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!Abstract— It has been proposed that oscillating groups of
neurons firing synchronously provide a mechanism tht
underlies many cognitive functions. In previous wdk, it has
been demonstrated that, in a network of excitatoryand
inhibitory neurons, a synchronous response graduafl emerges
due to spike timing dependant plasticity (STDP) a@tg upon an
external spatio-temporal stimulus that is repeatedl applied.
This paper builds on these findings by addressingmo questions
relating to STDP and network dynamics in the conteix of
pyramidal  inter-neuronal gamma  (PING)  network
architectures. Firstly, how does the choice of neon model
affect the learning of oscillation through STDP? Ou
experiments suggest that the earlier results hingen the
selection of a simple, biologically less realistineuron model.
Secondly, how do neural oscillators that have leasd to
oscillate only in response to a particular stimulusehave when
connected to other such neural oscillators? We ingégate this
question in the context of a network of PING oscidltors, in
order to understand the relationship between couptig strength
and the onset of synchrony, emulating the resultsfa classic
experiment by Kuramoto.

I. INTRODUCTION

HERE has been growing interest in brain dynamia al!

oscillatory behaviour within neuroscience commuasiti
due to the
behavioural states are associated with differendinbr
rhythms. It has been hypothesized that disparaiepgr of
neurons firing synchronously together provide a maeésm
that underlies many cognitive functions, such asngion®,
associative learning, working memory?, the formation of
episodic memory*®, visual perception®, and sensory

selection’. Recently, a role for synchronization has bee
proposed in opening up communication channels hetwe

neuron groug$ providing optimal conditions for information
transfef. Further to this, it has been suggested thasigan
periods of synchronization and desynchronizatioavioie
mechanism for dynamically forming coalitions
functionally related neural areds

Spike Timing Dependent Plasticity (STDP) is
refinement of the Hebbian learning principle forikemm

neural networks based upon the precise timing & pr

synaptic and post-synaptic spikes, and has beenrtegpin

realization that different perceptuald an

a

Murray Shanahan

network, each of which exhibits its own oscillatory

dynamics, a phenomenon they refer to distributed
synchrony Hosakaet al** demonstrate oscillatory dynamics
in a network of excitatory and inhibitory neurorat has
been trained using STDP with an external spatigptead
stimulus that was repeatedly applied. In this fatterk a
synchronous response gradually emerges, and tlohreyty
becomes sharp as learning proceeds. The authdestista
the generation of synchrony itself does not dependhe
length of the cycle of external input, however tfieynd that
synchrony emerges once per cycle of the lengthhef
external stimulus trained upon.

This paper addresses two issues relating to STiaP a

network dynamics. Firstly, how does the choice efinon
model affect the learning of oscillation through [87?
Secondly, how do neural oscillators that have ledto only
oscillate in response to a particular stimulus kehahen
connected to other such neural oscillators?

In the first study, this paper assesses the efffedtthe
neuron model has in a network of excitatory andbiitdry
eurons that has been trained using STDP to respgnd
oscillating to a learnt stimulus. Neurons can becdbed by
their bifurcation properties and the period of theiuper-
critical limit cycle. For example, Type | neuronsvie a
saddle node bifurcation and have a zero frequenpgrs
critical limit cycle, where as Type Il neurons chave a
saddle node or an Andronov-Hopf bifurcation, buveha
fixed frequency super-critical limit cycfe For saddle node
bifurcation neurons, the resting state of the neusoat a
ﬁable equilibrium point. Incoming spikes are ing#gd and
move the neuron voltage to a saddle point at wiiehters a
super-critical limit cycle and produces a spike.r Fo
Andronov-Hopf bifurcation neurons, there is a snwlb-
critical limit cycle around a stable fixed pointhd position

Ofthe neuron is at in this limit cycle will dictateet effect that

incoming spikes have upon the limit cycle, andumtthe
effect of future incoming spikes. The neuron dyresrgan
therefore resonate to the incoming signal. When sihie-
critical limit cycle approaches a large amplitugéking limit
the neuron enters a super-critical limit cycle whdicits a

many experimental studiés STDP has further been studiedSpike' Both Type | and Type Il spiking propertias,well as

in relation to oscillations. Levet al *? report that synaptic

plasticity facilitates the formation of sub-asseiebwithin a
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saddle node and Andronov-Hopf bifurcations are sssmkin
this paper.

The second question addressed in this paper aonbew
neural oscillators that have learned to only redptm a
particular stimulus would behave when connectedtter
such neural oscillators. Our previous wdrkexplored the



relationship between simple (not neural) oscillatoodels B. Izhikevich neurons

and their neural counterparts by emulating neur#fg The Izhikevich (IZ) neuron modél' is a two variable
Kuramoto critical coupling experiméfit This classic system that can model both Type | and Type Il nesiro
experiment showed that synchrony increases as cbone gepending upon how it is parameterized. The model
strength is increased in a uniformly connected oetvof  gimylates a refractory period, which is an advaanethe
simple oscillators. Our previous work experimentall Q|F model when a Type | neuron is simulated. Theeti

demonstrated that simple oscillator models disptinse qyolution of the model is defined as follows:
behavioural similarities to networks of oscillatingeural

populations that are designed to produce an ommjla 9V _ 004V 2 +5v+140 -U + | (3)
response to any input. The work illustrated howraku dt
models display greater spectral complexity duringOIU

synchronization than the simple Kuramoto oscillatwrdel, ——= a(bV -U) (4)
with several oscillatory frequencies coexisting hivit an

individual neural oscillator population. It further if vV > 30, then{y - ¢c,U < U +d (5)
demonstrated that at the point of maximum synchriney

neural systems not only display several coexistind]f U>15,thenU 15 (6)

frequencies within an individual oscillator popigat but | js the input to the neuron. V and U are the \g#tand
that the system also shows deviations from a measuiull recovery variable respectively, and a, b, ¢ andrd a
synchrony likely caused by these additional fluthe dimensionless parameters. The values chosen fee tire as
influences. In this paper we revisit this experit@ut using  follows: a=0.02, b=0.2, c=-65+15xrand d = 8-6>4 where
instead neural oscillators that have been trainely ®© [ is a value between 0 and 1 chosen from a uniform
respond by oscillating to a learnt stimulus. Wetwast the  distribution. The chosen parameter values dictas the
results to the synchrony in networks of neural oIS in  |zhikevich neurons used in this paper are Typeelirons
which the individual neural oscillators responddsgillating  with a saddle node bifurcation. The extra term tiimgi U

to any input stimulus. from going above 15 prevents over saturation ofétevery

variable caused by high levels of input.
Il. METHODS )
C. Hodgkin-Huxley neurons

A. Quadratic intergrate-and-fire neurons The Hodgkin-Huxley (HH) modef’ is a Type Il neuron

The Quadratic Integrate and Fire (QIF) motetlisplays With an Andronov-Hopf bifurcation, and is widely
Type | neuron dynamic. The time evolution of the neuron considered as the benchmark standard for neuratisiddis

membrane potential is given by: based upon experiments on the giant axon of thédsqu
Hodgkin and Huxley found three different types ohi
av _ E(V -V )(V _Vt)+ 1 (1) current: sodium (Na+), potassium (K+), and a leakent
dt 7 ' c that consists mainly of chloride (CI-) ions. Diféett voltage-

where V is the membrane potential, withand \ being the dependent ion channels con_trol the f_Iow of ionsuigh _the
resting and threshold values respectively. C is tHefll membrane. From their experiments, Hodgkin and
capacitance of the cell membraneis the membrane time Huxley formulated the following equation definingettime
constant such that = RC with R being the resistance. |€volution of the model:
represents a depolarizing input current to the aveur

An action potential occurs when V reaches a valygcst COLV: gn*v-g.)-g,.mhlv-E.)-g,(u-g) @
which point it is reset to value §; The QIF model is dt
equivalent to the theta neuron model described by
Ermentrout and Kopeill9 if one sets the reset conditioRe @: a (V )(1_ n) -B (V )n (8)
= o0 and Veset = <0. Like Borgers and Kopelf® we use  dt " "
values V = Vieser= 0 and V = Vpea= 1, which reduces the

above equation to: %nz a. (V)a-m)- 3. ()m (9)
N v -1+ - @)
dt C dh
. - —==a,(V)i-h)-5,()n (10)
Here - land is set to the value 2 for all experimentsdt
T
carried out in the paper. When working with the @ibdel C is the capacitance amg m andh describe the voltage
we assume a membrane potential between W65 mV and dependence opening and closing dynamics of the ion
Vi=-45mV. channels. The maximum conductance of each chamael a

0=120, gn=36 andg, =0.3. The reversal potentials are set
so that thag,=-12, Ex,=115 andE, =10.6. The standard rate
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Fig. 1. Pyramidal inter-neuronal gamma (PING) #etfture used for

neural oscillatory node
functions for each channel are used and can bedfaun
Hodgkin and Huxley’s boof.

All work in this paper using the HH model adjuske t
neuron resting potential from 0 mV of the stand&td
implementation to the more accepted value of 65’V

D. Synaptic model

A conductance synaptic model is used for experimen

using the QIF and IZ models, which simply multiglithe
incoming spike by a synaptic weight, whereas therhibtiel
uses synaptic reversal potentials to further saaeming
spikes. The latter model is as follows:

|,0)=3, wt(Rev -v,)
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Fig. 2. Raster plot of neuron firings from the igxiory layer of a QIF
PING node that has learnt to oscillate at 3C

a post-synaptic spike followed by a pre-synaptiékesp
depresses the synaptic weight. The change in wéigh)tis
affected by the exponential of the time differerfa®) and
the learning rate constarif){

-lat]

Aw=Je © (12)

For potentiation, the learning rate valués 0.3, and the
window t is 20 ms. For depression, the learning rate value
is 0.3105 and the windowis 10 ms.

F. Evolution of oscillatory nodes

Although groups of neurons firing together rhythatiig
can occur because of intrinsic firing patterns ¢ittory
principal cells or common input from a pacemakieis more

where |(t) is the input to neuron j at tintet; is the spike  common both in the cortex and the hippocampus that
from neuron i arriying at tim¢ andw; is the We_ight of the rhythmic firing happens as an emergent property of
synapse connecting the two neurons. Rev is thersaVe jnteractions between excitatory principal cells anubitory
potential and Yis the voltage of the target neuron. Thenierneyrons. Variations of this mechanism, knows a

reversal potentials for the model are set to tineeszalues in
all experiments. For excitatory inputs the revepsdéntial is
set to 0 mV, and for inhibitory inputs the revensatential is
-70 mV. Not using a synaptic reversal model for @€ and
IZ models is equivalent to using a synaptic revensadel
with reversal potentials set teotmV for excitatory neurons
and e mV for inhibitory neurons.

E. Spike timing dependent plasticity

Spike timing dependant plasticity (STDP) is an eioglly
derived refinement of the Hebbian learning printifa
spiking neural networks. STDP displays strengthgenifi
correlated groups of synapses, the basic featutéebbian
learning, as well as other desirable features sscfiring-
rate independence and stabifity

Long-term plasticity depends on the exact timinigtren,
on the time scale of milliseconds, of the spikesrfithe pre-

synaptic neuron and the spikes from the post-simapt

neuron. When the post-synaptic neuron fires at ttnie
initiates the synaptic weight update rule. The tpdale
considers pre-synaptic spike timesAf) within a given
window (r). The update method used in this paper is
‘additive nearest neighbour' scheme, in which tméyspike
temporally nearest the time of the post-synaptikesps
considered, and the weight change is not depengiemt the
current weight value. A pre-synaptic spike followby a
post-synaptic spike potentiates the synaptic weighere as

agrpace of parameter values within the general
r

pyramidal inter-neuronal gamma (PING), can givee rie
both faster gamma oscillations, as well as slovgeillations
such as theta in the cortex and the hippocampus
Excitatory neurons drive the entire local network,
including inhibitory interneurons. The most stronglriven
inhibitory neurons will fire first and provide iftition to
numerous other inhibitory neurons. The inhibitoffeet on
all these neurons will disappear at approximatbly same
time. Affected inhibitory neurons will then fire wghly
together, causing large numbers of inhibitory nesrto be
entrained to a rhythm within just a few oscillataycles®.
This rhythmically synchronized inhibition also affs the
network’s excitatory neurons with a fast and strepgaptic
input ?® thus leaving only a short window for the excitgtor
neurons to fire after one period of inhibition weaff and
before the next one staffs
Whilst the general PING architecture is well untizod,
the specific details required for both particulacitiatory
frequencies and neuron model varies and involvésrge
PING
amework. In the present work, all neural popwlas used
an excitatory layer of 200 neurons and an inhilitayer of
50 neurons. The excitatory layer drives the emieévork
and so is the only one to receive external inpute T
networks were wired up with connections betweeritatxy



neurons (EE), between inhibitory neurons (Il),
excitatory to inhibitory neurons (El) and from ibhory to

frompopulation and converting them to a continuous tualging

signal. This was achieved by binning the spikes divae,

excitatory neurons (IE). The PING architecture used and then passing a Gaussian smoothing filter dwebinned

illustrated in figure 1. In addition to the synaptieight, a
scaling factor of 7 was used on all synaptic curianthe
oscillatory populations for all neuron models tonglate
networks of a larger size than we could feasibipusate

otherwise given the number of simulation runs ire t

experiments.

milliseconds of the external stimulus presentatidhe

The parameters that were evolved were the length in, 1
clip = 60G| f,——

synaptic weights and delays, as well as the nundfer

synaptic connections between source and targebngun
each pathway. The specific values for the weiglat delay
of each synaptic connection were generated usingrial
distribution, with the means and variances for weights
and the delays being the parameters in the gengnieedl.

Weights were constrained to evolve values betweand1
for excitatory connections and 0 and -1 for inhdbjt
connections. Long delays are quite unrealistiafatuster of
neurons in which all neurons are anatomically ctogether.
In the cortex synaptic latency ranges from 0.2 an6 ms®®.

In order to produce realistic results, excitatogtags were
bounded between 1 ms and 10 ms. The IE and Il sielaye
allowed to have a maximum value of 50 ms to sineuthe
effect of slow inhibitory interneurons, the behawioof

which was otherwise not modelled.

data. Next a Fourier transform was performed onntiean
centred signal to produce the frequency spectrunthef
signal. The first fitness term was applied to thimds from
the simulation with the learnt stimulus after tiag It was

pcalculated by creating a scaled Gaussian centrshdrthe

desired frequenclyin the spectrum of the form:

(13)
2000

The frequency spectrura was subtracted from this and
normalized:

—|clip —s]|
> clip
An extra penalty was introduced to discourage feagies

outside the desired range. This was achieved byiptyimhg

the frequency spectrum by -0.002 in the areas duréway
from the desired frequency whilst ignoring the ast¢aand
immediately around the desired frequency. The tesak
then normalized and added to fitnesEhe second fitness
term was applied to the test in which the altexgasitimulus
was applied, and consisted of ensuring the amgitfdthe
peak frequency response for that test was belove®.&s to

fitness, = (14)

Two types of PING architecture networks were ewvlve discourage firing to a non learnt stimuli. This vashieved

The first learnt a stimulus and then after learniragild only
oscillate to the learnt stimulus. The second did nse
learning and so would oscillate to any input stimul

For the learning PING networks the input to theitaxory
layer was generated from a Poisson process witdmpeter.
= 0.3. For QIF models the inputs were scaled byfdi5the
IZ model they were scaled by 50, and for the HH elethe
inputs were scaled by 2.5 in order to provide sigfit
stimulus to induce firing. Testing an individualnsisted of
three stages. The first stage trained the netwsfiOP was
used only applied to the excitatory connections tle
network. The amount of time trained for was als@aolved
parameter in the learning evolutionary simulatioasd
STDP was stopped after this time. Next an individuas
tested for 5000 ms of simulated time with the leatimulus
to see how well it had learnt the stimulus. Finadp
individual was tested for 5000 ms of simulated tivith an
alternative stimulus that it had not been trainedif order
to see how it responds to other stimuli.

The evolutionary populations consisted of 20 indlisl
genomes. After testing each individual was ratedfifness
and probabilistically selected for the next gerierst parents
based upon its fitness ranking. Crossover was peegd on
parent genomes after which mutation was appliedhto
offspring with a probability of 0.1.

The fitness function for the genetic algorithm dstesd
first of taking the spike firing times of the extibry

by first locating the frequency with the highestpitnde A,
and then calculating the second fitness term é@wel

_20-(A - 05)
20

Both fitness terms were combined to give the overal
fitness for an individual.

PING architectures that did not use learning werly
evolved for the QIF model. Evolution consisted pédest in
which a random stimulus was applied for 5000 ms of
simulated time. The stimulus was generated using th
Poisson process with parameter 0.4375, and was scaled
by 8 in order to induce sufficient firing. The fites of an
individual was calculated using only fithesslescribed
above. Evolutionary selection, crossover and nanatvere
performed in the same way as with the evolutiotheflearnt
PING architectures. Analysis of the resulting nearhing
networks showed that the evolved oscillatory fremye(f)
was mainly influenced by the EI/IE delay loop, fanich EI
mean delay + |IE mean delay1000/2.

fitness, = (15)

G. Synchronisation metric

The critical coupling experiment simulations insthivork
consisted of 64 neural oscillators connected tagetBach
neural oscillator consisted of an excitatory lagerd an
inhibitory layer. We only calculated synchrony foine
excitatory neuron layers in the oscillators. Thikep of each
neuron in each excitatory layer were binned oveetiand



Frequency Amplitude Response To Leanrt Stimulus With Noise Frequency Amplitude Response To Leanrt Stimulus Given Learning Time
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Fig. 3. Amplitude of desired 30 Hz frequency resgofor QIF, 1Z and Fig. 4. Amplitude of desired 30 Hz frequency resgofor QIF, 1Z and
HH models with 09-100% noise added to stimul HH models after learning times fron-250 ms

then a Gaussian smoothing filter was passed oeebitimed distribution. We then tested the network with thewn
data to produce a continuous time varying signalloving  stimulus for 5000 ms and measured the amplitud¢hef
this, we performed a Hilbert transform on the meantred desired frequency response. We did this for evesisen
filtered signal in order to identify its phase. T9yschrony at percentage from 0% to 100% and averaged the remuts

timet was then calculated as follows: 10 sample runs. A 100% noise level represents aletaty

different pattern from the training stimulus, fothieh we

4= 1 lowlq %) (16) expect the network not to respond at all. The QéFwork
B tmaxZ N ZJ: performs the best, showing a gradual decline in the

amplitude of the frequency response until it reacle
minimal response at 44% noise. Less than 0.5 amglit
implies that only a few neurons are firing henceresponse
is really being produced. With such a low noisedsponse
threshold the QIF model is the most highly selectiv only
its learnt stimulus. The 1Z model performs almostveell.
The HH model performs poorest with a less pronodnce
A. Neuron model and the learning of oscillation thrbug frequency amplitude decline as noise rises, and altess
STDP stable response throughout. The less stable resfpodsie to

Our first investigation explored how the neuron ®iod & high variance in the amplitude over the 10 sampfe,
affects the ability of a cluster of neurons to fetw oscillate. ~€ither meaning that the network is very sensitvparticular
In order to explore this we evolved neural learniilG ~ afferents which may or may not appear in any of 1080
oscillators to oscillate at 30 Hz for QIF, 1Z andHHheuron Funs performed and their particular noise level aathple
models. The evolutionary process is described ia tHun, Or that the network is just inherently moréatie.
methods section. It optimises the networks both tfair We next explored the effect that learning time tasn

ability to oscillate at the desired frequency ispense to a the networks. For each network type we took a stimand
learnt stimulus, as well as their ability to nospend to a trained the network on it for a given tirheWe then tested

non-learnt stimulus. Figure 2 shows a raster plbthe the network on the stimulus for 5000 ms and measthe

firings of the excitatory layer from the evolvedfQ$olution ~desired frequency amplitude response. We did drievery
when it has been presented with a learnt stimultsr a learning timet between 1 ms and 250 ms. We averaged the

training. In accord with the finding of Hosalka al*® the results over 10 sample runs. Figure 4 shows thaltses
network fires regularly at the stimulus presentatiand has SOme unpredictability can be seen below 20 ms iegm
narrow and pronounced periodic bands. These thirdsa time that may be expected for a 33 ms stimuluserAfis
appear approximately every 33 milliseconds givihg 80 the amplitude rises steadily until it stabilisestard 100 ms.

Hz oscillation desired. Beyond this there is some dip with not much vasiatiThe

Figure 3 shows how the networks respond to naise {eaming time is very quick and only three stimulus

the stimulus. The aim of this study is to ascerthithe Presentations are required to learn maximally. THie
network only responds by oscillating to the leastimulus Model performs  poorest with a less stable response
and no other. To obtain this graph we took a tiinetwork throughout due to a high variance in the amplitader the

and the stimulus it was trained to and replacedragntage 10 Sample runs, as well as an overall lower anggitu
of the stimulus with random data drawn from the samVvariance of amplitude in this case is not due tdigalar
afferents being present on particular runs as rallpgesent

wheredj(t) is the phase at timteof oscillatory population. i
is the square root of -N is the number of oscillators, and
tmaxiS the length of time of the simulation.

I1l. RESULTS



Frequency Response Given Length Of Stimulus Altering Stimulus Length After Training For 1Z Model
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Fig. 5. Frequency response for QIF, 1Z and HH noddter learning Fig. 6. 1Z model after learning with 14 ms stimalérrequency response
with varvina stimulus lenath for varvina stimulus lenaths presented after learn

on all runs, and so is due to the network beingenvalatile. the network to fire regularly at the stimulus presg¢ion, and
This suggests that the variance in amplitude inrtbise that this firing would become earlier and sharpar.the

experiments is also due to volatility. sense of producing narrower and more pronounceiddger
Figure 5 shows the effect of changing the length ibands, as learning proceeds. Hence, the resuitimdhsony.
milliseconds of the stimulus. To achieve this wektoa It follows from this that after an appropriate [ekiof

stimulus of length, trained the network on it, and then testedearning the frequency of the oscillation can bgustgéd by
the network for 5000 ms on the same stimulus. Wlethis simply altering the length of the stimulus, assitanly the
for every stimulus length between 1 ms and 100 ms, andeginning of the stimulus that is required to inelficing. To
averaged the results over 10 sample runs. All iegrstages test this hypothesis we generated a stimulus of h&0but
for all stimulus lengthg had the same learning time. Weonly trained the network on the first 14 ms repéigtentil a
located the frequency with the highest amplitudly.dfrom  satisfactory amplitude response was attained. \We tibsted
the figure we can see that none of the models respothe network for 5000 ms with the stimulus but onéng the
significantly to stimuli less than 10 ms long. Bagahis, the first t milliseconds repeatedly. We did this for everyueabf
figure shows that for both QIF and IZ models, thegth of t between 13 and 100 ms. As can be seen by thasdsul
the stimulus is roughly proportional to the fregexe(f), with  the 1Z model shown in figure 6, the hypothesis dsrect.
f=1000t. This cannot be said of the HH model which iHosakaet al ** state that in a network of excitatory and
unable to use the same network architecture tonléar inhibitory neurons, STDP transforms a spatiotemipora
oscillate at different frequencies, given only amfe in the pattern to a temporal pattern. However, from thilence
stimulus length. Having found a dependency on dtismu above we conclude that the resultant temporalityoisdue
length, we removed the inhibitory layer from theéwmks to the network dynamics that result from the PING
and found it made no difference to the performanfc®IF, architecture, but is an artifact of repeatqubriodic
IZ and HH models. We conclude that, regular rejpetiof a  presentationof a learnt stimulus. The network will respond
stimulus to a network that has been trained usiigRswill  “synchronously” whenever the stimulus is presented.
cause oscillation at the frequency of presentatieor. the Given that the frequency of the oscillations ire th
HH model this further means that whilst stimuluegéh is evolved networks that did not use learning wereseduby
important in achieving the result, the tuning ofhext the EI/IE delay loop, we can conclude that repegtest-
variables is necessary to achieve the desiredatsmil. learning presentation of the stimulus overridesnterferes
The fact that oscillatory frequency is dependerdruthe with the oscillatons that would otherwise be caubgdhe
length of the presentation can be elucidated bywibk of delays in the PING architecture. A fast EI/IE lowjl feed
Masquelieret af’. They report that during learning with back and subside before the next learnt stimulsggomese. In
STDP, uncorrelated firings are depressed, whitstsimaptic this case oscillations from the periodic stimuludl vake
connections with the afferents that took part mfiing of a precedence over PING oscillations. Using neuronsitbier
neuron are potentiated. Further to thi§ac¢h time the Type | or Type Il classification produces equivalessults
neuron discharges in the pattern, it reinforces thevith STDP. However, the HH model does not perfonrthie
connections with the presynaptic neurons that feséghtly same manner. The difference in the HH model is the
before in the pattern. As a result next time thétgea is Andronov-Hopf bifurcation and the neuron’s synaptic
presented the neuron is not only more likely teltisge to reversal potential. The result is a less robusivoek that is
it, but it will also tend to discharge earliét’ The fact that also unable to use the same architecture to learaspond
neurons learn to always respond to a particulanutis to stimuli that have a variety of presentation sme
implies that the regular repetition of a stimulusud cause



Synchrony Of Non-Learnt QIF PING Networks
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B. Kuramoto experiment
Our next investigation explored the critical cougli

Synchrony Of Learnt QIF PING Networks
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respond only to a particul.

determined by the time at which external input be t
oscillator was started, which varied from 0 ms @0 Ins.
The slowest oscillator was 10 Hz and therefore rad@en

L
0.015 0.05

experimenif’ in which synchrony increase smoothly butgga point ranging from 0 ms to 100 ms allowed ¥6rHz

rapidly as connection strength increases in a tmédly
connected network of oscillators. In this experitnem use
PING neural oscillator nodes that had learnt tollese at
different frequencies.

Given the findings of the previous investigatiome
were able to generate every frequency of osciltatietween
10 Hz and 50 Hz for QIF neurons, by training ouoleed
solution and varying the stimulus length and thardeng
time. Whilst our findings in the previous sectidrowed that
the inhibitory layer is not essential for producitbe
oscillation in these learning networks, we retainte
inhibitory PING architecture to reduce the posgipilof
neuron saturation (by which we mean all neuroriadiall
the time) when connecting many oscillators together

In order to compare the results to neural osciltatbat
had not learnt, we evolved every frequency of taain
between 10 Hz and 50 Hz for QIF neurons but withasing
learning, and so relying on the evolved delaysrtapce to
oscillation *°. The evolution of these types of networks
described in the methods.

For simplicity, Kuramoto assumed that the distiidnutof
oscillator intrinsic frequencies was unimodal agthsetric
about its mean frequency, as in a Gaussian disiitbdior

31 ;
example®”. We have evolved PING architectures for ever)élignments

oscillators (as well as all oscillators of higheeduency) to
be completely out of phase with each other. Theoreuin
the excitatory layers of each node were synapticall
connected to the neurons in the excitatory laydreach
other node with a connection ratio of 0.2. The eixpents
involved a sweep of 200 synaptic weights for aleimode
connections. Weights were set to the same valugnétach
iteration in the parameter sweep, but with eacHieift
iteration having a different synaptic weight. Orcleaweep
the overall synchrony of the network was measuidte
networks were simulated for 2000 ms for each ii@nabf
the sweep. Each network comprised 16000 neurons and
36,256,000 synapses.

Beyond a particular high coupling value, the networ
models exhibited “saturation”, meaning that all ieatory
neurons in all nodes were firing continuously. Tesults
shown here display data up to the respective point
_saturation for each model type as data beyondpthiist is
'Shot noteworthy.

Figure 7 shows the synchrony results for the ealv
PING architectures thatdlo not use learning At O
connection strength there is a synchrony of aroQrt]
which indicates no synchrony at all except for caental
in phase. Synchrony rises with connectio

frequency between 10 Hz and 50 Hz. In line withyengih put so too does the spread of the datiicating

Kuramoto’s specification we selected from thesdllasors
using a Gaussian distribution with a mean of 30 Hae

variance we chose in order to ensure a good spoéad

different oscillator frequencies was 10 Hz.

In all our experiments we used 64 neural oscillaides
to form a network. Given a learnt PING node, exaéinput
to the excitatory layer along with the learnt EEhimections
induces the intrinsic oscillation at the frequertbg node
was generated for. For a non-learnt PING node, riexte
input to the excitatory layer along with the PINf8titecture
induces the intrinsic oscillation at the frequertbg node

some variation in behaviour with these systems. The
synchrony levels off at 0.07 connection strengtth Emmains
the same until there is a major discontinuity af70.
connection strength.

By contrast figure 8 show the synchrony for theraku
oscillatorsthat had learnt to oscillate Within a critical
region of connection strengths, synchrony can len de
increase smoothly but rapidly as connection sttengt
increases, in accord with Kuramoto's findings. The
connection strength is effective at different leviel the non-
learning PING model due to different sensitivities the

was generated for. The phase of each oscillator was



evolved solutions, Poisson process parameters sealihg
factors. However the behaviour is the key diffeeetw note.
There is a very tight sinusoidal increase, indigtlittle
variation in behaviour with these learnt systenmiike those
in figure 7. There are also no discontinuities. Bystems
that have been pre-trained using STDP producededihed
and precise collective behaviour, unlike thosetraohed.

[7] Fries, P., Schroder, J., Roelfsema, P. R., SiMyerand Engel, A. K.
(2002). Oscillatory neuronal synchronization innpairy visual cortex
as a correlate of stimulus selection. Journal ofurbigcience,
22(9):3739-3754.

Fries P. (2005 ). A mechanism for cognitive dynzsnineuronal
communication through neuronal coherence. Trendsagnitive
sciences. 2005;9(10):474-80.

Buehlmann, A., & Deco, G. (2010). Optimal Infornuati Transfer in
the Cortex through Synchronization. (K. J. Fristofd.)PLoS
Computational Biology, 6(9).

(8]

(9]

[10] Shanahan M. (2010). Metastable chimera states mnumity
IV. DiscussIoN structured oscillator networks. Chaos, 20(1), 0B310
It has been shown that STDP generates robudf] Abbott, L. F., & Nelson, S. B. (2000). Synaptiagcity: taming the

synchronous responses. After learning, the netweankes
highly selective for their learnt stimulus and dmt respond
to other stimuli. Effective learning is possiblethim only
three stimulus presentations. Given that the rasult
oscillatory frequency is dependent upon the lermftithe
presentation, the hypothesis that the frequendh@feural
oscillator can be adjusted by simply altering #egth of the
stimulus was experimentally proven. Further to ,thlse
critical coupling experiment demonstrates thatabkective
behaviour of oscillatory architectures that haverbere-
trained using STDP is well defined and preciseantrast to
those that have not been trained.

Type | and Type Il neuron classification does natke
any difference in learning to respond to the terafityr of
stimuli, nor to the robustness thereof. Howevee tH

model, which uses an Andronov-Hopf bifurcation and

neuronal synaptic reversal potential, does not operf
robustly, and requires specific tuning of paransetéo

achieve desired oscillatory frequencies. It is rie¢ting to
note that the more biologically realistic modeldss robust
and requires specific parameter turning, leavingnoghe
question of how the brain facilitates this in ortleachieve a
broad variety of oscillatory frequencies in respon®

different stimuli. Given these findings it might bencluded
that simpler more robust neural models are morecgpiate

for use in a neural engineering context.
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