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"Brooks has proved, he explains, that there were keen
mathematicians here 5,000 years ago, millennia before the Greeks
invented geometry: "Such is the mathematical precision, it is
inconceivable that this work could have been carried out by the
primitive indigenous culture we have always associated with such
structures . . . all this suggests a culture existing in these islands in
the past quite outside our expectation and experience today." He
does not rule out extraterrestrial help." – The Guardian
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1Bad Science Blog
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http://www.badscience.net/2010/01/voices-of-the-ancients/


"We know so little about the ancient Woolworths stores," he
explains, "but we do still know their locations. I thought that if we
analysed the sites we could learn more about what life was like in
2008 and how these people went about buying cheap kitchen
accessories and discount CDs" – Matt Parker interviewed in The
Guardian1

1Bad Science Blog
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Laplace Demon [1]
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Laplace Demon [1]

Laplace’s Demon [1]
An intelligence which at a given instant knew all the forces acting
in nature and the position of every object in the universe - if
endowed with a brain sufficiently vast to make all necessary
calculations - could describe with a single formula the motions of
the largest astronomical bodies and those of the smallest atoms.
To such an intelligence, nothing would be uncertain; the future, like
the past, would be an open book.
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Laplace Demon [1]

All these efforts in the search for truth tend to lead the mind
continously towards the intelligence we have just mentioned,
although it will always remain infinetly distant from this
intelligence.
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Napoleon "You have written this huge book on the system of
the world without once mentioning the author of the
universe."

Laplace "I had no need for that assumption"

Laplace "Ah, but that is a fine hypothesis. It explains so
many things"
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Inductivist Fallacy

2

2Chomsky, N. A., & Fodor, J. A. (1980). The inductivist fallacy. Language
and Learning: The Debate between Jean Piaget and Noam Chomsky, (), .

8



Today

22/11/2017
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Bayesian non-parametrics



Formalism

p(Y|θ)

Y ∈ Y

• Task of machine learning, describe models of data
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Formalism

M ⊂ PM(Y)

• all probability measures on the sample space Y
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Formalism

M = {p(Y|θ)|θ ∈ T }

• each model is indexed by θ from the parameter space T
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Linear Regression

p(w|y, x) =
p(y|x,w)p(w)

p(y|x)

T = R4
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Non-Linear Regression

p(f |y, x) =
p(y|f, x)p(f)

p(y|x)

T = R∞
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Parametric vs. Non-parametric

• If T is
• infinite dimensional space we call this a non-parametric
• finite dimensional space we call this a parametric
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Nearest Neighbour

• Training data: {xi , yi}N
i=1

• Test data: {xi}M
i=1

• Inference
î = argminiD(x∗, xi )

• Complexity grows with number of training data

• Does not generalise at all
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Nearest Neighbour
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Nearest Neighbour
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Nearest Neighbour
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Nearest Neighbour
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Bayesian Non-parametrics

θ ∼ Q

Treating the index into the parameter space as a random variable
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Functions
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Conditional Gaussians

N
([

0
0

]
,

[
1 0.5
0.5 1

])
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Conditional Gaussians
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Conditional Gaussians
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Conditional Gaussians
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Conditional Gaussians
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Conditional Gaussians

N
([

0
0

]
,

[
1 0.9
0.9 1

])
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Conditional Gaussians
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Conditional Gaussians
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Conditional Gaussians
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Conditional Gaussians

36



Conditional Gaussians

N
([

0
0

]
,

[
1 0
0 1

])
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Conditional Gaussians
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Conditional Gaussians

39



Conditional Gaussians
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Conditional Gaussians
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Eureka
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Functions
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Functions

If all instantiations of the function is jointly Gaussian such that the
co-variance structure depends on how much information an
observation provides for the other we will get the curve above.
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Uncertainty over functions

• Regression model,

yi = f (xi ) + ε

ε ∼ N (0, σ2I )

• Introduce fi as instantiation of function,

fi = f (xi ),

• as a new random variable.

• now we have a "handle" to specify our assumptions over
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Uncertainty over functions

Model,
p(y, f, x,θ) = p(y|f)p(f|x,θ)p(x)p(θ)

Want to "push" x through a mapping f of which we are uncertain,

p(f|x,θ),

prior over instantiations of function.
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Uncertainty over functions

• As everything is gaussian both the marginal and predictive
posterior are analytically tractable

• Marginal

p(y|x) =

∫
p(y|f)p(f|x)df

• Predictive posterior

p(f∗|x, x∗, f) =
p(f, f∗|x, x∗)

p(f|x)
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Gaussian Processes
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Gaussian Processes
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Process → Distribution → value

• Each evaluation of a process is a distribution

N (0,Σ) ∼ N (0, k(X,X))

• Each evaluation of a distribution is a value

y ∼ N (y |0,Σ)

• Kolmogrovs Existence Theorem defines which distributions
have an infinite generalisation
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Gaussian Process

• Formulate process

• Evaluate process at specific location x → distribution

• Evaluate distribution at any location y

• GP is defined over uncountable infinite space

• What about countable objects?
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Gaussian Mixture Model
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Gaussian Mixture Model
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Gaussian Mixture Models

p(X) =
K∑

k=1

p(X|k)p(k) =
K∑

k=1

N (X|µk ,Σk )p(k)

• Represent the probability of X as a combination or mixture of
distributions

• What should K be?

• Can we make K infinite?
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Gaussian Mixture Model

xi

πk

α

µk

µ0
Σ0

Σ

K N

1. Sample proportions

2. Sample cluster id given
proportions

3. Sample cluster mean

4. Sample data

p(X) =
∞∑

k=1

p(X|k)p(k) =
∞∑

k=1

N (X|µk ,Σk )p(k)
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Distributions over partitionings

• Multinomial

p(x|µ) =
K∏

k=1

µxk
k

• Conjugate prior

p(µ|α) ∝
K∏

k=1

µαk−1
k

• Dirichlet Distribution

Dir(µ|α) =
Γ(α0)

Γ(α1) · . . . · Γ(αK )

K∏

k=1

µαk−1
k

78



Distributions over partitionings

• Multinomial

p(x|µ) =
K∏

k=1

µxk
k

• Conjugate prior

p(µ|α) ∝
K∏

k=1

µαk−1
k

• Dirichlet Distribution

Dir(µ|α) =
Γ(α0)

Γ(α1) · . . . · Γ(αK )

K∏

k=1

µαk−1
k

78



Distributions over partitionings

• Multinomial

p(x|µ) =
K∏

k=1

µxk
k

• Conjugate prior

p(µ|α) ∝
K∏

k=1

µαk−1
k

• Dirichlet Distribution

Dir(µ|α) =
Γ(α0)

Γ(α1) · . . . · Γ(αK )

K∏

k=1

µαk−1
k

78



Dirichlet Distribution

Dir(10, 5, 3)
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Dirichlet Distribution

Dir(7, 5, 3, 2)
80



Chinese Resturant Process

· · ·
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Chinese Resturant Process

· · ·
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Chinese Resturant Process

· · ·
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Chinese Resturant Process

· · ·
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Chinese Resturant Process

· · ·
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Chinese Resturant Process

· · ·

• Go to new table α
N−1+α

• If not choose table as ni
N where ni number of diners at table in
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Chinese Resturant Process

· · ·

α
9+α1− α

9+α
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Chinese Resturant Process

· · ·

3
9

5
9

1
9
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Chinese Resturant Process

N = 500 α = 1.0
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Chinese Resturant Process

N = 500 α = 2.0
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Chinese Resturant Process

N = 500 α = 10.0
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Unsupervised Learning



Gaussian Processes

p(f , y |x , xf ) = p(f |y , x , xf )p(y |x)
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Unsupervised Learning

yi

fi θ

x

D

p(y |x)

yi

fi θ

x

D

p(y)
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Unsupervised Learning
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Unsupervised Learning
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Priors

p(y) =

∫
p(y |f )p(f |x)p(x)df dx

p(x |y) = p(y |x)
p(x)

p(y)

1. Priors that makes sense

p(f) describes our belief/assumptions and defines our
notion of complexity in the function

p(x) expresses our belief/assumptions and defines our
notion of complexity in the latent space

2. The priors are "balanced"

3. Now lets churn the handle
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Relationship between x and data

p(y) =

∫
p(y |f )p(f |x)p(x)df dx

• GP prior
p(f |x) ∼ N (0,K ) ∝ e−

1
2 (f

TK−1f )

Kij = e−(xi−xj )
TMTM(xi−xj )

• Likelihood

p(y |f ) ∼ N(y |f , β) ∝ e−
1
2β tr(y−f )T(y−f )

• Analytically intractable (Non Elementary Integral) and
infinitely differientiable

96
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Laplace Integration

"Nature laughs at the difficulties of integrations"
– Simon Laplace
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Unsupervised Learning with GPs



Variational Bayes

p(Y)
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Variational Bayes

log p(Y)
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Variational Bayes

log p(Y) = log
∫

p(Y,X)dX
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Variational Bayes

log p(Y) = log
∫

p(Y,X)dX = log
∫

p(X|Y)p(Y)dX
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Variational Bayes

log p(Y) = log
∫

p(Y,X)dX = log
∫

p(X|Y)p(Y)dX

= log
∫

q(X)

q(X)
p(X|Y)p(Y)dX

98



Jensen Inequality

Convex Function

λf (x0) + (1− λ)f (x1) ≥ f (λx0 + (1− λ)x1)

x ∈ [xmin, xmax ]

λ ∈ [0, 1]] 99



Jensen Inequality

E[f (x)] ≥ f (E[x ])
∫

f (x)p(x)dx ≥ f

(∫
xp(x)dx

)

100



Jensen Inequality in Variational Bayes

∫
log(x)p(x)dx ≤ log

(∫
xp(x)dx

)

moving the log inside the the integral is a lower-bound on the
integral 101



Variational Bayes cont.

logp(Y) = log
∫

q(X)

q(X)
p(X|Y)p(Y)dX =

102



Variational Bayes cont.

logp(Y) = log
∫

q(X)

q(X)
p(X|Y)p(Y)dX =

≥
∫

q(X)log
p(X|Y)p(Y)

q(X)
dX
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Variational Bayes cont.

logp(Y) = log
∫
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= −KL (q(X)||p(X|Y)) + log p(Y)

• if q(X) is the true posterior we have an equality, therefore
match the distributions

• i.e. argminq KL (q(X)||p(X|Y))

⇒ variational distributions are approximations to
intractable posteriors
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ELBO

KL(q(X)||p(X|Y))
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ELBO

KL(q(X)||p(X|Y)) =

∫
q(X)log

q(X)

p(X|Y)
dX
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ELBO

KL(q(X)||p(X|Y)) =

∫
q(X)log

q(X)

p(X|Y)
dX

=

∫
q(X)log

q(X)

p(X,Y)
dX + log p(Y)
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ELBO

KL(q(X)||p(X|Y)) =

∫
q(X)log

q(X)

p(X|Y)
dX

=

∫
q(X)log

q(X)

p(X,Y)
dX + log p(Y)

= H(q(X))− Eq(X) [log p(X,Y)] + log p(Y)
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ELBO

log p(Y) = KL(q(X)||p(X|Y)) + Eq(X) [log p(X,Y)]− H(q(X))
︸ ︷︷ ︸

ELBO
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ELBO

log p(Y) = KL(q(X)||p(X|Y)) + Eq(X) [log p(X,Y)]− H(q(X))
︸ ︷︷ ︸

ELBO

≥ Eq(X) [log p(X,Y)]− H(q(X)) = L(q(X))

• if we maximise the ELBO we,
• find an approximate posterior
• get an approximation to the marginal likelihood

• maximising p(Y) is learning

• finding p(X|Y) ≈ q(X) is prediction
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ELBO

X

Y

X

Y

θ
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Why is this useful?

Why is this a sensible thing to do?

• If we can’t formulate the joint distribution there isn’t much we
can do

• Taking the expectation of a log is usually easier than the
expectation

• We are allowed to choose the distribution to take the
expectation over

– Ryan Adams3

3Talking Machines Season 2, Episode 5
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Lower Bound4

L =

∫

X,F
q(X) log

(
p(Y,F,X)

q(X)

)

4Damianou, A. C. (2015). Deep Gaussian Processes and Variational
Propagation of Uncertainty (Doctoral dissertation)
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Lower Bound4

L =

∫
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q(X) log
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)

∫

X,F
q(X) log

(
p(Y|F)p(F|X)p(X)

q(X)

)

=

∫

F,X
q(X) log p(Y|F)p(F|X)−

∫

X
q(X) log

q(X)

p(X)

= L̃ − KL (q(X) ‖ p(X))

4Damianou, A. C. (2015). Deep Gaussian Processes and Variational
Propagation of Uncertainty (Doctoral dissertation)
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Lower Bound

L̃ =

∫

F,X
q(X) log p(Y|F)p(F|X)

• Has not eliviate the problem at all, X still needs to go through
F to reach the data

• Idea of sparse approximations5

5Quinonero-Candela, Joaquin, & Rasmussen, C. E. (2005). A unifying view of
sparse approximate Gaussian process regression & Snelson, E., & Ghahramani,
Z. (2006). Sparse Gaussian processes using pseudo-inputs
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Lower Bound

• Add another set of samples from the same prior

p(U|Z) =
d∏

j=1

N (u:,j |0,K)

• Conditional distribution

p(f:,j ,u:,j |X,Z) = p(f:,j |u:,j ,X,Z)p(u:,j |Z)

= N
(
f:,j |Kfu(Kuu)−1u:,j ,Kff −Kfu(Kuu)−1Kuf

)
N (u:,j |0,Kuu) ,

107
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Lower Bound

p(Y,F,U,X|Z) = p(X)
d∏

j=1

p(y:,j |f:,j )p(f:,j |u:,j ,X)p(u:,j |Z)

• we have done nothing to the model, just added halucinated
observations

• however, we will now interpret U and Xu not as random
variables but variational parameters

• i.e. parametrise approximate posterior using these parameters
(remember sparse motivation)
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variables but variational parameters

• i.e. parametrise approximate posterior using these parameters
(remember sparse motivation)
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Lower Bound

• Variational distributions are approximations to intractable
posteriors,

q(U) ≈ p(U|Y,X,Z,F)

q(F) ≈ p(F|U,X,Z,Y)

q(X) ≈ p(X|Y)

• Assume that we can find U that completely represents F, i.e.
U is sufficient statistics of F,

q(F) ≈ p(F|U,X,Z,Y) = p(F|U,X,Z)
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Lower Bound
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Lower Bound

L̃ =

∫

X,F,U
q(F)q(U)q(X) log

p(Y,F,U|X,Z)

q(F)q(U)
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Lower Bound

L̃ =

∫

X,F,U
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∫
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∏d
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q(F)q(U)

• Assume that U is sufficient statistics for F

q(F)q(U)q(X) = p(F|U,X,Z)q(U)q(X)
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Lower Bound

L̃ =

∫

X,F,U

d∏

j=1

p(f:,j |u:,j ,X,Z)q(u:,j )q(X)

log

∏d
j=1 p(y:,j |f:,j )p(f:,j |u:,j ,X,Z)p(u:,j |Z)
∏d

j=1 p(f:,j |u:,j ,X,Z)q(u:,j )
=
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Lower Bound

L̃ =

∫

X,F,U

d∏

j=1

p(f:,j |u:,j ,X,Z)q(u:,j )q(X)

log

∏d
j=1 p(y:,j |f:,j )p(f:,j |u:,j ,X,Z)p(u:,j |Z)
∏d

j=1 p(f:,j |u:,j ,X,Z)q(u:,j )
=

=

∫

X,F,U

p∏

j=1

p(f:,j |u:,j ,X,Z)q(u:,j )q(X) log

∏p
j=1 p(y:,j |f:,j )p(u:,j |Z)
∏p

j=1 q(u:,j )

= Eq(F),q(X),q(U) [p(Y|F)]−KL (q(U)||p(U|Z))
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Summary

Eq(F),q(X),q(U) [p(Y|F)]−KL (q(U)||p(U|Z))−KL (q(X)||p(X))

• Expectation tractable (for some co-variances)

• Reduces to expectations over co-variance functions know as Ψ

statistics

• Allows us to place priors and not "regularisers" over the latent
representation
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Latent space priors6

Eq(F),q(X),q(U) [p(Y|F)]−KL (q(U)||p(U|Z))−KL (q(X)||p(X))

• Importantly p(X) appears only in KL term

• Allows us to express stronger assumptions about the model

6Damianou, A. C., Titsias, M., & Lawrence, Neil D, Variational Inference for
Uncertainty on the Inputs of Gaussian Process Models (2014)
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Factor Analysis

y

x2x1 x3

θ

y = f (x1, x2, x3) + ε
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Alignments
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Relevant

Irrelevant Ambiguous
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Explaining Away cont.

y1 y2

f1 f2

x1 x2 x3

θ1 θ2

D1 D2
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IBFA with GP-LVM7

y1 y2

f1 f2

w1 x w3

θ1 θ2

D1 D2

y1 = f (wT
1 x) y2 = f (wT

2 x)

7Damianou, A., Lawrence, N. D., & Ek, C. H. (2016). Multi-view learning as
a nonparametric nonlinear inter-battery factor analysis
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IBFA with GP-LVM
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GPDP 8

8Joint work with Andrew Lawrence and Neill Cambpell at University of Bath,
Will be presented at Advances in Modeling and Learning Interactions from
Complex Data NIPS 2017 119



IBTM 9

9Zhang, C., Kjellstr\"om, Hedvig, & Ek, C. H., Inter-battery topic
representation learning, In ECCV 2016
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IBTM

To find high-quality diagnostic prediction methods is a goal of health care as well as the ma-
chine learning community. For example, machine learning for electrocardiogram (EKG) diagnostic
prediction [Kukar et al. (1999)] has been used for years as a decision support system for health
care personal. However, the most common and most costly medical problem is unspecific pain and
discomfort [Upshur et al. (2010) ] to which machine learning has not been applied yet. In this pa-
per, we focus on applying machine learning for diagnosing pain-related problems using discomfort
drawings.

Topic models [Blei et al. (2003)], a type of generative models, have been successfully ap-
plied in different domains, such as information retrieval and computer vision [Wang et al. (2009);
Newman et al. (2006); Hospedales et al. (2011); Zhang et al. (2013)]. With efficient inference algo-
rithms [Hoffman et al. (2010); Ranganath et al. (2013)], these models can handle both small and big
datasets, in complete data and in incomplete scenarios. Additionally, they are highly interpretable
and can be used to generate missing data. In our application of using discomfort drawings for
diagnostic prediction, the data consist of multiple modalities (drawings and labels). Hence, a multi-
modal topic model [Blei and Jordan (2003); Wang et al. (2009); Zhang et al. (2016)] is needed.
Traditional multi-modal topic model [Blei and Jordan (2003); Zhang et al. (2013)] represent all the
information contained in the data, hence these models are not robust to noise. A recent advancement
in multi-modal topic models shows that Inter-Battery Topic Model (IBTM) [Zhang et al. (2016)] is
robust to noise in the data by explaining away irrelevant parts of the information. Therefore, in this
paper IBTM is adapted to predict diagnostic labels given a discomfort drawing. IBTM was orig-
inally proposed for representation learning and applyed for classification tasks. In this paper, we
adapt the framework for diagnostic label prediction and use mean-shift clustering [Comaniciu and
Meer (2002)] to determine the number of diagnostic predictions that the system needs to make.

The main contribution of this paper lies in the modification and use of IBTM for diagnostic
prediction with discomfort drawings. This is a novel application of a principled framework. For
this purpose, a dataset was collected from real-world clinical cases with medical expert labels. The
experiments show that the adapted IBTM makes reasonable diagnostic predictions. Additionally,
the model also contributes to the interpretability of the data for humans and may further provide
insight into the diagnostic procedure. Our approach shows that the use of machine learning in the
assessment of discomfort drawings is a promising direction.

2. Problem Statement

Symptom diagnoses: Interscapular discomfort; R arm dis-
comfort; B hands discomfort; Lumbago; B crest of the il-
ium discomfort; L side thigh discomfort; B back thigh dis-
comfort; B calf discomfort; B achilles tendinitis; B shin
discomfort; R inguinal discomfort;

Pattern diagnoses B L5 Radiculopathy; B S1 Radiculopa-
thy; B C7 Radiculopathy;

Pathophysiological diagnoses DLI L4-L5; DLI S1-S2;
DLI C6-C7

Table 1: Discomfort drawings (left) and diagnoses by medical expert (right). R stands for right-side, L stands for
left-side and B stands for bilateral. DLI refers to discoligament injury.
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IBTM

6 Prd: R back thigh dcf; L PFS (Patellofemoral pain syndrome); R PFS;

L L5 Rdc; R L5 Rdc; DLI L4-L5;

6 GT: R back thigh dcf; L PFS; R PFS;

L L5 Rdc; R L5 Rdc; DLI L4-L5;

50 Prd: Headache; L neck dcf; R neck dcf; Neck dcf; L upper trapezius dcf; R upper trapezius
dcf; L shoulder dcf; L hand dcf; R hand dcf; Interscapular dcf; Lumbago; Lateral abdominal dcf;
L groin dcf; L side thigh dcf; R side thigh dcf; L calf dcf; L back thigh dcf; L crest of the ilium
dcf; R crest of the ilium dcf; R foot arch dcf; L toe joint dcf; R toe joint dcf; L medial elbow dcf;
L ankle dcf; R ankle dcf; L foot arch dcf; L PFS; L dorsal knee dcf; R medial knee dcf;

L C2 Rdc; R C2 Rdc; L C3 Rdc; R C3 Rdc; L C4 Rdc; R C4 Rdc; R C6 Rdc; L C6 Rdc; L C7
Rdc; R C7 Rdc; L L5 Rdc; R L5 Rdc; L S1 Rdc; R S1 Rdc; DLI C2-C3; DLI C3-C4; DLI C5-C6;
DLI C6-C7; DLI L4-L5; DLI L5-S1; OB;

50 GT: L back headache; R back headache; Neck dcf; L jaw dcf; L upper trapezius dcf; R upper
trapezius dcf; L arm dcf; R arm dcf; L lateral elbow dcf; R lateral elbow dcf; L hand joint dcf; R
hand joint dcf; L hand dcf; R hand dcf; L thumb dcf; R thumb dcf; L finger dcf; R finger dcf;
Lumbago; L groin dcf; L back thigh dcf; L calf dcf; L medial knee dcf; L ankle dcf; R ankle dcf;
R medial knee dcf; R big toe dcf; L big toe dcf;

L C2 Rdc; R C2 Rdc; L C3 Rdc; R C3 Rdc; L C4 Rdc; R C4 Rdc; L C5 Rdc; R C5 Rdc; L C6
Rdc; R C6 Rdc; L C7 Rdc; R C7 Rdc; L L4 Rdc; L L5 Rdc; R L5 Rdc; L S1 Rdc; R S1 Rdc;
Craniocervical joint injury; DLI C4-C5; DLI L3-L4; DLI L4-L5; DLI L5-S1;

36 Prd: L neck dcf; L shoulder impingement; R shoulder impingement; L shoulder dcf;R shoul-
der dcf; L upper trapezius dcf; R upper trapezius dcf; Lumbago;L crest of the ilium dcf; R crest
of the ilium dcf; L adductor tendonitis; R back thigh dcf; L PFS; R PFS; R calf dcf; L back thigh
dcf; R anterior knee dcf;Coccydynia; L anterior knee dcf; R medial knee dcf;

L C4 Rdc; R C4 Rdc; L C6 Rdc; L C7 Rdc; L L5 Rdc; R L5 Rdc; R S1 Rdc; L S1 Rdc; L S2 Rdc;
R S2 Rdc; DLI C3-C4; DLI C5-C6; DLI C6-C7; DLI L4-L5;DLI L5-S1; DLI S1-S2;

27 GT: L neck dcf; R neck dcf; L shoulder impingement; R shoulder impingement; L shoulder
dcf; R shoulder dcf;; Interscapular dcf; L PFS; R PFS; Lumbago; L crest of the ilium dcf; R crest
of the ilium dcf; L adductor tendonitis; R adductor tendonitis; R sciatica; L shin discomfort; R
side thigh dcf;

L C5 Rdc; R C5 Rdc; L C7 Rdc; L L5 Rdc; R L5 Rdc; R S1 Rdc; DLI C5-C6; DLI C6-C7;DLI
L4-L5; DLI L5-S1;

5 Prd: L PFS; R PFS;

R L5 Rdc; DLI L4-L5; L L5 Rdc;

2 GT: R Medial knee joint dcf;

R Medial meniscus;

Table 4: Prediction examples: The left column shows the input discomfort drawing. The right column shows the
predicted diagnostic labels using IBTM after Prd: and the ground truth diagnostic labels given by medical
experts after GT:. The number of diagnostic labels is indicated in front of Prd: and GT:.Correctly predicted
labels are marked in blue, while the wrong ones are marked in red. All labels are given in the order of
symptom, pattern and pathophysiology. Rdc stands for Radiculopathy and bcf stands for discomfort in the
table.
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IBTM
6 Prd: R back thigh dcf; L PFS (Patellofemoral pain syndrome); R PFS;

L L5 Rdc; R L5 Rdc; DLI L4-L5;

6 GT: R back thigh dcf; L PFS; R PFS;

L L5 Rdc; R L5 Rdc; DLI L4-L5;

50 Prd: Headache; L neck dcf; R neck dcf; Neck dcf; L upper trapezius dcf; R upper trapezius
dcf; L shoulder dcf; L hand dcf; R hand dcf; Interscapular dcf; Lumbago; Lateral abdominal dcf;
L groin dcf; L side thigh dcf; R side thigh dcf; L calf dcf; L back thigh dcf; L crest of the ilium
dcf; R crest of the ilium dcf; R foot arch dcf; L toe joint dcf; R toe joint dcf; L medial elbow dcf;
L ankle dcf; R ankle dcf; L foot arch dcf; L PFS; L dorsal knee dcf; R medial knee dcf;

L C2 Rdc; R C2 Rdc; L C3 Rdc; R C3 Rdc; L C4 Rdc; R C4 Rdc; R C6 Rdc; L C6 Rdc; L C7
Rdc; R C7 Rdc; L L5 Rdc; R L5 Rdc; L S1 Rdc; R S1 Rdc; DLI C2-C3; DLI C3-C4; DLI C5-C6;
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Lumbago; L groin dcf; L back thigh dcf; L calf dcf; L medial knee dcf; L ankle dcf; R ankle dcf;
R medial knee dcf; R big toe dcf; L big toe dcf;

L C2 Rdc; R C2 Rdc; L C3 Rdc; R C3 Rdc; L C4 Rdc; R C4 Rdc; L C5 Rdc; R C5 Rdc; L C6
Rdc; R C6 Rdc; L C7 Rdc; R C7 Rdc; L L4 Rdc; L L5 Rdc; R L5 Rdc; L S1 Rdc; R S1 Rdc;
Craniocervical joint injury; DLI C4-C5; DLI L3-L4; DLI L4-L5; DLI L5-S1;

36 Prd: L neck dcf; L shoulder impingement; R shoulder impingement; L shoulder dcf;R shoul-
der dcf; L upper trapezius dcf; R upper trapezius dcf; Lumbago;L crest of the ilium dcf; R crest
of the ilium dcf; L adductor tendonitis; R back thigh dcf; L PFS; R PFS; R calf dcf; L back thigh
dcf; R anterior knee dcf;Coccydynia; L anterior knee dcf; R medial knee dcf;

L C4 Rdc; R C4 Rdc; L C6 Rdc; L C7 Rdc; L L5 Rdc; R L5 Rdc; R S1 Rdc; L S1 Rdc; L S2 Rdc;
R S2 Rdc; DLI C3-C4; DLI C5-C6; DLI C6-C7; DLI L4-L5;DLI L5-S1; DLI S1-S2;

27 GT: L neck dcf; R neck dcf; L shoulder impingement; R shoulder impingement; L shoulder
dcf; R shoulder dcf;; Interscapular dcf; L PFS; R PFS; Lumbago; L crest of the ilium dcf; R crest
of the ilium dcf; L adductor tendonitis; R adductor tendonitis; R sciatica; L shin discomfort; R
side thigh dcf;

L C5 Rdc; R C5 Rdc; L C7 Rdc; L L5 Rdc; R L5 Rdc; R S1 Rdc; DLI C5-C6; DLI C6-C7;DLI
L4-L5; DLI L5-S1;

5 Prd: L PFS; R PFS;

R L5 Rdc; DLI L4-L5; L L5 Rdc;

2 GT: R Medial knee joint dcf;

R Medial meniscus;

Table 4: Prediction examples: The left column shows the input discomfort drawing. The right column shows the
predicted diagnostic labels using IBTM after Prd: and the ground truth diagnostic labels given by medical
experts after GT:. The number of diagnostic labels is indicated in front of Prd: and GT:.Correctly predicted
labels are marked in blue, while the wrong ones are marked in red. All labels are given in the order of
symptom, pattern and pathophysiology. Rdc stands for Radiculopathy and bcf stands for discomfort in the
table.
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Machine Learning

p(θ|y) =
p(y |θ)p(θ)

p(y)

"Scientific modelling is a scientific activity, the aim of which is to
make a particular part or feature of the world easier to understand,
define, quantify, visualize, or simulate by referencing it to existing
and usually commonly accepted knowledge." 10

10Wikipedia
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Hierarchies

yd = gd (fd (ad (x))) + ε

fd (x) =
R∑

r=1

∫
Td ,r (x− z)wr (z)dz

• Hierarchical set of function

• Convolution process with shared kernel
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Hierarchies11

11Kaiser, M., Otte, C., Runkler, T., & Ek, C. H. , Bayesian alignments of
warped multi-output gaussian processes, ArXiv e-prints, (), (2017).
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Hierarchies11
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Hierarchies11
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Composite Functions

• Learning Composite functions have become very popular

• Composite functions are not as intuitive as one might think
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Composite Functions

Why are composite functions attractive?

y = g(x) = fK (fK−1(fK−2(. . . f1(x) . . .)))
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Functions

• Kernel of a function

Kern(fk ) =
{

(x, x′)|fk (x) = fk (x′)
}

• Image of a function

Im(fk (x)) = {y ∈ Y |y = fk(x), x ∈ X}

131



Functions

• Kernel of a function
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Composite Functions

• Kernel of function

Kern(f1) ⊆ Kern(fk−1◦ . . .◦f2◦f1) ⊆ Kern(fk ◦fk−1◦ . . .◦f2◦f1)

• Image of a function

Im(fk ◦ fk−1◦ . . .◦ f2◦ f1) ⊆ Im(fk ◦ fk−1◦ . . .◦ f2) ⊆ . . . ⊆ Im(fk)
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Interpretability

Theorem (Change of Variable)
Let x ∈ X ⊆ Rn be a random vector with a probability density
function given by px (x), and let y ∈ Y ⊆ Rn be a random vector
such that ψ(y) = x , where the function ψ : Y → X is bijective of
class of C1 and | 5 ψ(y)| > 0,∀y ∈ Y. Then, the probability
density function py (·) induced in Y is given by

py (y) = px (ψ(y))| 5 ψ(y)|

where 5ψ(·) denotes the Jacobian of ψ(·), and | · | denotes the
determinant operator.
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Sampling
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Sampling
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables
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MacKay plot
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Activation functions
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Data inefficiency12

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �

P
w2

i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n between the original x and distorted

6

12Nguyen, A. M., Yosinski, J., & Clune, J., Deep neural networks are easily
fooled: high confidence predictions for unrecognizable images, CoRR,
abs/1412.1897(), (2014).
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Summary

• Unsupervised learning is very hard

• Its actually not, its really really easy.

• Relevant assumptions needed to learn anything useful

• Strong assumptions needed to learn anything from "sensible"
amounts of data

• Stochastic processes (DPs,GPs) provide strong, interpretative
assumptions that aligns well to our intuitions allowing us to
make relevant assumptions

159



Summary

• Unsupervised learning is very hard
• Its actually not, its really really easy.

• Relevant assumptions needed to learn anything useful

• Strong assumptions needed to learn anything from "sensible"
amounts of data

• Stochastic processes (DPs,GPs) provide strong, interpretative
assumptions that aligns well to our intuitions allowing us to
make relevant assumptions

159



Summary

• Unsupervised learning is very hard
• Its actually not, its really really easy.

• Relevant assumptions needed to learn anything useful

• Strong assumptions needed to learn anything from "sensible"
amounts of data

• Stochastic processes (DPs,GPs) provide strong, interpretative
assumptions that aligns well to our intuitions allowing us to
make relevant assumptions

159



Summary

• Unsupervised learning is very hard
• Its actually not, its really really easy.

• Relevant assumptions needed to learn anything useful

• Strong assumptions needed to learn anything from "sensible"
amounts of data

• Stochastic processes (DPs,GPs) provide strong, interpretative
assumptions that aligns well to our intuitions allowing us to
make relevant assumptions

159



Summary

• Unsupervised learning is very hard
• Its actually not, its really really easy.

• Relevant assumptions needed to learn anything useful

• Strong assumptions needed to learn anything from "sensible"
amounts of data

• Stochastic processes (DPs,GPs) provide strong, interpretative
assumptions that aligns well to our intuitions allowing us to
make relevant assumptions

159



Summary II

• Composite functions cannot model more things

• However, they can easily warp the input space to model less
things

• This leads to high requirments on data

• Even bigger need for uncertainty propagation, we cannot
assume noiseless data

• Intuitions needs to change, we need to think of priors over
hierarchies
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