
Imperial College London

Department of Computing

Individual Project: Final Report

Machine Learning for a London
Housing Price Prediction Mobile

Application

Author:

Aaron Ng

Supervisor:

Dr. Marc Deisenroth

Submitted in partial fulfilment of the requirements for BEng in

Electronics and Information Engineering

June 2015

	

Abstract

In this project, we present a mobile application that can generate predic-
tions for future housing prices in London. In order to select a prediction method,
various regression methods were explored and compared. Gaussian Processes
(GP) for regression was chosen as our model due to its flexible and probabilistic
approach to learning and model selection. To handle the large dataset of past
property transactions in London, we exploit the spatial structure of the dataset
to distribute computations to smaller independent local models. Overall predic-
tions are obtained by recombining predictions from local models. By training
the model and generating predictions on the server-side of the application, we
are able to offload computationally intensive tasks and focus on generating vi-
sualisations on the client-side. Our results demonstrate that our approach to
the problem has been largely successful, and is able to produce predictions that
are competitive to other housing price prediction models.

	

Acknowledgements

I would like to thank the following people for their support in this project:

• Dr Marc Deisenroth for his invaluable guidance and patient supervision
throughout the entire project,

• the Computing Support Group at Imperial for advising me on the com-
putational requirements of the project, and

• my family and friends for their unwavering love and support.

	

Contents

1 Introduction 3
1.1 Objectives . 4

2 Background 6
2.1 London Housing Market . 6
2.2 Dataset . 7
2.3 Related Work . 8

2.3.1 Property Agents and Economists 8
2.3.2 Property Search Websites 9
2.3.3 Summary . 10

3 Regression Methods 11
3.1 Introduction . 11
3.2 Linear Regression . 12

3.2.1 Error Function and Maximum Likelihood Solution 12
3.2.2 Regularisation . 14

3.3 Bayesian Linear Regression . 15
3.3.1 Posterior Distribution . 15
3.3.2 Predictive Distribution . 16

3.4 Relevance Vector Machines . 16
3.4.1 Marginal Likelihood Maximisation 17
3.4.2 Predictive Distribution . 18
3.4.3 Problems with Predictive Variances 19

3.5 Gaussian Process . 20
3.5.1 Training . 21
3.5.2 Predictive Distribution . 22
3.5.3 Distributed GPs . 22

3.5.3.1 Product of Experts 23
3.5.3.2 Generalised Product of Experts 23

3.6 Summary . 24

1

4 Design and Implementation: Prediction System 25
4.1 Data Preparation . 25

4.1.1 Utilisation of Data . 26
4.2 Training . 27

4.2.1 Linear Prior Mean Function 27
4.2.2 Kernel . 29

4.3 Prediction . 30

5 Design and Implementation: Mobile Application 32
5.1 Client-side . 32

5.1.1 Application Structure . 32
5.1.2 Application Design . 34

5.2 Server-side . 37
5.2.1 Web Server . 37
5.2.2 Application Server . 38

6 Evaluation 40
6.1 Prediction Method . 40
6.2 Prediction System . 41
6.3 Mobile Application . 42

7 Conclusion 43
7.1 Future Work . 43

Bibliography 45

2

Chapter 1

Introduction

The housing market in the UK has always been a topic of national attention,
with news sites dedicating sections that report on key news that can potentially
affect housing prices and the trends in recent months. Not only are the trends
in housing market of concern to buyers and owners, they reflect the current
economic situation and social sentiments in the country.

For many people, buying a property is one of the most important decision
and purchase in life. Besides the affordability of a house, other factors such
as the desirability of the location and the long-term investment prospects also
affect the decision-making process.

However, many reports [1, 2] on housing prices are averaged across regions
in the UK, where London is considered one region. London homebuyers who
want to find out more about housing trends in various districts would therefore
have little recourse. For example, housing prices in Barking & Dagenham are
likely to differ from those in Kensington & Chelsea, but it is difficult to find
sources that provide such information. If there were location-specific predictions
on housing prices within London, making informed decisions over which areas
to consider can be greatly facilitated.

Data from the Land Registry1 shows that there are over 2 million property
transactions that have taken place in London since 1995. Making sense of this
large dataset is by no means an easy feat. In Figure 1.1, we can see random
samples of London property prices plotted against time. The graph on the left
highlights the difference between property prices of different housing types, while
the graph on the right highlights the difference between property prices taken
from different areas. It is clear that many variables affect the trend in housing
prices, which motivates the need for a prediction model that encompasses the
relationships between these variables and housing prices.

1http://landregistry.data.gov.uk/

3

Time (Years)

P
ri

c
e
 (

£
)

Detached

Terrace

Flat

(a) Housing type
Time (Years)

P
ri

c
e
 (

£
)

SW11

SM5

E9

(b) Location

Figure 1.1: Random samples of property transactions taken from the Land
Registry, sorted by different categories.

This is where machine learning comes into play. Instead of using hard-
coded parameters and static program instructions, the prediction system can
learn from the dataset to teach itself to refine its parameters and make data-
driven predictions. With a prediction model, we aim to assist property buyers
in making predictions on future London property prices by harnessing the power
of the large dataset already available.

1.1 Objectives

The goal of the project is to create a mobile application that can provide users
with location-specific predictions and trends on London housing market. Users
of the application should be able to obtain the following information:

1. Future price changes of London properties that fall within a user-defined
search radius, which can be fine-tuned by options such as property type

2. Locations that can be considered within a search radius, given a purchas-
ing budget from the user

Obtaining predictions through the mobile application should be quick for the
users, even though the prediction mechanism may involve computationally in-
tensive tasks. We plan to achieve this through a client-side and server-side
implementation for the application.

The client-side should be responsible for presenting the predictions through
visualisations that highlight the geographical variations of our predictions. The
client should be built upon a widely accessible platform so that our applica-
tion can reach the largest audience. On the other hand, the server-side should
be responsible for the prediction system, where training of the dataset takes

4

place in background, and the handling of prediction queries from the client. It
should be built upon a server which has the necessary computing power and
implementation libraries installed.

Besides being concerned with the implementation of the application, we
would also need to derive an optimal prediction method for future London hous-
ing prices. Various machine learning techniques will be explored, tested with
past data on London property transactions, before selecting one and modifying
it to best suit our needs.

5

Chapter 2

Background

In this chapter, we first give an overview of the housing market in London.
We will look at the dataset that we will be using in this project, and explain
the features we have chosen to use in the prediction model. Lastly, we discuss
related work that we have discovered during our initial research and its relevance
to the project.

2.1 London Housing Market

In the last decade, the housing market in London has been rapidly growing, with
average housing prices increasing by more than 10% yearly on most years [3].
Together with stronger economic growth and increasing price expectations, this
presents good news to current homeowners and potential homebuyers looking
for a safe long-term investment.

However, London’s housing market is not without volatility. The 2008/09
global financial crisis has seen a temporary decline of 8.4% in London housing
prices in those years [4]. Even though political uncertainty before the May 2015
General Elections has led to a slower growth in Q1 2015, the market is picking
up strongly in the recent months [5], with asking prices jumping up by 17%
compared to before the elections [6].

Besides overall trends, the price of a house in London can vary greatly de-
pending on the location. Properties in Inner London fetch much higher prices
compared to properties in Outer London. The concentration of different types
of houses also vary across London — houses in the central are mostly flats, while
houses in the outskirts are mostly detached. Given the density of the properties
in the capital, it is prime for us to model the relationship between housing prices
and the various factors that affect it.

6

2.2 Dataset

Our initial dataset is obtained from the London Datastore1, which contains
details of all property transactions that have taken place in Greater London
from 1995 to 2013. The total number of property transactions exceeds 2.4
million in the period. Further analysis of the dataset shows that the bulk of
the property transactions happened during 1999 to 2007 (Figure 2.1a), and a
majority of the transactions are flats (Figure 2.1b).

Year

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

N
u

m
b

e
r
 o

f
tr

a
n

s
a
c
ti

o
n

s

 0K

 20K

 40K

 60K

 80K

100K

120K

140K

160K

180K

(a) Year of transaction
Type

Detached Semi-detached Terrace Flat

N
u

m
b

e
r

o
f

tr
a
n

s
a
c
ti

o
n

s

 0K

 200K

 400K

 600K

 800K

1000K

1200K

(b) Property type

Figure 2.1: Number of property transactions sorted by year of transaction and
property type.

For each property transaction, various information are provided and can be
categorised as follows:

• ID (Transaction ID)

• Date (Date processed, Month of transaction, Year of transaction, etc)

• Transaction Price

• Property classification (Type, Build, Tenure)

• Address information (Postcode, Local authority, Full address, Borough,
Ward, etc)

Out of all the information available to us, we have identified relevant features
to be used in our prediction model, as we believe these variables contribute to
the price of a house. Table 2.1 shows our choice of independent variables and
dependent variable. We have chosen to represent an address by its postcode as
it is a concise and unique reference to the location of each property. Further
information on how we prepare the variables for use in our prediction model is
explained in Section 3.1.

1http://data.london.gov.uk/dataset/average-house-prices-borough

7

Independent Variables Dependent Variable
Date of transaction (Month, Year) Price of property (£)
Type (Detached/Semi-detached/Terrace/Flat)
Build (Old/New)
Tenure (Leasehold/Freehold)
Address (Postcode)

Table 2.1: Variables to be used in our prediction model

As the London Datastore no longer maintains a repository of London-only
property transactions after 2013, we obtain the dataset of property transactions
after 2013 directly from the Land Registry. With their online search tool2, we
make a query for all property transactions in London starting from 2014. After
which, we select only the relevant data and merge them with our initial dataset.

2.3 Related Work

After some research, we have found several related work that attempt to predict
London housing prices, which we explore in this section. We consider what has
been done and what can be learnt from them.

2.3.1 Property Agents and Economists

The job of predicting UK housing market usually falls within the domain of
property agents such as Foxtons3, Savills4 and economic departments in leading
universities. Predictions are made through a variety of factors: market senti-
ments, market data, economic performance, surveyor valuations, inflation, etc
[7]. They often cover the whole of UK and forecast values are segregated by
regions and major cities [8]. These predictions are often published in the news,
or through publications made available to property investors. Figure 2.2 shows
one such example of a publication on predictions of UK housing prices.

However, these predictions are often generic and averaged across different
property types and locations within a certain region. Future prospects for a
semi-detached house in a desired suburb are likely to differ from that of a flat in
a less-desired suburb. Knowing the general forecast for London housing prices
would not be able to help a homebuyer decide on which location in London
or which property type he/she can consider. Moreover, the fact that these
predictions are often made available through mass media does not allow for
customisability and interactivity from the users.

2http://landregistry.data.gov.uk/app/ppd
3http://www.foxtons.co.uk/
4http://www.savills.co.uk/

8

Figure 2.2: A publication on UK housing price predictions for the next 5 years
by Savills PLC. [9]

2.3.2 Property Search Websites

Having millions of properties listed allow property search websites such as
Zoopla5 to come up with a prediction model for the current value of every
property. Data is being collected from various sources such as estate agents,
website users, surveyors and the government [10]. While the actual algorithm
is proprietary, it is mentioned that the algorithm considers factors [10] such as:

1. Past, present and asking prices for the specific property and similar prop-
erties around it

2. Various characteristics such as size, type and number of rooms

3. Changes in market values of similar houses in the local area

However, it is to be noted that Zoopla estimates are specific to each property,
not by districts or regions, as seen in Figure 2.3. Moreover, the estimates only
refer to current values, which does not allow users to see the potential growth
of property value in the future. As such, the calculations do not cater to users
looking for long term forecasts of housing prices in a given area or of a certain
type, which is the problem our project plans to tackle. Interestingly, Zoopla
provides a confidence level for their estimates, which will be a useful benchmark
to test our predictions against.

5http://www.zoopla.co.uk/

9

Figure 2.3: Example of a Zoopla estimate for a London property

2.3.3 Summary

One advantage that the property agents and property search websites have is
the access to information that are not public. The public dataset from the
Land Registry, as discussed in Section 2.2, does not include details such as the
number of rooms or the size of the property, which we normally consider to be
factors affecting house prices. As our prediction model relies solely on the public
dataset, it may pale in comparison to these related work in terms of accuracy.
However, none of them have reached what this project has set out to achieve:
an application providing location-specifc predictions of housing prices within
London that are calculated based on user-selected options.

10

Chapter 3

Regression Methods

In this chapter, we start by introducing the concept of machine learning and the
role which regression plays. Then, we discuss why regression methods are what
we need to predict future housing prices, before delving into details of various
regression methods that have been explored during the course of this project.
Each method contains fundamentals that build up to the next, making it easier
to understand how we arrive at the method of our choice.

3.1 Introduction

Machine learning is the study of algorithms that can learn from data and make
predictions, by building a model from example inputs rather than following
static instructions [11]. These algorithms are typically classified into three cat-
egories: supervised learning, unsupervised learning and reinforcement learning.

In supervised learning, the system is presented with example inputs and
outputs, with the aim of producing a function that maps the inputs to outputs.
Regression and classification problems are the two main classes of supervised
learning [12]. Unsupervised learning is concerned with leaving the system to
find a structure based on the inputs, hopefully finding hidden patterns. Exam-
ples include density estimation [13, 14], dimensionality reduction [15, 16] and
clustering [17]. Lastly, reinforcement learning is the study of how a system can
learn and optimise its actions in an environment to maximise its rewards [18],
such as training a robot to navigate a maze.

Regression is a subset of supervised learning, where the outputs are con-
tinuous. The problem of predicting future housing prices can be considered
a regression problem, since we are concerned with predicting values that can
fall within a continuous range of outputs. Through regression, we will be able
to explore the relationship between the independent variables we have selected

11

(date, type, build, tenure, address) and the property price.

3.2 Linear Regression

The simplest regression model is linear regression, which involves using a lin-
ear combination of independent variables to estimate a continuous dependent
variable [11]. While the model is too simple to accurately model the complex-
ity of London housing market, there are many fundamental concepts in linear
regression that many other regression techniques build upon.

If we consider a model where y is the dependent variable and x = (x0, . . . , xD)T

is the vector of D independent variables, a linear regression model can be for-
mulated as follows:

y(x,w) =

M−1∑
j=0

wjφj(x) + εj , (3.1)

where φj(x) is a basis function with corresponding parameter wj , εj is the
noise term, M is the number of basis functions and w = (w0, . . . , wM−1)T .
Assume the noise terms εj are independent and identically distributed, where
εj ∼ N (0, σ2). Basis functions can either be linear functions of the independent
variables in the simplest case where φj(x) = xj , or extended to non-linear
functions such as φj(x) = x2j , x

3
j or √xj . In most cases, φo(x) is set as 1,

such that w0 can act as a bias parameter to allow for fixed offset in the data
[19]. Even though y(x,w) can be a non-linear function of input x through the
use of non-linear basis functions, the model is still linear with respect to w.
Alternatively, we can also express (3.1) as

y(x,w) = wTφ(x) + ε, (3.2)

where φ = (φ0, . . . , φM−1)T and ε = (ε0, . . . , εM−1)T , which simplifies the
expression and allow us to code in vectorised form, thereby avoiding the need
for loops in computation.

3.2.1 Error Function and Maximum Likelihood Solution

In order to fit a linear regression model to the dataset, we need to minimise an
error function. A common error function of choice is the sum-of-squares error
function, which takes the form

E(w) =
1

2

N∑
n=1

{yn −wTφ(xn)}2, (3.3)

12

where wTφ(xn) is the predicted value, yn is the actual value and N is the size of
the data set. From a probabilistic perspective, we can also maximise a likelihood
function under the assumption of a Gaussian noise model, and prove that it is
equivalent to minimising the error function [20].

Firstly, we express the uncertainty associated with the actual value yn using
a Gaussian distribution with inverse variance (precision) β, in the form

p(yn|x,w, β) = N (yn|wTφ(xn), β−1I). (3.4)

Considering inputs X = {x1, ...,xN} and actual values y = {y1, ..., yN}, the
likelihood function can be constructed from this relationship

p(y|X,w, β) =

N∏
n=1

N (yn|wTφ(xn), β−1I). (3.5)

To determine the optimal values for w and β, we can maximise the likelihood
function with respect to w. This can be done by taking the derivative of the
logarithm of the likelihood function, which results in

∇w log p(y|X,w, β) = β

N∑
n=1

{yn −wTφ(xn)}φ(xn)
T
. (3.6)

If we take the derivative of the error function (3.3), we can see that it is equiva-
lent to (3.6), thus proving that maximising the likelihood function is equivalent
to minimising the error function.

Before solving for w, let us define Φ, a N×M design matrix, whose elements
are given by the basis functions applied to the matrix of values of the input
variables, such that

Φ =

φ0(x1) φ1(x1) . . . φM−1(x1)

φ0(x2) φ1(x2) . . . φM−1(x2)
...

...
. . .

...
φ0(xN) φ1(xN) . . . φM−1(xN)

 . (3.7)

By setting (3.6) to zero and solving for w, we are able to obtain a closed-form
solution, which takes the form

wML = (ΦTΦ)−1ΦTy. (3.8)

This is known as the normal equation. Solving for w through the normal equa-
tion will give us the weight vector that best fits the data.

13

3.2.2 Regularisation

Even though minimising the error function can solve the problem of finding w,
we have yet to solve the problem of choosing appropriate basis functions φ(x).
Since basis functions are often in polynomials of the input variables, we can
reduce the problem to finding the appropriate order M of the polynomial.

While choosing a higher order M introduces flexibility into the model and
is likely to result in a better fit to the dataset, using a high order polynomial
can sometimes result in over-fitting. Over-fitting occurs when the model fits the
noise in the data instead of generalising [11].

x

0 1 2 3 4 5 6

y

-1.5

-1

-0.5

0

0.5

1

1.5

Data points
Fitted curve

(a) M = 3

x

0 1 2 3 4 5 6

y

-1.5

-1

-0.5

0

0.5

1

1.5

Data points
Fitted curve

(b) M = 10

Figure 3.1: Plots of polynomial models of different orders (red line) fitted to the
dataset (blue points). Dataset is generated from a sinusoidal function.

This is illustrated in Figure 3.1, where it can be seen that choosing a polyno-
mial degree of M = 10 results in a model that passes through more data point,
but oscillates rapidly. This is likely to happen when the data used to train the
model, known as the training set, is limited in size and an overly complex model
is used. While over-fitted models may fit the training set very well (low training
error), they are likely to have poor predictive performance on unseen data (high
test error). A model that generalises well should have a low test error, which is
what we are interested in.

To curb the problem of over-fitting, a regularisation term can be introduced
to the error function. This takes the form of

E(w) =
1

2

N∑
n=1

{yn −wTφ(xn)}2 +
λ

2
wTw, (3.9)

where λ is the regularisation coefficient. Adding a regularisation helps to prevent
over-fitting by penalising large coefficient values. When applied to the closed-

14

form solution, the new normal equation can be defined as

w = (λI + ΦTΦ)−1ΦTy. (3.10)

3.3 Bayesian Linear Regression

In our discussion of linear regression, we aim to determine w, the weight vector
which assigns a weight to each basis function that results in a best-fit of the data.
However, the regression model will never be perfect, which implies a certain
degree of error associated with every prediction made. By turning to a Bayesian
treatment of linear regression [21], we will be able to express both the model
uncertainty and measurement uncertainty. This will help us in constructing
confidence intervals for our predictions of future property prices.

3.3.1 Posterior Distribution

We begin by defining a prior probability distribution over w, which is given by
a Gaussian distribution of the form

p(w) = N (w|m0,S0), (3.11)

where m0 is the mean and S0 is the covariance. The posterior distribution is
defined to be proportional to the product of the prior and the likelihood function
[11], in the form

p(w|X,y) =
p(y|X,w)p(w)

p(y|X)
, (3.12)

where p(y|X) is the marginal likelihood. Using the likelihood function con-
structed in (3.4), the posterior distribution can be derived to form

p(w|X,y) = N (w|mN ,SN), (3.13)

where

mN = SN (S−10 m0 + βΦTy), (3.14)

S−1N = S−10 + βΦTΦ. (3.15)

A common choice for a prior, which we shall be using, is a zero-mean Gaussian
with a precision parameter of α (p(w) = N (w|0, α−1I)), which results in a
posterior distribution of

mN = βSNΦTy, (3.16)

15

S−1N = αI + βΦTΦ. (3.17)

3.3.2 Predictive Distribution

More importantly, we would like to determine the predictive distribution, the
probability distribution when we predict t∗ for new values x∗. This is defined
by the convolution of the conditional distribution of the observed values and
the posterior distribution [11], resulting in

p(t∗|X,x∗,y, α, β) =

ˆ
p(t∗|X,w, β)p(w|X,y, α, β)dw (3.18)

= N (t∗|mT
Nφ(x∗), σ

2
N (x∗)) (3.19)

where the variance takes the form

σ2
N (x∗) =

1

β
+ φ(x∗)

TSNφ(x∗). (3.20)

3.4 Relevance Vector Machines

Keeping in mind the advantages of having posterior probabilities, we can now
explore the relevance vector machine (RVM) [22, 23]. The RVM for regression
mirrors the linear regression model, with basis functions replaced by kernels
[24]. A kernel function is defined as an inner product in the feature space

k(x,x′) = φ(x)Tφ(x), (3.21)

where φ(x) is a fixed feature space mapping. Through kernels, we can extend
models to represent data in high-dimensional feature space, also known as the
kernel trick [25]. While a kernel can be manually constructed by defining a φ(x)

and taking the inner product, any similarity function on pairs of data points in
the original space can also be a valid kernel. However, this similarity function
has to satisfy Mercer’s condition, which states that

¨
k(x,x′)g(x)g(x′)dxdx′ ≥ 0, (3.22)

for any g(x) such that
´
g(x)2dx is finite [26]. By using kernels, we can overcome

the limited expressiveness of a Bayesian linear model, where the feature vector
has to be explicitly transformed into higher dimensions. In most cases, this is
also computationally cheaper than calculating the coordinates of data in the
transformed feature space.

The RVM is based upon the widely successful approach of support vector

16

machines (SVM) [27, 28] in supervised learning, with the main advantage of
according a predictive likelihood for every prediction. It also typically results in
much sparser models than SVM, giving faster performance in the validation and
testing phase while maintaining comparable generalisation performance [23].

A common choice for kernels is the squared exponential (SE) kernel, due to
its flexibility to work in infinite dimensions. It takes the form

k(x,x′) = exp(−||x− x′||2/2σ2), (3.23)

where σ is the kernel width. As a result, the linear model for RVM can now be
defined in the following form

y(x) =

M∑
j=1

wjk(x,xj) + εj . (3.24)

The prior in RVM typically uses a separate hyperparameter αi for each weight
parameter ωi. The prior takes the form

p(w|α) =

M∏
i=1

N (wi|0, α−1i), (3.25)

where α = (α0, . . . , αM)T . Using the result (3.13) we obtained earlier in
Bayesian linear regression, we can derive the posterior distribution for the
weights, which is defined by

p(w|X,y, α, β) = N (w|m,Σ), (3.26)

where

m = βΣΦTy, (3.27)

Σ = (A + βΦTΦ)−1. (3.28)

where A = diag(αi), β is the noise precision parameter and Φ = K, a N ×N
kernel matrix with elements knm = k(xn, xm).

3.4.1 Marginal Likelihood Maximisation

To determine α and β, we can maximise the marginal likelihood, which results
in an automatic trade-off between data fit and model complexity. The maximi-
sation of the marginal likelihood is done by integrating out w, and the logarithm

17

of it is in the form

log p(y|X,α, β) = log

ˆ
p(y|X,w, β)p(w|α)dw (3.29)

= −1

2
[N log(2π) + log |C|+ yTC−1y], (3.30)

where C is a matrix given by

C = β−1I + ΦA−1ΦT . (3.31)

Finally, by setting the derivative of (3.30) to zero, we can obtain the re-estimation
equations for the hyperparameters α and β

αnewi =
γi
m2
i

, (3.32)

(βnew)−1 =
||t−Φm||2

N − Σiγi
, (3.33)

where γi = 1 − αiΣii, a quantity that determines the extent to which the
corresponding wi is determined by the data.

Having the re-estimation equations defined, the maximisation of the marginal
likelihood can take place through a loop of calculating the mean and covariance
of the posterior in (3.27) and (3.28), re-estimating α and β in (3.32) and (3.33),
and re-estimating the mean and covariance of the posterior again, until a chosen
convergence criterion is reached.

However, this original approach suffers from O(N3) computations in the first
few iterations, as all N basis functions are considered initially in the model. An
accelerated learning algorithm has been proposed based on this approach, where
an “empty” model is initialised and basis functions are subsequently added [29].

Despite having a vector of hyperparameter αi, the optimisation will result in
a large proportion of them going towards infinity, which forces the correspond-
ing weight parameters to have posterior distributions concentrated at zero. This
will result in a sparse model mentioned earlier, as the corresponding basis func-
tions play no role in the predictions. The remaining non-zero αi, and their
corresponding weights and basis functions, are thus called the relevance vectors.

3.4.2 Predictive Distribution

With the optimal hyperparameters α∗ and β∗ determined, the predictive dis-
tribution is similar to that of Bayesian linear regression, given by

p(t∗|X,x∗,y,α∗, β∗) =

ˆ
p(t∗|X,w, β∗)p(w|X,y,α∗, β∗)dw (3.34)

18

= N (t∗|mTφ(x∗), σ
2(x∗)), (3.35)

where the variance takes the form

σ2
N (x∗) =

1

β∗
+ φ(x∗)

TΣφ(x∗). (3.36)

3.4.3 Problems with Predictive Variances

Despite being able to produce predictive variances, it has been shown that the
predictive variances become smaller the further the test inputs are away from the
relevance vectors [30, 31]. This means that predictions become more certain as
we move away from the training data, which is counter-intuitive and undesirable.
Such a problem occurs during the usage of localised basis functions, where basis
functions are centered on each of the training data points. An example is the SE

x

0 2 4 6 8 10 12

y

-3

-2

-1

0

1

2

3

95% confidence interval
Data points
Fitted curve

Figure 3.2: Predictive variance of RVM tends towards the noise level of the data
as test inputs deviate further from the dataset.

kernel mentioned earlier in the section. When a test input lies far away from the
relevance vectors, the basis functions each produce a small response to the input,
resulting in a predictive mean of zero and variance close to the noise level [30].
This can be seen in Figure 3.2, where the predictive uncertainty, represented
by the blue area, decreases to the noise level when predictions extend beyond
the range of the training data. This would be of a major consideration in our

19

project, as we are concerned with predicting future housing prices that extend
outside the range of our dataset.

However, this would not be an issue when we consider Gaussian processes,
a model which uses infinitely many basis functions placed everywhere, not just
at the training points, which we explore in the section below.

3.5 Gaussian Process

Unlike all the regression models discussed earlier which define a distribution
over parameters, a Gaussian Process (GP) [32, 33] model defines a distribution
over functions. A GP can be defined as a collection of random variables, where
any finite number of which have a joint Gaussian distribution. Notationally, it
takes the form

f(x) ∼ GP (m(x), k(x,x′)), (3.37)

where the mean function m(x) and covariance function k(x,x′) are

m(x) = E[f(x)], (3.38)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (3.39)

x

-1.5 -1 -0.5 0 0.5 1 1.5

y

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
Prior distribution
Posterior distribution
Prior mean
Posterior mean
Data points

Figure 3.3: Posterior distribution and mean of a GP after the addition of ob-
served data points.

20

In a GP, a prior distribution represents our initial beliefs on the type of mean
function we expect to observe. Given a dataset of observations, we compute the
posterior mean through the gradual addition of data points, which constrains
the shape of the posterior mean. The combination of the prior distribution and
the dataset leads to the posterior distribution, represented by the grey area in
Figure 3.3. Notice how the posterior uncertainty is reduced close to the observed
data points but falls back to the prior at areas without data points, which is a
desirable situation that classical RVMs are not able to achieve.

In GPs, the covariance function, or kernel, encodes useful information about
the function we are trying to model in a GP. For example, we can consider the
SE kernel, as it is appropriate for modelling smooth functions. In the context
of a GP with noisy observations, it takes the form

k(x,x′) = σ2
fexp(−||x− x′||2/2l2). (3.40)

The lengthscale l defines the smoothness of the function and the distance to
which we can extrapolate from the training data. The larger the lengthscale
value, the slower the function changes, resulting in a smoother function. Signal
variance σ2

f defines the level of variation of the function from its mean. The
larger the signal variance, the greater the amplitude. Together, these form the
hyperparameters of the SE kernel, which define the properties of the function
being modelled.

3.5.1 Training

Similar to RVM, we can determine the optimal hyperparameters of the SE kernel
through the maximisation of marginal likelihood. With the likelihood function
defined as p(y|X, f) = N (y|f , σ2

nI), where σ2
n is the noise variance, and using

a zero-mean Gaussian prior p(f |X) = N (f |0,K), the marginal likelihood takes
the form

p(y|X) =

ˆ
p(y|X, f)p(f |X)df = N (y|0,K + σ2

nI). (3.41)

For numerical stability in optimisation, the logarithm of the marginal likelihood
is normally taken instead, which is given by

log p(y|X) = −1

2
y>(K + σ2

nI)−1y − 1

2
log |K + σ2

nI| − n

2
log 2π. (3.42)

By seeking the partial derivatives of the log marginal likelihood with respect to
the hyperparameters and equating it to zero, the hyperparameters can be set.
This process can be facilitated through the use of gradient-based optimisers.
A popular choice for use with GPs is the conjugate gradients method [34], a

21

prominent iterative method used to solve systems of linear equations which
cannot be handled by other direct methods due to its large size.

3.5.2 Predictive Distribution

The joint distribution of the predictions from the training points, f , and predic-
tions from the new input points, f∗ can be rewritten from (3.41) to form[

y

f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
, (3.43)

where X is the set of training points, X∗ is the set of test points, and K(X,X∗)

denotes the matrix of covariances evaluated at all pairs of points in X and
X∗, similarly for the other entries in the joint distribution. The predictive
distributions can be derived by obtaining a conditional distribution for f∗ given
y, which gives

f∗|X,X∗,y ∼ N (f ′∗, cov(f ′∗)), (3.44)

where

f ′∗ = K(X∗, X)[K(X,X) + σ2
nI]−1y, (3.45)

cov(f ′∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗). (3.46)

3.5.3 Distributed GPs

One fundamental weakness of GPs is that they scale badly with the size of the
dataset. The training complexity is dominated by the inversion of K + σ2

nI

in the marginal likelihood, which takes O(n3) operations, while the predictive
complexity is dominated by the computation of the predictive variance, which
takes O(n2) operations [35]. As a result, GPs have a practical limit of 104 for
the dataset size [36]. This presents a problem if we were to use a GP to model
our dataset on London housing prices, which has a size of about 2.4 million.

Various sparse approximations [37, 38] exist, whereby a subset of the data
is used instead of the entire dataset. However, this raises the issue of how the
subset should be selected, and the computations involved. Even with sparse
approximations, the practical limit of the dataset size is limited to 106 [36].

With distributed GPs, we can handle dataset sizes of 107, by distributing
computations to independent local “expert” models, where each model operates
on a subset of the data [39]. Each expert, therefore, has its own set of hyper-
parameters to optimise. On top of handling larger dataset sizes, we plan to use
distributed GPs in our project to exploit the spatial structure of our dataset
by partitioning our data by location and training them independently. Sub-

22

sequently, predictions are made by combining the predictions from all experts
[40, 41], taking into account the weight assigned to each prediction. However,
this brings forth the issue of how the weights are to be assigned to each expert,
which we shall explore below.

3.5.3.1 Product of Experts

The Product of Experts (PoE) model [39] proposes that the combined predictive
distribution y∗ at a test input x∗ is computed as the product of all the predictive
distributions of the experts, which takes the form

p(y∗|x∗,D) =
∏
k

p(y∗|x∗,D(k)) (3.47)

∝ N (y∗|µ∗, σ2
∗), (3.48)

where D(k) is the k-th subset of the data. The product of all the Gaussian
predictive distributions is also a Gaussian, where the mean and variance are

σ2
∗ =

(∑
k

σ−2k (x∗)

)−1
, (3.49)

µ∗ = σ2
∗

∑
k

µk(x∗)

σ2
k(x∗)

. (3.50)

While the PoE model is straightforward to compute, it tends to produce over-
confident models. As the number of experts increases, the combined prediction
becomes more certain as the precisions add up, regardless of how certain each
expert is (refer to (3.49)). Thus, using only the predictive variance of an expert
is not necessarily the right measure for assigning weights to each expert [42].

3.5.3.2 Generalised Product of Experts

Improving upon the PoE model, the generalised Product of Experts (gPoE)
model [42] proposes to weigh the responsibility of each expert by raising the
predictive distribution to a power βk, where the combined prediction distribu-
tion is defined as

p(y∗|x∗, X,D) =
∏
k

pβk

k (y∗|x∗,D(k)) (3.51)

∝ N (y∗|µ∗, σ2
∗). (3.52)

This gives the model the flexibility to increase or decrease the responsibility of
each expert. As with the PoE model, the resulting predictive distribution is still

23

a Gaussian, with a mean and variance

σ2
∗ =

(∑
k

βkσ
−2
k (x∗)

)−1
(3.53)

µ∗ = σ2
∗

∑
k

βkµk(x∗)

σ2
k(x∗)

. (3.54)

It can be seen that βk serves as a scaling factor for the predictive variance.
However, one has to ensure

∑
k βk = 1 for the model to fall back to the prior.

3.6 Summary

Looking back at the regression models discussed, we have seen how a GP has
overcome the problems associated with other models, which will be of concern
to the prediction of future housing prices if not resolved. By using a GP as our
choice of prediction method, we will be able to produce predictive distributions
instead of just point estimates, provide reasonable predictive uncertainty when
predictions are extrapolated to future dates, and harness the power of kernels
to express features in higher dimensions. The specific implementation of GP to
our project will be further explored in Chapter 4.

24

Chapter 4

Design and Implementation:
Prediction System

In this chapter, we discuss the design and implementation of our prediction
system for London housing prices, based upon a Gaussian process model. This
includes how the dataset is being prepared, the implementation language and
library used for training the dataset, and how predictions are made to suit the
needs of the project.

4.1 Data Preparation

To prepare the dataset for the prediction system, some changes were made:

1. To capture geographical variation in housing prices more accurately, we
decide to represent the address of the property in terms of latitudes and
longitudes rather than postcodes. This is preferable to postcodes as neigh-
bouring regions do not necessarily share similar postcodes (e.g. SW7 and
W8). This process is automated through a Python script which looks up
the postcode in a pre-compiled CSV file of London postcodes1, and returns
the corresponding latitude and longitude.

2. The date of transaction is now represented as the number of months since
January 1995 (the earliest month of transaction in our dataset), to simplify
the representation of time by months only, instead of month and year.

3. Binary categorical variables (build & tenure) are represented using one
binary digit (i.e. (Build) 0 = Old, 1 = New / (Tenure) 0 = Leasehold, 1
= Freehold), while property type is represented using three binary digits

1http://www.doogal.co.uk/PostcodeDownloads.php

25

through the use of dummy coding [43] (i.e. 000 = Detached, 100 = Semi-
detached, 010 = Terrace, 001 = Flat).

4. As the price of properties are often quoted in thousands, we have rounded
our dependent variable to the nearest thousand, which also helps with the
numerical stability of the model.

The prepared dataset and the corresponding values that each variable contains
is shown in Table 4.1.

Independent Variables Dependent Variable
Date of transaction (Months since 1995) Price of property (£ ’000s)
Type (000/100/010/001)
Build (0/1)
Tenure (0/1)
Address (Latitude, Longitude)

Table 4.1: Variables to be used in our prediction model

4.1.1 Utilisation of Data

Due to the huge number of data points (2.4 million), training a GP model using
the entire dataset would be computationally intractable. Yet, limiting the size
of our dataset to the practical upper bound of 104 would mean using less than
1% of the entire dataset, which is undesirable. As such, we will be using the
concept of distributed GPs in our prediction model, to maximise the utilisation
of our dataset and provide a way to combine local models. The concept of using
local models to exploit the spatial properties of our dataset makes sense too.

To create local models, we have partitioned the dataset into multiple subsets
by location. This is done by drawing a square grid on the map of London (Figure
4.1a), and grouping data points in a single box into a subset. Training will be
thus be done on each subset independently.

Despite partitioning our dataset, we are still faced with the problem of having
a disproportional number of data points across different subsets. Areas in central
London can have datasets with more than 10,000 data points, while areas out
of central London can have datasets below 100 data points. Regardless of the
granularity of the square grid, this means that we have to maintain a practical
upper and lower bound to the number of data points in each subset.

Taking into account the number of data points eventually used, the granu-
larity of the grid and time taken for training, we propose to partition the map
of London into a 50 x 100 square grid of length 1km each, where subsets have
a lower and upper bound of 200 and 2,000 data points respectively. Subsets
with data points below the lower bound will not be considered in our model,

26

(a) (b)

Figure 4.1: (a) Illustration of a square grid over the map of London. (b) Predic-
tions made from points in the centre grid will only consider the direct neighbours
and itself, which is highlighted in green.

whereas a random sample of 2,000 data points will be taken for each subset with
data points above the upper bound. This brings us to a total of 2,057 usable
subsets and a dataset utilisation of 90.1%. For each subset, we have also
taken 10% of the data as our validation set, while the remaining 90% serves as
the training set.

4.2 Training

To implement Gaussian process, we have chosen the GPML toolbox2 which
runs on MATLAB, due to its simple yet extendable format and a large library
of covariance and mean functions. MATLAB is our preferred implementation
language due to its performance and extensive support in matrix algebra, which
is particularly relevant in a machine learning project.

4.2.1 Linear Prior Mean Function

When test inputs of a GP lie outside the range of data used in training, the
predictive means would tend towards the prior. With a fixed zero-mean Gaus-
sian prior, predictive means of such test inputs would therefore tend towards
zero. This leads to an undesirable behaviour where predictions of future housing
prices tend towards zero with time, as seen in Figure 4.2a.

2http://www.gaussianprocess.org/gpml/code/matlab/doc/index.html

27

Time (Years)

P
ri

c
e
 (

£
)

(a) Without linear prior mean
Time (Years)

P
ri

c
e
 (

£
)

(b) With linear prior mean

Figure 4.2: Housing prices predicted by the model using a zero-mean Gaussian
prior and linear prior respectively. The magenta line is the date up to which
the data is trained upon.

Time (Years)

P
ri

c
e
 (

£
)

(a) Before adjustment
Time (Years)

P
ri

c
e

 (
£

)

(b) After adjustment

Figure 4.3: Training data from a sample area plotted against the date of pur-
chase before and after adjustment using a linear prior mean. The magenta line
represents the prior mean function with respect to time.

As such, we propose using a linear prior mean function that models the
relationship between the date of purchase and price paid in our model (Figure
4.3a). The training data is adjusted by the linear prior mean function before
the model is being trained (Figure 4.3b). In other words, we are modelling the
variation of house prices along the straight line instead of modelling the trend
in housing prices directly. Predictions of future housing prices will therefore
tend towards the straight line fit gradually with time, instead of falling to zero
(Figure 4.2b). In this approximation, we assume a (positive) linear relationship
between date of purchase and price paid.

To finetune our approximation, we use a separate linear prior mean function
for each house type, since the average price and trend can be very different

28

Time (Years)

P
ri

c
e
 (

£
)

(a) Detached
Time (Years)

P
ri

c
e
 (

£
)

(b) Semi-detached

Time (Years)

P
ri

c
e

 (
£
)

(c) Terrace
Time (Years)

P
ri

c
e
 (

£
)

(d) Flat

Figure 4.4: Plots of training data from a sample area sorted by property type.
The magenta line represents the best linear fit for the data with respect to time,
which varies across different property types.

across different house types. Figure 4.4 shows how the optimal linear fits can
vary across different house types. The gradient and intercept for the prior mean
of each model will be stored and used to adjust the predictions during the
prediction phase.

4.2.2 Kernel

In our model, we have chosen to use a SE kernel, which we have defined previ-
ously in (3.40), due to its flexibility and ability to model smooth functions. Even
though the optimal hyperparameters will be determined through a gradient-
based optimiser (using conjugate gradients method) that is in-built in the GPML
toolbox, we have initialised the hyperparameters to suitable values in (4.1) to
aid the optimiser in reaching the ideal optima. The data has been normalised
before arriving at these initial values.

29

l =
1

4
, σ2
f = Var[y], σ2

n = σ2
f/100. (4.1)

4.3 Prediction

Once all the local models have been trained independently, predictions for each
test input are made by combining the predictions of all local models. However,
this can be an expensive operation, considering that we have over 2,000 areas
to consider. Instead of combining the predictions of all areas, we propose to
only combine the predictions from areas that are direct neighbours, in terms
of location, to the area where the test input lies in (Figure 4.1b). Figure 4.5
illustrates the difference between the training and prediction phase of our model
— we only consider a subset of all the local models during prediction. This
exploits the spatial structure of the data and the corresponding local models we
have defined. This solution serves as a compromise between speed and accuracy,
with the assumption that the housing prices in an area is largely affected by the
areas surrounding it only (e.g. price of a house in Kensington is unlikely to be
affected by the housing prices in Dagenham).

Figure 4.5: Distribution of GP to multiple independent local models during
training. However, prediction is made from a subset of the local models.

To weigh the responsibility of each local model under the gPoE method, we
propose to set βk to be inversely proportional to the predictive variance (i.e. an
expert with a lower predictive variance will have higher weightage). Keeping in

30

mind that
∑
βk = 1 in the gPoE model, we compute βk by the equation

βk =
σ−2k∑N
i=1 σ

−2
i

, (4.2)

where σ2
k is the predictive variance and N is the number of experts considered.

N would be 9 in our model, as we are only considering the direct neighbours of
an area in a square grid.

31

Chapter 5

Design and Implementation:
Mobile Application

In this chapter, we discuss the design and implementation of our prediction
system of our mobile application. Our mobile application consists of both a
client-side application with which the user interacts, and a server-side com-
ponent where the prediction system resides and handles all queries from the
client-side. We showcase the application’s front-end design with screenshots,
and also describe the system architecture on the server-side.

5.1 Client-side

We have decided to develop our mobile application using the Android platform1,
the leading mobile operating system in the world with a 78.0% market share,
as of Q1 2015 [44]. As an open-source platform that is highly customisable,
Android is currently used by top global smartphone makers, such as Samsung,
LG and HTC in their flagship devices. Coupled with the fact that developers
can easily distribute their applications through Google Play2 at no cost, Android
is the ideal platform for developing and distributing our mobile application to
a large audience with minimal development effort.

5.1.1 Application Structure

Keeping in mind the objectives of our project, our mobile application has been
designed with an application structure illustrated in Figure 5.1. From the home

1https://www.android.com/
2Google Play is Google’s official application store and media distribution platform.

32

Home	 screen	

Predict	 future	
prices	

Prediction	
heatmap	

Prediction	 graph	

Find	 areas	 within	
budget	 Budget	 heatmap	

Figure 5.1: Application structure of our mobile application

screen, the user can either navigate to the “Predict future prices” module, or
the “Find areas within budget” module.

The “Predict future prices” module allows the user to view future price pre-
dictions of London properties, given a search radius. The module will generate
two heatmaps — one that highlights the predicted changes in housing prices,
and one that highlights the actual predicted prices. However, since it would
be difficult to display information about the confidence intervals of our predic-
tions in a heatmap, the module will also generate a graph that highlights the
confidence intervals and trend in housing prices in the specified area.

On the other hand, the “Find areas within budget” module allows the user to
find out areas in London where they can consider purchasing a property in, given
a budget. The module will subsequently generate a heatmap that highlights the
suitable areas for consideration.

To support heatmap visualisations in our mobile application, we utilise the
Google Maps Android API3 which allow developers to use Google Maps as
a mapping tool within an Android application with in-built visualisation li-
braries. By specifying a collection of latitudes and longitudes and their respec-
tive weights, the API can produce a heatmap visualisation on top of a Google
Map embedded in an Android application, which makes it the ideal tool to
generate the heatmaps.

Instead of using a client-side tool to generate the prediction graphs, we opted
for a server-side implementation as there is already support for graphing within

3https://developers.google.com/maps/documentation/android/start

33

MATLAB, which we are using for our prediction system in the server. Our
mobile application will retrieve the graphs directly from the server, instead of
retrieving textual data.

5.1.2 Application Design

(a) Home screen (b) “Predict future prices” module

Figure 5.2: Screenshots of the home screen and “Predict future prices” module.

When a user opens the mobile application, he/she will be presented with
a home screen (Figure 5.2a) with buttons to access both modules. A short
description of each module is provided above each button to inform the user of
the purpose of the module.

In the “Predict future prices” module (Figure 5.2b), the user will be asked to
enter the parameters required to generate a prediction heatmap or graph. This
includes the variables we use in our GP-based prediction method, the number
of years in the future the prediction should consider and the search radius of
the query (to be used for generating the heatmap). Once the user enters the

34

(a) Prediction heatmap (percentage change) (b) Prediction heatmap (actual prices)

Figure 5.3: Screenshots of both prediction heatmaps.

parameters and click on the “Map” or “Graph” button, the application will
check if the postcode entered is a valid London postcode. If valid, he/she will
be brought to the prediction heatmap or graph respectively, otherwise an error
message will appear requesting the user to enter a valid postcode.

Once generated, the prediction heatmap (Figure 5.3a) helps the user to vi-
sualise the geographical variations in the changes in housing prices within the
search radius, in terms of percentage increase and decrease. A percentage in-
crease and decrease is represented in red and blue respectively. The intensity of
the colour is proportional to the magnitude of change. To aid the user in under-
standing the heatmap, a colour scale is provided at the bottom of the screen.
The user will be able to alter the zoom level of the heatmap through the “pinch”
gesture, even though a minimum and maximum zoom level is applied to ensure
the integrity of the colour scale of the heatmap. Users can also view a heatmap
of actual predicted prices instead of percentage changes in prices (Figure 5.3b),
through the switch button on the top right of the screen.

35

Average house price in CR76XJ

Year
1995 2000 2005 2010 2015

P
ri

c
e
 (

in
 p

o
u

n
d

s
)

 0K

 50K

100K

150K

200K

250K

300K

95% confidence interval
Actual prices (from surrounding area)
Prediction
Year up to which data is collected from

(a) Prediction graph

(b) “Find areas within budget” module (c) Budget heatmap

Figure 5.4: Screenshots of prediction graph, “Find areas within budget” module
and budget heatmap.

36

The prediction graph (Figure 5.4a) complements the heatmap, by displaying
the trend in the average house price over the years, in the postcode provided by
the user. The 95% confidence interval of our predictions is also included in the
graph, to give the user an idea of how accurate our predictions are. Likewise,
the user will be able to zoom in on the graph through the “pinch” gesture, as
the details on the graph may not be visible to the user on mobile phones with
limited screen space.

For the “Find areas within budget” module (Figure 5.4b), the same design
principle applies as the “Predict future prices” module, albeit with an addi-
tional parameter for the user to enter their budget. In the budget heatmap
(Figure 5.4c), areas highlighted in red represent areas which property prices are
potentially below or equivalent to the budget instead.

5.2 Server-side

Figure 5.5: System architecture for our mobile application

The server-side of our mobile application consists of two components — a
web server and an application server. The web server acts as the intermediary
between the client and the application server, by handling HTTP requests from
the client-side and returning generated data from the application server to the
client. The application server is where the computations are handled, which
includes our dataset, the prediction system described in Chapter 3, and other
scripts to support it. Figure 5.5 shows a diagram of our system architecture.

5.2.1 Web Server

Our web server currently runs on a virtual machine hosted on DoC Private
Cloud, a departmental Infrastructure-as-a-service (IAAS) platform, which al-
lows us to easily create a virtual server that suits our needs. Ubuntu 14.04 LTS
has been installed as the operating system and Apache HTTP Server software

37

has been installed to give the virtual machine the capabilities of a web server.
Both Ubuntu and Apache have been chosen due to its widespread adoption and
our prior experience using it.

To handle HTTP requests from the client and return dynamically generated
content, we run Common Gateway Interface (CGI) scripts written in Bash on
the web server. CGI scripts are sufficient for our needs as we are merely using
the web server to pass on the parameters to the application server and return
text content to the client.

http ://XXX.XXX:XXX/predictmap . c g i ? postcode=SW72AZ&rad iu s
=1&housetype=3&bu i ld=0&tenure=0&years=1

Listing 5.1: Sample HTTP request from client

A sample HTTP request from the client is shown in Listing 5.1, which is
requesting to generate a prediction heatmap. The parameters and their corre-
sponding values are passed into the CGI script, which are subsequently passed
on to the application server by a call to the target MATLAB script to generate
prediction values.

Communication with the application server has to be done through the Se-
cure Shell protocol, due to our choice of using the departmental batch servers as
our application server, which is explained in Section 4.2.2. Once the predictions
are made in the application server, the text results are returned to the client as
the response to the HTTP request.

5.2.2 Application Server

We are currently using one of the departmental batch servers to act as our
application server. Operating on Ubuntu, the departmental batch servers have
existing MATLAB licenses and come with hardware capable of running long
programs spanning several hours or days. This makes it ideal for training our
dataset, which takes over a day to train as there are over 2000 subsets, where
each takes an average of 70 seconds to train.

New data is fed into the prediction system automatically on a monthly ba-
sis, through a system daemon that executes a script to retrieve new data on
recently sold London properties. Data is obtained using a SPARQL query that
calls the Land Registry console4, with relevant variables selected and corre-
sponding values prepared, before merging them into our dataset. Subsequently,
the prediction system trains on the updated set of data, thereby ensuring our
predictions are constantly refined with the latest data.

4http://landregistry.data.gov.uk/app/hpi/qonsole

38

Besides having the prediction system running on the prediction server, sev-
eral Python scripts also exist on the application server to support the prediction
system. These include helper scripts to convert a postcode into its corresponding
latitude and longitude for input into the prediction system, as discussed in Sec-
tion 4.1, and to populate a list of latitudes & longitudes during the generation
of heatmaps. These scripts are implemented in Python instead of MATLAB as
they do not require any form of matrix manipulation and Python will be able
to execute these scripts more efficiently.

39

Chapter 6

Evaluation

We have managed to create a London house price prediction mobile application
that has met the initial objectives of this project. However, the final product
alone does not measure the performance and functionality of our project. In this
chapter, we will be evaluating our project by looking into the quality of our pre-
diction method, the performance of the prediction system and the functionality
of the mobile application.

6.1 Prediction Method

To measure the quality of our GP-based prediction method, we use the root mean
squared error (RMSE) and the mean predictive log likelihood (MPLL). RMSE is
defined by the square root of the average of the squared residual (y∗ − f(x∗))

2

between the prediction value and actual value of each test point in our validation
set. MPLL is defined by the average of the log predictive likelihood of each test
input under the model. As GP produce a Gaussian predictive density, the log
predictive likelihood is defined as

log p(y∗|D,x∗) = −1

2
log(2πσ)− (y∗ − f(x∗))

2

2σ2
+ const, (6.1)

where σ2 = σ2
∗ + σ2

n, the sum of the predictive and noise variance respectively.
As we have trained each subset of data independently, we will compute

the average of the RMSEs and MPLLs across all subsets, and use them as a
comparison between the different prediction methods. The results of the various
methods are presented in Table 6.1. From the results, it is apparent that our
choice of using GP as our prediction method is ideal, as it gives the lowest
RMSE and highest MPLL.

To determine the competitiveness of our model, we compare the error esti-

40

Prediction method RMSE MPLL
BLR 1.02±1.34 x 102 -5.76±1.27
BLR* 0.92±1.25 x 102 -5.61±1.10
RVM 0.98±1.53 x 102 -6.47±1.17
GP 0.83±1.63 x 102 -5.50±1.44

Table 6.1: Test results on various prediction methods on our dataset. In BLR*,
interaction terms and terms raised to different powers were used, on top of linear
terms, to capture possible effects of non-linear terms on the model.

mates of our prediction method against the published results of Zoopla’s pre-
diction model [10], by the proportion of predictions that fall within ±10% and
±20% of the actual selling prices. We randomly selected 1000 data points from
the most recent price paid data in 2004 as our test set. As seen in Table 6.2, our
prediction system has a slightly lower accuracy compared to Zoopla’s prediction
system. This is not particularly surprising as we utilise fewer variables in our
prediction system compared to Zoopla. To improve on this, we would need to
obtain more data and consider more factors that affect housing prices in our
model, which is a major consideration for a future extension of this project.

Prediction system Proportion of estimates
Within ±10% Within ±20%

Zoopla 47.6% 75.0%
Ours 39.0% 62.0%

Table 6.2: A comparison on the proportion of estimates that falls within ±10%
and ±20% of actual selling prices

6.2 Prediction System

To evaluate the performance of our prediction system, we record the time taken
for the prediction system to generate the outputs for each query the user can
make in our mobile application. 10 different predictions were made for each
query at different locations (with a search radius of 1km for heatmap queries)
and the minimum and maximum time taken are presented in Table 6.3.

Query Minimum time taken Maximum time taken
Prediction heatmap 13s 70s
Prediction graph 5s 10s
Budget heatmap 13s 80s

Table 6.3: Average time taken for each query in our prediction system to run

The heatmaps are expected to take a longer time than graphs to generate

41

due to the number of predictions required for the generation of heatmaps. Some
locations will require a longer time than others to generate a prediction, as more
data exists in the area which needs to be considered during computation.

Compared to an ideal situation where the user should receive the results
within 0-3 seconds, the performance of our prediction system is poor. A closer
look reveals that the bulk of the processing time comes from the number of
predictions we are making. To render a smooth heatmap using the Google
Maps Android API, around 1,200 evenly spread data points are needed for an
area of radius 1km at Zoom Level 15 (a zoom level we feel is appropriate to
clearly highlight the geographical variations of our predictions). The larger the
search radius, the greater the number of data points are required.

Moreover, as GP is a non-parametric prediction method, the entire training
data needs to be considered for making predictions. Recall that each prediction
is made from the combination of predictions from the local area and surround-
ing areas. When more predictions are made for a single heatmap query, more
training data needs to be loaded into the MATLAB environment. Thus, opti-
mising the loading time of training data and reducing the number of predictions
required are potential areas to explore in an extension of this project.

6.3 Mobile Application

To gather some feedback on the user experience and functionalities of our mobile
application, we asked a few potential homebuyers to use our application. The
feedback we received was very positive on the overall, with many stating it is
a novel way to visualise the geographical variations in housing prices within
London. Some have also commented that the application was easy to use and
understand, which is a plus point in making the application accessible to all.

Nevertheless, we did receive some feedback that are less positive, where
many commented on the time taken to generate the predictions. This has been
mentioned in the section earlier and will be one of the main aspects of the
application we need to improve on. Other criticisms include:

• Poor rendering of heatmap, resulting in some jagged edges after zooming
in or out on the heatmap

• Inability to view predictions by particular boroughs or districts

• Unsure of the reliability of the predictions, as the predictions in certain
regions appear counter-intuitive

Keeping these criticisms in mind, we can act upon them in the future to make
our mobile application more accurate and accessible to all.

42

Chapter 7

Conclusion

We have managed to produce a mobile application that provides users with a
novel way to look at future housing price predictions within London. Several
regression methods have been explored and compared, before arriving at a pre-
diction method based on GP for regression. Linear prior mean functions have
been used in our model, so that future price predictions will tend towards more
sensible values. We devised a way to utilise as much data as possible in our
prediction system, by adopting the concepts of distributed GPs. Taking into
account the performance of our application, we have separated our application
into a client-side and server-side, such that heavy computations are done on the
server-side and generation of visualisations are done on the client-side. The suc-
cess of our approach to creating a mobile application for generating predictions
can be applied to other problem sets concerned with geographical variations in
the prediction model.

7.1 Future Work

Despite having produced a working application that met our initial require-
ments, there are various improvements that can be made in the future. These
include improvements we did not make due to limited time on the project, and
suggestions provided by users after using our mobile application.

• Consider more factors affecting housing prices. As discussed in
Section 2, one main drawback of our prediction model is the lack of access
to information. We would need to seek alternative sources of data besides
the Land Registry, which can provide us with information on the area,
the number of rooms, etc for each property. Economic factors such as the
yearly inflation rate or GDP growth can also be considered.

43

• Consider heteroscedastic GP regression [45]. Under the conven-
tional GP regression method that we are using in our prediction method,
the noise level is assumed to be uniform throughout the domain. How-
ever, this assumption may not be true. By considering a heteroscedastic
treatment of noise, we can treat noise as a random variable. This can po-
tentially better account for the difference in data points across the years in
our dataset. An alternative noise model can also be explored, by training
the data against the logarithm of the prices.

• Optimise the prediction system through parallelised computa-
tions. As discussed in Section 5.2, a major concern with the prediction
system is the loading time. Moreover, our dataset takes more than one day
to train. Rather than performing the computations sequentially, we can
use multiple processors and parallelise the computations involved, which
can potentially reduce the training time and prediction time. Another
way to approach this problem is to look for alternative APIs that allow us
to produce heatmaps of similar quality but require fewer data points, or
faster libraries to implement GPs.

• Add more functionalities into the application. As mentioned by one
of the users, we can provide options for user to select a borough or district
to generate the heatmaps, instead of entering a postcode and selecting a
search radius. We can also look into ways to generate a heatmap for the
whole of London initially in a zoomed-out view, only requesting for more
data points when the user zooms in to display a clearer picture.

44

Bibliography

[1] GOV.UK. (2013) Property transactions in the UK. [Online]. Available: http
s://www.gov.uk/government/collections/property-transactions-in-the-uk

[2] London Datastore. (2015) London Housing Market Report. [Online].
Available: http://data.london.gov.uk/housingmarket/

[3] Nationwide. (2015) Nationwide House Price Index. [Online]. Avail-
able: http://www.nationwide.co.uk/~/media/MainSite/documents/about
/house-price-index/Q1_2015.pdf

[4] CEBR. (2015) UK house prices to decline this year, dragged down by a
slump in London. [Online]. Available: http://www.cebr.com/reports/uk-h
ouse-prices-to-fall/

[5] A. White. (2015) London house prices to fall up to 5pc as sellers abandon
the market. [Online]. Available: http://www.telegraph.co.uk/finance/pro
perty/11631377/London-asking-prices-jump-17pc-after-the-election.html

[6] ——. (2015) London asking prices jump 17pc after the election. [Online].
Available: http://www.telegraph.co.uk/finance/property/11631377/Lond
on-asking-prices-jump-17pc-after-the-election.html

[7] Rightmove. (2014) House prices to rise 30pc by 2019, new
Rightmove and Oxford Economics forecast reveals. [Online]. Available:
http://www.rightmove.co.uk/news/articles/property-news/house-prices-t
o-rise-30-by-2019-new-rightmove-and-oxford-economics-forecast-reveals

[8] ——. (2015) House Price Index. [Online]. Available: http://www.rightm
ove.co.uk/news/house-price-index

[9] Savills PLC. (2014) House Price Predictions. [Online]. Available:
http://www.savills.co.uk/resources/5-year-forecast/

[10] Zoopla. (2015) About our value estimates. [Online]. Available: http:
//www.zoopla.co.uk/property/estimate/about/

45

https://www.gov.uk/government/collections/property-transactions-in-the-uk
https://www.gov.uk/government/collections/property-transactions-in-the-uk
http://data.london.gov.uk/housingmarket/
http://www.nationwide.co.uk/~/media/MainSite/documents/about/house-price-index/Q1_2015.pdf
http://www.nationwide.co.uk/~/media/MainSite/documents/about/house-price-index/Q1_2015.pdf
http://www.cebr.com/reports/uk-house-prices-to-fall/
http://www.cebr.com/reports/uk-house-prices-to-fall/
http://www.telegraph.co.uk/finance/property/11631377/London-asking-prices-jump-17pc-after-the-election.html
http://www.telegraph.co.uk/finance/property/11631377/London-asking-prices-jump-17pc-after-the-election.html
http://www.telegraph.co.uk/finance/property/11631377/London-asking-prices-jump-17pc-after-the-election.html
http://www.telegraph.co.uk/finance/property/11631377/London-asking-prices-jump-17pc-after-the-election.html
http://www.rightmove.co.uk/news/articles/property-news/house-prices-to-rise-30-by-2019-new-rightmove-and-oxford-economics-forecast-reveals
http://www.rightmove.co.uk/news/articles/property-news/house-prices-to-rise-30-by-2019-new-rightmove-and-oxford-economics-forecast-reveals
http://www.rightmove.co.uk/news/house-price-index
http://www.rightmove.co.uk/news/house-price-index
http://www.savills.co.uk/resources/5-year-forecast/
http://www.zoopla.co.uk/property/estimate/about/
http://www.zoopla.co.uk/property/estimate/about/

[11] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[12] K. P. Murphy, Machine Learning: A Probabilistic Perspective. MIT Press,
2012.

[13] S. J. Sheather, “Density Estimation,” Statistical Science, vol. 19, no. 4, pp.
588–597, 2004.

[14] B. W. Silverman, Density Estimation for Statistics and Data Analysis.
CRC Press, 1986.

[15] L. van der Maaten, E. Postma, and H. van den Herik, “Dimensionality
Reduction: A Comparative Review,” Elsevier, 2008.

[16] C. J. C. Burges, Dimension Reduction: A Guided Tour. Now Publishers
Inc, 2010.

[17] A. Jain, M. Murty, and P. Flynn, “Data Clustering: A Review,” 2009.

[18] P. Dayan and C. J. Watkins, “Reinforcement Learning,” in Encyclopedia of
Cognitive Science. MacMillan Press, 2001.

[19] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear
Regression Analysis. John Wiley and Sons, 2012.

[20] I. J. Myung, “Tutorial on maximum likelihood estimation,” Elsevier Sci-
ence, 2003.

[21] D. Lindley and A. Smith, “Bayes Estimates for the Linear Model,” Journal
of the Royal Statistical Society, vol. 34, no. 1, pp. 1–41, 1972.

[22] M. E. Tipping, “The Relevance Vector Machine,” in Advances in Neural
Information Processing Systems, vol. 12, 2000, pp. 652–658.

[23] ——, “Sparse Bayesian Learning and the Relevance Vector Machine,” Jour-
nal of Machine Learning Research, vol. 1, pp. 211–244, 2001.

[24] B. Schölkopf and A. J. Smola, Learning with Kernels. MIT Press, 2002.

[25] B. Schiilkopf, “The kernel trick for distances,” in Advances in Neural Infor-
mation Processing Systems 13: Proceedings of the 2000 Conference. Vol.
13. MIT Press, 2001.

[26] C. J. Burges, “A Tutorial on Support Vector Machines for Pattern Recog-
nition,” Data Mining and Knowledge Discovery 2, pp. 121–167, 1998.

[27] C. Cortes and V. Vapnik, “Support-Vector Networks,” inMachine Learning,
1995, pp. 273–297.

46

[28] J. Shawe-Taylor and N. Cristianini, Support Vector Machines and other
kernel-based learning methods. Cambridge University Press, 2000.

[29] M. E. Tipping and A. C. Faul, “Fast Marginal Likelihood Maximisation for
Fast Marginal Likelihood Maximisation for Sparse Bayesian Models,” in
Proceedings of the Ninth International Workshop on Artificial Intelligence
and Statistics, 2003.

[30] J. Quinonero-Candela, “Learning with uncertainty - Gaussian processes
and relevance vector machines,” Ph.D. dissertation, Technical University
of Denmark, 2004.

[31] C. E. Rasmussen and J. Quinonero-Candela, “Healing the Relevance Vector
Machine through Augmentation,” in Proceedings of the 22nd International
Conference on Machine Learning, 2005.

[32] C. K. I. Williams and C. E. Rasmussen, “Gaussian Processes For Regres-
sion,” in Advances in Neural Information Processing Systems, vol. 8, 1996,
pp. 514–520.

[33] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian Processes for Big
Data,” in Proceedings of the Conference on Uncertainty in Artificial Intel-
ligence, 2013.

[34] C. E. Rasmussen, “Evaluation of Gaussian processes and other methods for
non-linear regression,” Ph.D. dissertation, University of Toronto, 1996.

[35] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

[36] M. P. Deisenroth and J. W. Ng, “Distributed Gaussian Processes,” in Pro-
ceedings of the 32nd International Conference on Machine Learning, 2015.

[37] J. Quinonero-Candela and C. E. Rasmussen, “A Unifying View of Sparse
Approximate Gaussian Process Regression,” Journal of Machine Learning
Research, vol. 6, pp. 1939–1960, 2005.

[38] J. Quinonero-Candela, C. E. Rasmussen, and C. K. Williams, “Approxi-
mation Methods for Gaussian Process Regression,” Large-scale kernel ma-
chines, pp. 203–223, 2007.

[39] J. W. Ng and M. P. Deisenroth, “Hierarchical Mixture-of-Experts Model
for Large-Scale Gaussian Process Regression,” 2014.

[40] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
Mixtures of Local Experts,” Neural Computation, vol. 3, no. 79-87, 1991.

47

[41] C. E. Rasmussen and Z. Ghahramani, “Infinite mixtures of gaussian process
experts,” Advances in Neural Information Processing Systems, no. 881-888,
2002.

[42] Y. Cao and D. J. Fleet, “Generalized Product of Experts for Automatic
and Principled Fusion of Gaussian Process Predictions,” 2014.

[43] H. Alkharusi, “Categorical Variables in Regression Analysis: A Comparison
of Dummy and Effect Coding,” International Journal of Education, 2012.

[44] IDC. (2015) Smartphone OS Market Share, Q1 2015. [Online]. Available:
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[45] A. J. S. Quoc V. Le and S. Canu, “Heteroscedastic Gaussian Process Re-
gression,” in Proceedings of the 22 nd International Conference Proceedings
of the 22nd International Conference on Machine Learning, 2005.

48

http://www.idc.com/prodserv/smartphone-os-market-share.jsp

	Introduction
	Objectives

	Background
	London Housing Market
	Dataset
	Related Work
	Property Agents and Economists
	Property Search Websites
	Summary

	Regression Methods
	Introduction
	Linear Regression
	Error Function and Maximum Likelihood Solution
	Regularisation

	Bayesian Linear Regression
	Posterior Distribution
	Predictive Distribution

	Relevance Vector Machines
	Marginal Likelihood Maximisation
	Predictive Distribution
	Problems with Predictive Variances

	Gaussian Process
	Training
	Predictive Distribution
	Distributed GPs
	Product of Experts
	Generalised Product of Experts

	Summary

	Design and Implementation: Prediction System
	Data Preparation
	Utilisation of Data

	Training
	Linear Prior Mean Function
	Kernel

	Prediction

	Design and Implementation: Mobile Application
	Client-side
	Application Structure
	Application Design

	Server-side
	Web Server
	Application Server

	Evaluation
	Prediction Method
	Prediction System
	Mobile Application

	Conclusion
	Future Work

	Bibliography

