameters

vV vy VY VvVYYyYy



Example 2: Deep learning [SLA12, SRST15, KFB*16]
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Example 2: Deep learning [SLA12, SRST15, KFB*16]

ot C3: f. maps 16@10x10
INPUT 61@- z'gg‘zige maps $4:1. maps 16@5x5
32x32 S2: f. maps
6@14x14

LeNet5 [LBBH98]

e f(x) measures the quality of deep neural network with hyperparameter(s) x

e Evaluating f(x) is very costly ~ up to weeks
@ The search space X' can be large:

» Architecture: # hidden layers, activation functions, ...
» Model complexity: regularization, dropout, ...
» Optimisation parameters: learning rates, momentum, batch size, ...



What is a structured search space X7



What is a structured search space X7

@ The search space X exhibits conditional relationships, such that
X:X()XXlX-"XXK.
@ Depending on some values in X, values in & are irrelevant:

» Data analytics pipeline:

hyperparams LR

, / N
X = ‘XO X Xl X Xz ><~~~><XK

~~~ ~~~

classifier type hyperparams RF

» Feedforward neural nets:
hyperparams layer 1
, / N
X = Xo X Xy X X X oo X Xi
~~~ ~~

# hidden layers hyperparams layer 2



Tuning of feedforward neural nets

X & {Ak, {u§k)}?:1, €k, Mk, NO1%(+), aCtk(')}

L: Number of hidden layers in {0,1,2,3,4}

A: Regularization parameter

uj: Number of units in j-th layer

€,1: Stopping criterion and learning rate of Adam [KB14]

nor(-): Normalization of the dataset

act(+): Activation function



Naive approach: Agnostic to the structure

For x € X,

fx) ~ GP(0,K)
YIF(x) ~ N(f(x).¢%)

X, 2 {Ak,{“;'k)}?:hsk:Wk,nork(‘)7aCtk(')}



Naive approach: Agnostic to the structure

For x € X,

fx) ~ GP(0,K)
YIF(x) ~ N(f(x).¢%)

X 2 {Ak, {u§k)}?:1, €k M, NOT (+) aCtk(‘)}

@ Single, joint model

@ Ignores conditional dependencies:

X:W.

o Complexity: O((X,np)?).



Baseline: Independent models [BBBK11]

For x € A,

foo(X)  ~  GP(0,Kp,)
Y fo(x)  ~ N(fpo(x)a<p02)

For x € &,

fm(x) ~ gP(OvK:m)
y|fp1(X) ~ N(fpl(x)?gpf)

X & {Ak, {ug.k)}f:l s ks Mie, NOTE(+), actk(-)}

For x € &),

fPA(X) ~ gP(07]CP4)
y|fP4(x) ~ N(fp4(x),§p42)



Baseline: Independent models [BBBK11]

For x € A,
foo (X)
¥ fo (%)

For x € &,

fPl (X)
Yo (%)

For x € &),

fPA (X)
y| fP4 (X)

GP(0,/Cp,)
N (fo (%), <po2)

GP(0, Kp,)
N(fpl (X), cP12)

gP(0, Kp,)
N(fm (X)’ §P42)

X & {Ak, {ug.k)}f:l s ks Mie, NOTE(+), actk(-)}

@ No sharing of information across leaves

@ Compare leaves via utility functions

° O(Zp ng) vs. O((ZP np)?).
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Tree-structured sharing

‘ Joint prior on the mean:: ¢ = [c;, ... cy| ~ N(0.2,) ‘

For x € &),

fo(x)  ~ GP(0,Kp)
()¢~ N(fa(x) + 20, 0 5m°)

fPl(x) ~ QP(O,ICPI)
y‘fpl(x)7 c ~ N(fm(x) + Zviém CV’§P12)

2 2 { e, (Y, e, e, mom (), i)}

fP4(X) ~ QP(O,ICP4)
Y (x), 6 ~ N (X) + 52, €0s0,°)



Tree-structured sharing

‘ Joint prior on the mean:: ¢ — [¢;, .. .. cv] ~ N(0, %) ‘

For x € &),

fo(x)  ~ GP(0,Kp)
()¢~ N(fa(x) + 20, 0 5m°)

fPl(x) ~ QP(O,ICPI)
y‘fpl(x)7c ~ N(fp1(x)+2v€p1c‘/’gpl2)

2 2 { e, (Y, e, e, mom (), i)}

@ Sharing of information across leaves:
. .o p _
if psimilar to p’, > oo~ D c.

° (’)(Zp m+ V?) vs. (’)((zp np)?).

fP4(X) ~ QP(O,ICP4)
Y‘fm(x)a c ~ N(fm(x) + Xvep‘; CV’ngtz)



The induced kernel corresponds to the intersection kernel

Let H = [H,] € RV*" be stacked binary masks and K¢k ¢ R™*" be the block-diagonal
matrix with blocks K.



The induced kernel corresponds to the intersection kernel

Let H = [H,] € RV*" be stacked binary masks and K¢k ¢ R™*" be the block-diagonal
matrix with blocks K.

The marginal likelihood is given by

P(y) = N (0,H 52 H + Kok 1 diag{<?} )



The induced kernel corresponds to the intersection kernel

Let H = [H,] € RV*" be stacked binary masks and K¢k ¢ R™*" be the block-diagonal
matrix with blocks K.

The marginal likelihood is given by

P(y) = N (0, HT S H + Kblock 4 diag{§2}> .

If we assume that X, = aglv, then

H S H= [ag(h;hp,)lnplm .
p:p
@ Diagonal blocks are proportional to the length of path p.

o Off-diagonal blocks are proportional to the path overlap between p and p'.



Two-step acquisition function to reduce complexity

(x4, px) = argmax a(x, p|Dp).
pEP,xEX),



Two-step acquisition function to reduce complexity

(X«, px) = argmax a(x, p|Dp).
pEP,xEX),

@ Exploit the tree structure through a path acquisition function:

px = argmax a(p|D,), X, = argmax a(x, p.|Dy).
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Two-step acquisition function to reduce complexity

(X«, px) = argmax a(x, p|Dp).
pEP,xEX),

@ Exploit the tree structure through a path acquisition function:

px = argmax a(p|D,), X, = argmax a(x, p.|Dy).
pEP XEX,,

@ The path El is given by

a(p|Dn) = E (max{o, Vi — h;c}) .



7 Rank across all datasets (shared topology)
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Iterations

@ Binary classification: 45 datasets from LIBSVM repository
@ Mean rank based on mean classification accuracy for each dataset (25 replications)

@ Arc [SDS*14], smac [HHLB11], Random [BB12]
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Bayesian optimisation is a approach that
can leverage side information:

@ For example, it can exploit dependency structure

@ Approach can leverage shared variables (aka
features) at inner nodes #see paper [JAGS17]




Bayesian optimisation machine learning:
@ Algorithm tuning
@ Model tuning

@ Pipeline tuning

Bayesian optimisation is a approach that
can leverage side information:

@ For example, it can exploit dependency structure

@ Approach can leverage shared variables (aka
features) at inner nodes #see paper [JAGS17]
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