
 
 

 

  

1Abstract— It has been proposed that oscillating groups of 
neurons firing synchronously provide a mechanism that 
underlies many cognitive functions. In previous work, it has 
been demonstrated that, in a network of excitatory and 
inhibitory neurons, a synchronous response gradually emerges 
due to spike timing dependant plasticity (STDP) acting upon an 
external spatio-temporal stimulus that is repeatedly applied. 
This paper builds on these findings by addressing two questions 
relating to STDP and network dynamics in the context of 
pyramidal inter-neuronal gamma (PING) network 
architectures. Firstly, how does the choice of neuron model 
affect the learning of oscillation through STDP? Our 
experiments suggest that the earlier results hinge on the 
selection of a simple, biologically less realistic neuron model. 
Secondly, how do neural oscillators that have learned to 
oscillate only in response to a particular stimulus behave when 
connected to other such neural oscillators? We investigate this 
question in the context of a network of PING oscillators, in 
order to understand the relationship between coupling strength 
and the onset of synchrony, emulating the results of a classic 
experiment by Kuramoto. 

I. INTRODUCTION 

HERE has been growing interest in brain dynamics and 
oscillatory behaviour within neuroscience communities 

due to the realization that different perceptual and 
behavioural states are associated with different brain 
rhythms. It has been hypothesized that disparate groups of 
neurons firing synchronously together provide a mechanism 
that underlies many cognitive functions, such as attention 1, 
associative learning 2, working memory 3, the formation of 
episodic memory 4,5, visual perception 6, and sensory 
selection 7. Recently, a role for synchronization has been 
proposed in opening up communication channels between 
neuron groups8, providing optimal conditions for information 
transfer9.  Further to this, it has been suggested that transient 
periods of synchronization and desynchronization provide 
mechanism for dynamically forming coalitions of 
functionally related neural areas 10. 

 Spike Timing Dependent Plasticity (STDP) is a 
refinement of the Hebbian learning principle for spiking 
neural networks based upon the precise timing of pre-
synaptic and post-synaptic spikes, and has been reported in 
many experimental studies 11. STDP has further been studied 
in relation to oscillations. Levy et al 12 report that synaptic 
plasticity facilitates the formation of sub-assemblies within a 
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network, each of which exhibits its own oscillatory 
dynamics, a phenomenon they refer to as distributed 
synchrony. Hosaka et al 13 demonstrate oscillatory dynamics 
in a network of excitatory and inhibitory neurons that has 
been trained using STDP with an external spatio-temporal 
stimulus that was repeatedly applied. In this latter work a 
synchronous response gradually emerges, and the synchrony 
becomes sharp as learning proceeds. The authors state that 
the generation of synchrony itself does not depend on the 
length of the cycle of external input, however they found that 
synchrony emerges once per cycle of the length of the 
external stimulus trained upon. 

 This paper addresses two issues relating to STDP and 
network dynamics. Firstly, how does the choice of neuron 
model affect the learning of oscillation through STDP? 
Secondly, how do neural oscillators that have learned to only 
oscillate in response to a particular stimulus behave when 
connected to other such neural oscillators? 

 In the first study, this paper assesses the effect that the 
neuron model has in a network of excitatory and inhibitory 
neurons that has been trained using STDP to respond by 
oscillating to a learnt stimulus. Neurons can be described by 
their bifurcation properties and the period of their super-
critical limit cycle. For example, Type I neurons have a 
saddle node bifurcation and have a zero frequency super-
critical limit cycle, where as Type II neurons can have a 
saddle node or an Andronov-Hopf bifurcation, but have a 
fixed frequency super-critical limit cycle14. For saddle node 
bifurcation neurons, the resting state of the neuron is at a 
sable equilibrium point. Incoming spikes are integrated and 
move the neuron voltage to a saddle point at which it enters a 
super-critical limit cycle and produces a spike. For 
Andronov-Hopf bifurcation neurons, there is a small sub-
critical limit cycle around a stable fixed point. The position 
the neuron is at in this limit cycle will dictate the effect that 
incoming spikes have upon the limit cycle, and in turn the 
effect of future incoming spikes. The neuron dynamics can 
therefore resonate to the incoming signal. When the sub-
critical limit cycle approaches a large amplitude spiking limit 
the neuron enters a super-critical limit cycle which elicits a 
spike. Both Type I and Type II spiking properties, as well as 
saddle node and Andronov-Hopf bifurcations are assessed in 
this paper. 
 The second question addressed in this paper concerns how 
neural oscillators that have learned to only respond to a 
particular stimulus would behave when connected to other 
such neural oscillators. Our previous work 15 explored the 
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relationship between simple (not neural) oscillator models 
and their neural counterparts by emulating neurally the 
Kuramoto critical coupling experiment16. This classic 
experiment showed that synchrony increases as connection 
strength is increased in a uniformly connected network of 
simple oscillators. Our previous work experimentally 
demonstrated that simple oscillator models display close 
behavioural similarities to networks of oscillating neural 
populations that are designed to produce an oscillatory 
response to any input. The work illustrated how neural 
models display greater spectral complexity during 
synchronization than the simple Kuramoto oscillator model, 
with several oscillatory frequencies coexisting within an 
individual neural oscillator population. It further 
demonstrated that at the point of maximum synchrony the 
neural systems not only display several coexisting 
frequencies within an individual oscillator population but 
that the system also shows deviations from a measure of full 
synchrony likely caused by these additional fluctuating 
influences. In this paper we revisit this experiment, but using 
instead neural oscillators that have been trained only to 
respond by oscillating to a learnt stimulus. We contrast the 
results to the synchrony in networks of neural oscillators in 
which the individual neural oscillators respond by oscillating 
to any input stimulus.  

II.  METHODS 

A. Quadratic intergrate-and-fire neurons 

The Quadratic Integrate and Fire (QIF) model 17 displays 
Type I neuron dynamics 18. The time evolution of the neuron 
membrane potential is given by: 
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where V is the membrane potential, with Vr and Vt being the 
resting and threshold values respectively. C is the 
capacitance of the cell membrane. τ is the membrane time 
constant such that τ = RC with R being the resistance. I 
represents a depolarizing input current to the neuron.  

An action potential occurs when V reaches a value Vpeak at 
which point it is reset to value Vreset. The QIF model is 
equivalent to the theta neuron model described by 
Ermentrout and Kopell 19 if one sets the reset condition Vpeak 
= ∞ and Vreset = -∞. Like Börgers and Kopell 20 we use 
values Vr = Vreset = 0 and Vt = Vpeak = 1, which reduces the 
above equation to: 
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Here 
τ
1

=a and is set to the value 2 for all experiments 

carried out in the paper. When working with the QIF model 
we assume a membrane potential between Vr = −65 mV and 
Vt = −45mV. 

B. Izhikevich neurons 

The Izhikevich (IZ) neuron model 21 is a two variable 
system that can model both Type I and Type II neurons 
depending upon how it is parameterized. The model 
simulates a refractory period, which is an advance on the 
QIF model when a Type I neuron is simulated. The time 
evolution of the model is defined as follows: 
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I is the input to the neuron. V and U are the voltage and 
recovery variable respectively, and a, b, c and d are 
dimensionless parameters. The values chosen for these are as 
follows: a=0.02, b=0.2, c=-65+15×r2, and d = 8-6×r2, where 
r is a value between 0 and 1 chosen from a uniform 
distribution. The chosen parameter values dictate that the 
Izhikevich neurons used in this paper are Type II neurons 
with a saddle node bifurcation. The extra term limiting U 
from going above 15 prevents over saturation of the recovery 
variable caused by high levels of input. 

C. Hodgkin-Huxley neurons 

The Hodgkin-Huxley (HH) model 22 is a Type II neuron 
with an Andronov-Hopf bifurcation, and is widely 
considered as the benchmark standard for neural models. It is 
based upon experiments on the giant axon of the squid. 
Hodgkin and Huxley found three different types of ion 
current: sodium (Na+), potassium (K+), and a leak current 
that consists mainly of chloride (Cl-) ions. Different voltage-
dependent ion channels control the flow of ions through the 
cell membrane. From their experiments, Hodgkin and 
Huxley formulated the following equation defining the time 
evolution of the model: 
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C is the capacitance and n, m and h describe the voltage 

dependence opening and closing dynamics of the ion 
channels. The maximum conductance of each channel are: 
gk=120, gNa=36 and gL =0.3. The reversal potentials are set 
so that that Ek=-12, ENa=115 and EL=10.6. The standard rate 



 
 

 

functions for each channel are used and can be found in 
Hodgkin and Huxley’s book 22. 

All work in this paper using the HH model adjusts the 
neuron resting potential from 0 mV of the standard HH 
implementation to the more accepted value of 65 mV 23. 

D. Synaptic model 

 A conductance synaptic model is used for experiments 
using the QIF and IZ models, which simply multiplies the 
incoming spike by a synaptic weight, whereas the HH model 
uses synaptic reversal potentials to further scale incoming 
spikes. The latter model is as follows: 

( ) ( )jiijij
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where Ij(t) is the input to neuron j at time t, ti is the spike 
from neuron i arriving at time t, and wij is the weight of the 
synapse connecting the two neurons. Rev is the reversal 
potential and Vj is the voltage of the target neuron. The 
reversal potentials for the model are set to the same values in 
all experiments. For excitatory inputs the reversal potential is 
set to 0 mV, and for inhibitory inputs the reversal potential is 
-70 mV. Not using a synaptic reversal model for the QIF and 
IZ models is equivalent to using a synaptic reversal model 
with reversal potentials set to +∞ mV for excitatory neurons 
and -∞ mV for inhibitory neurons. 

E. Spike timing dependent plasticity 

Spike timing dependant plasticity (STDP) is an empirically 
derived refinement of the Hebbian learning principal for 
spiking neural networks. STDP displays strengthening of 
correlated groups of synapses, the basic feature of Hebbian 
learning, as well as other desirable features such as firing-
rate independence and stability 24.  

Long-term plasticity depends on the exact timing relation, 
on the time scale of milliseconds, of the spikes from the pre-
synaptic neuron and the spikes from the post-synaptic 
neuron. When the post-synaptic neuron fires at time t it 
initiates the synaptic weight update rule. The update rule 
considers pre-synaptic spike times (t-∆t) within a given 
window (τ). The update method used in this paper is an 
'additive nearest neighbour' scheme, in which only the spike 
temporally nearest the time of the post-synaptic spike is 
considered, and the weight change is not dependent upon the 
current weight value. A pre-synaptic spike followed by a 
post-synaptic spike potentiates the synaptic weight, where as 

a post-synaptic spike followed by a pre-synaptic spike 
depresses the synaptic weight. The change in weight (∆w) is 
affected by the exponential of the time difference (∆t) and 
the learning rate constant (λ): 
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For potentiation, the learning rate value λ is 0.3, and the 
window τ is 20 ms. For depression, the learning rate value λ 
is 0.3105 and the window τ is 10 ms. 

F. Evolution of oscillatory nodes 

Although groups of neurons firing together rhythmically 
can occur because of intrinsic firing patterns of excitatory 
principal cells or common input from a pacemaker, it is more 
common both in the cortex and the hippocampus that 
rhythmic firing happens as an emergent property of 
interactions between excitatory principal cells and inhibitory 
interneurons. Variations of this mechanism, known as 
pyramidal inter-neuronal gamma (PING), can give rise to 
both faster gamma oscillations, as well as slower oscillations 
such as theta in the cortex and the hippocampus 5.  

Excitatory neurons drive the entire local network, 
including inhibitory interneurons. The most strongly driven 
inhibitory neurons will fire first and provide inhibition to 
numerous other inhibitory neurons. The inhibitory effect on 
all these neurons will disappear at approximately the same 
time. Affected inhibitory neurons will then fire roughly 
together, causing large numbers of inhibitory neurons to be 
entrained to a rhythm within just a few oscillatory cycles 25. 
This rhythmically synchronized inhibition also affects the 
network’s excitatory neurons with a fast and strong synaptic 
input 26 thus leaving only a short window for the excitatory 
neurons to fire after one period of inhibition wears off and 
before the next one starts 27. 

Whilst the general PING architecture is well understood, 
the specific details required for both particular oscillatory 
frequencies and neuron model varies and involves a large 
space of parameter values within the general PING 
framework. In the present work, all neural populations used 
an excitatory layer of 200 neurons and an inhibitory layer of 
50 neurons. The excitatory layer drives the entire network 
and so is the only one to receive external input. The 
networks were wired up with connections between excitatory 

 
Fig. 1.  Pyramidal inter-neuronal gamma (PING) architecture used for 
neural oscillatory nodes. 

 
Fig. 2.  Raster plot of neuron firings from the excitatory layer of a QIF 
PING node that has learnt to oscillate at 30 Hz. 



 
 

 

neurons (EE), between inhibitory neurons (II), from 
excitatory to inhibitory neurons (EI) and from inhibitory to 
excitatory neurons (IE). The PING architecture used is 
illustrated in figure 1. In addition to the synaptic weight, a 
scaling factor of 7 was used on all synaptic current in the 
oscillatory populations for all neuron models to simulate 
networks of a larger size than we could feasibly simulate 
otherwise given the number of simulation runs in the 
experiments. 

The parameters that were evolved were the length in 
milliseconds of the external stimulus presentation, the 
synaptic weights and delays, as well as the number of 
synaptic connections between source and target neurons in 
each pathway. The specific values for the weight and delay 
of each synaptic connection were generated using a normal 
distribution, with the means and variances for the weights 
and the delays being the parameters in the genome evolved. 
Weights were constrained to evolve values between 0 and 1 
for excitatory connections and 0 and -1 for inhibitory 
connections. Long delays are quite unrealistic for a cluster of 
neurons in which all neurons are anatomically close together. 
In the cortex synaptic latency ranges from 0.2 ms to 6 ms 28. 
In order to produce realistic results, excitatory delays were 
bounded between 1 ms and 10 ms. The IE and II delays were 
allowed to have a maximum value of 50 ms to simulate the 
effect of slow inhibitory interneurons, the behaviour of 
which was otherwise not modelled. 

Two types of PING architecture networks were evolved. 
The first learnt a stimulus and then after learning would only 
oscillate to the learnt stimulus. The second did not use 
learning and so would oscillate to any input stimuli.  

For the learning PING networks the input to the excitatory 
layer was generated from a Poisson process with parameter λ 
= 0.3. For QIF models the inputs were scaled by 45, for the 
IZ model they were scaled by 50, and for the HH models the 
inputs were scaled by 2.5 in order to provide sufficient 
stimulus to induce firing. Testing an individual consisted of 
three stages. The first stage trained the network. STDP was 
used only applied to the excitatory connections in the 
network. The amount of time trained for was also an evolved 
parameter in the learning evolutionary simulations, and 
STDP was stopped after this time. Next an individual was 
tested for 5000 ms of simulated time with the learnt stimulus 
to see how well it had learnt the stimulus. Finally an 
individual was tested for 5000 ms of simulated time with an 
alternative stimulus that it had not been trained for in order 
to see how it responds to other stimuli.  

The evolutionary populations consisted of 20 individual 
genomes. After testing each individual was rated for fitness 
and probabilistically selected for the next generations parents 
based upon its fitness ranking. Crossover was performed on 
parent genomes after which mutation was applied to the 
offspring with a probability of 0.1. 

The fitness function for the genetic algorithm consisted 
first of taking the spike firing times of the excitatory 

population and converting them to a continuous time-varying 
signal. This was achieved by binning the spikes over time, 
and then passing a Gaussian smoothing filter over the binned 
data. Next a Fourier transform was performed on the mean 
centred signal to produce the frequency spectrum of the 
signal. The first fitness term was applied to the firings from 
the simulation with the learnt stimulus after training. It was 
calculated by creating a scaled Gaussian centred around the 
desired frequency f in the spectrum of the form: 
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The frequency spectrum s was subtracted from this and 
normalized: 
 

∑
−−

clip

sclip
=

||
fitness1

             (14) 

An extra penalty was introduced to discourage frequencies 
outside the desired range. This was achieved by multiplying 
the frequency spectrum by -0.002 in the areas further away 
from the desired frequency whilst ignoring the area at and 
immediately around the desired frequency. The result was 
then normalized and added to fitness1. The second fitness 
term was applied to the test in which the alternative stimulus 
was applied, and consisted of ensuring the amplitude of the 
peak frequency response for that test was below 0.5 so as to 
discourage firing to a non learnt stimuli. This was achieved 
by first locating the frequency with the highest amplitude A, 
and then calculating the second fitness term as follows: 
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Both fitness terms were combined to give the overall 
fitness for an individual. 

 PING architectures that did not use learning were only 
evolved for the QIF model. Evolution consisted of one test in 
which a random stimulus was applied for 5000 ms of 
simulated time. The stimulus was generated using the 
Poisson process with parameter λ = 0.4375, and was scaled 
by 8 in order to induce sufficient firing. The fitness of an 
individual was calculated using only fitness1 described 
above. Evolutionary selection, crossover and mutation were 
performed in the same way as with the evolution of the learnt 
PING architectures. Analysis of the resulting non-learning 
networks showed that the evolved oscillatory frequency (f) 
was mainly influenced by the EI/IE delay loop, for which EI 
mean delay + IE mean delay ≈ 1000/2f. 

G. Synchronisation metric 

The critical coupling experiment simulations in this work 
consisted of 64 neural oscillators connected together. Each 
neural oscillator consisted of an excitatory layer and an 
inhibitory layer. We only calculated synchrony for the 
excitatory neuron layers in the oscillators. The spikes of each 
neuron in each excitatory layer were binned over time, and 



 
 

 

then a Gaussian smoothing filter was passed over the binned 
data to produce a continuous time varying signal. Following 
this, we performed a Hilbert transform on the mean-centred 
filtered signal in order to identify its phase. The synchrony at 
time t was then calculated as follows: 
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where θj(t) is the phase at time t of oscillatory population j.  i 
is the square root of -1. N is the number of oscillators, and 
tmax is the length of time of the simulation.  

III.  RESULTS 

A. Neuron model and the learning of oscillation through 
STDP 

Our first investigation explored how the neuron model 
affects the ability of a cluster of neurons to learn to oscillate. 
In order to explore this we evolved neural learning PING 
oscillators to oscillate at 30 Hz for QIF, IZ and HH neuron 
models. The evolutionary process is described in the 
methods section. It optimises the networks both for their 
ability to oscillate at the desired frequency in response to a 
learnt stimulus, as well as their ability to not respond to a 
non-learnt stimulus. Figure 2 shows a raster plot of the 
firings of the excitatory layer from the evolved QIF solution 
when it has been presented with a learnt stimulus after 
training. In accord with the finding of Hosaka et al 13, the 
network fires regularly at the stimulus presentation, and has 
narrow and pronounced periodic bands. These thin bands 
appear approximately every 33 milliseconds giving the 30 
Hz oscillation desired. 

 Figure 3 shows how the networks respond to noise in 
the stimulus. The aim of this study is to ascertain if the 
network only responds by oscillating to the learnt stimulus 
and no other. To obtain this graph we took a trained network 
and the stimulus it was trained to and replaced a percentage 
of the stimulus with random data drawn from the same 

distribution. We then tested the network with the new 
stimulus for 5000 ms and measured the amplitude of the 
desired frequency response. We did this for every noise 
percentage from 0% to 100% and averaged the results over 
10 sample runs. A 100% noise level represents a completely 
different pattern from the training stimulus, for which we 
expect the network not to respond at all. The QIF network 
performs the best, showing a gradual decline in the 
amplitude of the frequency response until it reaches a 
minimal response at 44% noise. Less than 0.5 amplitude 
implies that only a few neurons are firing hence no response 
is really being produced. With such a low noise to response 
threshold the QIF model is the most highly selective to only 
its learnt stimulus. The IZ model performs almost as well. 
The HH model performs poorest with a less pronounced 
frequency amplitude decline as noise rises, and also a less 
stable response throughout. The less stable response is due to 
a high variance in the amplitude over the 10 sample runs, 
either meaning that the network is very sensitive to particular 
afferents which may or may not appear in any of the 1000 
runs performed and their particular noise level and sample 
run, or that the network is just inherently more volatile. 

 We next explored the effect that learning time has upon 
the networks. For each network type we took a stimulus and 
trained the network on it for a given time t. We then tested 
the network on the stimulus for 5000 ms and measured the 
desired frequency amplitude response. We did this for every 
learning time t between 1 ms and 250 ms. We averaged the 
results over 10 sample runs. Figure 4 shows the results. 
Some unpredictability can be seen below 20 ms learning 
time that may be expected for a 33 ms stimulus. After this 
the amplitude rises steadily until it stabilises around 100 ms. 
Beyond this there is some dip with not much variation. The 
learning time is very quick and only three stimulus 
presentations are required to learn maximally. The HH 
model performs poorest with a less stable response 
throughout due to a high variance in the amplitude over the 
10 sample runs, as well as an overall lower amplitude. 
Variance of amplitude in this case is not due to particular 
afferents being present on particular runs as all are present 

 
Fig. 3.  Amplitude of desired 30 Hz frequency response for QIF, IZ and 
HH models with 0%-100% noise added to stimulus. 

 
Fig. 4.  Amplitude of desired 30 Hz frequency response for QIF, IZ and 
HH models after learning times from 1-250 ms. 



 
 

 

on all runs, and so is due to the network being more volatile. 
This suggests that the variance in amplitude in the noise 
experiments is also due to volatility. 

 Figure 5 shows the effect of changing the length in 
milliseconds of the stimulus. To achieve this we took a 
stimulus of length t, trained the network on it, and then tested 
the network for 5000 ms on the same stimulus. We did this 
for every stimulus length t between 1 ms and 100 ms, and 
averaged the results over 10 sample runs. All learning stages 
for all stimulus lengths t had the same learning time. We 
located the frequency with the highest amplitude only. From 
the figure we can see that none of the models respond 
significantly to stimuli less than 10 ms long. Beyond this, the 
figure shows that for both QIF and IZ models, the length of 
the stimulus is roughly proportional to the frequency (f), with 
f=1000/t. This cannot be said of the HH model which is 
unable to use the same network architecture to learn to 
oscillate at different frequencies, given only a change in the 
stimulus length. Having found a dependency on stimulus 
length, we removed the inhibitory layer from the networks 
and found it made no difference to the performance of QIF, 
IZ and HH models. We conclude that, regular repetition of a 
stimulus to a network that has been trained using STDP will 
cause oscillation at the frequency of presentation. For the 
HH model this further means that whilst stimulus length is 
important in achieving the result, the tuning of other 
variables is necessary to achieve the desired oscillation. 

The fact that oscillatory frequency is dependent upon the 
length of the presentation can be elucidated by the work of 
Masquelier et al30. They report that during learning with 
STDP, uncorrelated firings are depressed, whilst the synaptic 
connections with the afferents that took part in the firing of a 
neuron are potentiated. Further to this, ‘Each time the 
neuron discharges in the pattern, it reinforces the 
connections with the presynaptic neurons that fired slightly 
before in the pattern. As a result next time the pattern is 
presented the neuron is not only more likely to discharge to 
it, but it will also tend to discharge earlier'14. The fact that 
neurons learn to always respond to a particular stimulus 
implies that the regular repetition of a stimulus would cause 

the network to fire regularly at the stimulus presentation, and 
that this firing would become earlier and sharper, in the 
sense of producing narrower and more pronounced periodic 
bands, as learning proceeds. Hence, the resulting synchrony. 

It follows from this that after an appropriate period of 
learning the frequency of the oscillation can be adjusted by 
simply altering the length of the stimulus, as it is only the 
beginning of the stimulus that is required to induce firing. To 
test this hypothesis we generated a stimulus of 100 ms, but 
only trained the network on the first 14 ms repeatedly until a 
satisfactory amplitude response was attained. We then tested 
the network for 5000 ms with the stimulus but only using the 
first t milliseconds repeatedly. We did this for every value of 
t between 13 and 100 ms. As can be seen by the results for 
the IZ model shown in figure 6, the hypothesis is correct. 
Hosaka et al 13 state that in a network of excitatory and 
inhibitory neurons, STDP transforms a spatiotemporal 
pattern to a temporal pattern. However, from the evidence 
above we conclude that the resultant temporality is not due 
to the network dynamics that result from the PING 
architecture, but is an artifact of repeated periodic 
presentation of a learnt stimulus. The network will respond 
“synchronously” whenever the stimulus is presented. 

 Given that the frequency of the oscillations in the 
evolved networks that did not use learning were caused by 
the EI/IE delay loop, we can conclude that repeated post-
learning presentation of the stimulus overrides or interferes 
with the oscillatons that would otherwise be caused by the 
delays in the PING architecture. A fast EI/IE loop will feed 
back and subside before the next learnt stimulus response. In 
this case oscillations from the periodic stimulus will take 
precedence over PING oscillations. Using neurons of either 
Type I or Type II classification produces equivalent results 
with STDP. However, the HH model does not perform in the 
same manner. The difference in the HH model is the 
Andronov-Hopf bifurcation and the neuron’s synaptic 
reversal potential. The result is a less robust network that is 
also unable to use the same architecture to learn to respond 
to stimuli that have a variety of presentation times. 

 
Fig. 5.  Frequency response for QIF, IZ and HH models after learning 
with varying stimulus lengths. 

 
Fig. 6.  IZ model after learning with 14 ms stimulus. Frequency response 
for varying stimulus lengths presented after learning . 



 
 

 

B. Kuramoto experiment 

Our next investigation explored the critical coupling 
experiment16 in which synchrony increase smoothly but 
rapidly as connection strength increases in a uniformally 
connected network of oscillators. In this experiment we use 
PING neural oscillator nodes that had learnt to oscillate at 
different frequencies. 

 Given the findings of the previous investigation, we 
were able to generate every frequency of oscillation between 
10 Hz and 50 Hz for QIF neurons, by training our evolved 
solution and varying the stimulus length and the learning 
time. Whilst our findings in the previous section showed that 
the inhibitory layer is not essential for producing the 
oscillation in these learning networks, we retained the 
inhibitory PING architecture to reduce the possibility of 
neuron saturation (by which we mean all neurons firing all 
the time) when connecting many oscillators together. 

In order to compare the results to neural oscillators that 
had not learnt, we evolved every frequency of oscillation 
between 10 Hz and 50 Hz for QIF neurons but without using 
learning, and so relying on the evolved delays to produce to 
oscillation 15. The evolution of these types of networks is 
described in the methods.  

For simplicity, Kuramoto assumed that the distribution of 
oscillator intrinsic frequencies was unimodal and symmetric 
about its mean frequency, as in a Gaussian distribution for 
example 31. We have evolved PING architectures for every 
frequency between 10 Hz and 50 Hz. In line with 
Kuramoto’s specification we selected from these oscillators 
using a Gaussian distribution with a mean of 30 Hz. The 
variance we chose in order to ensure a good spread of 
different oscillator frequencies was 10 Hz. 

In all our experiments we used 64 neural oscillator nodes 
to form a network. Given a learnt PING node, external input 
to the excitatory layer along with the learnt EE connections 
induces the intrinsic oscillation at the frequency the node 
was generated for. For a non-learnt PING node, external 
input to the excitatory layer along with the PING architecture 
induces the intrinsic oscillation at the frequency the node 
was generated for. The phase of each oscillator was 

determined by the time at which external input to the 
oscillator was started, which varied from 0 ms to 100 ms. 
The slowest oscillator was 10 Hz and therefore a random 
start point ranging from 0 ms to 100 ms allowed for 10 Hz 
oscillators (as well as all oscillators of higher frequency) to 
be completely out of phase with each other. The neurons in 
the excitatory layers of each node were synaptically 
connected to the neurons in the excitatory layers of each 
other node with a connection ratio of 0.2. The experiments 
involved a sweep of 200 synaptic weights for all inter-node 
connections. Weights were set to the same value within each 
iteration in the parameter sweep, but with each different 
iteration having a different synaptic weight. On each sweep 
the overall synchrony of the network was measured. The 
networks were simulated for 2000 ms for each iteration of 
the sweep. Each network comprised 16000 neurons and 
36,256,000 synapses.  

Beyond a particular high coupling value, the network 
models exhibited “saturation”, meaning that all excitatory 
neurons in all nodes were firing continuously. The results 
shown here display data up to the respective point of 
saturation for each model type as data beyond this point is 
not noteworthy. 

 Figure 7 shows the synchrony results for the evolved 
PING architectures that do not use learning. At 0 
connection strength there is a synchrony of around 0.2, 
which indicates no synchrony at all except for coincidental 
alignments in phase. Synchrony rises with connection 
strength but so too does the spread of the dots, indicating 
some variation in behaviour with these systems. The 
synchrony levels off at 0.07 connection strength and remains 
the same until there is a major discontinuity at 0.17 
connection strength. 

By contrast figure 8 show the synchrony for the neural 
oscillators that had learnt to oscillate. Within a critical 
region of connection strengths, synchrony can be seen to 
increase smoothly but rapidly as connection strength 
increases, in accord with Kuramoto’s findings. The 
connection strength is effective at different levels to the non-
learning PING model due to different sensitivities in the 

 
Fig. 7.  Synchrony of QIF models that have not used STDP to train to 
respond to a particular stimulus and therefore responds to any stimuli. 

 
Fig. 8.  Synchrony of QIF models that have used STDP to train to 
respond only to a particular. 



 
 

 

evolved solutions, Poisson process parameters, and scaling 
factors. However the behaviour is the key difference to note. 
There is a very tight sinusoidal increase, indicating little 
variation in behaviour with these learnt systems, unlike those 
in figure 7. There are also no discontinuities. The systems 
that have been pre-trained using STDP produce well defined 
and precise collective behaviour, unlike those not trained.  

IV.  DISCUSSION 

It has been shown that STDP generates robust 
synchronous responses. After learning, the networks are 
highly selective for their learnt stimulus and do not respond 
to other stimuli. Effective learning is possible within only 
three stimulus presentations. Given that the resultant 
oscillatory frequency is dependent upon the length of the 
presentation, the hypothesis that the frequency of the neural 
oscillator can be adjusted by simply altering the length of the 
stimulus was experimentally proven. Further to this, the 
critical coupling experiment demonstrates that the collective 
behaviour of oscillatory architectures that have been pre-
trained using STDP is well defined and precise, in contrast to 
those that have not been trained. 

Type I and Type II neuron classification does not make 
any difference in learning to respond to the temporality of 
stimuli, nor to the robustness thereof. However, the HH 
model, which uses an Andronov-Hopf bifurcation and 
neuronal synaptic reversal potential, does not perform 
robustly, and requires specific tuning of parameters to 
achieve desired oscillatory frequencies. It is interesting to 
note that the more biologically realistic model is less robust 
and requires specific parameter turning, leaving open the 
question of how the brain facilitates this in order to achieve a 
broad variety of oscillatory frequencies in response to 
different stimuli. Given these findings it might be concluded 
that simpler more robust neural models are more appropriate 
for use in a neural engineering context. 
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