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Abstract. This paper describes the construction of a qualitative spa-
tial reasoning system based on the sensor data of a mobile robot. The
spatial knowledge of the robot is formalised in three sets of axioms.
First of all, axioms for relations between pairs of spatial regions
are presented. Assuming the distance between regions as a primi-
tive function in the language, the main purpose of this initial axiom
set is the classification of relations between images of objects (from
the robot’s vision system) according to their degree of displacement.
Changes in the sensor data, due to the movement either of objects
in the robot’s environment or of the robot itself, are represented by
transitions between the displacement relations. These transitions are
formalised by the second set of axioms. The predicates defining the
transitions between image relations are connected to possible inter-
pretations for the sensor data in terms of object-observer relations,
this issue is handled by the third set of axioms. These three axiom
sets constitute three layers of logic-based image interpretation via
abduction on transitions in the sensor data.

1 Introduction

Much research in robotics concerns low-level tasks (e.g. sensory
processing, manipulator design and control) leaving aside questions
about high-level information processing such as reasoning about
space, time, actions and states of other agents [3][8]. Such issues
have been addressed by the knowledge representation sub-field of
Artificial Intelligence [17][13]. Knowledge representation (KR) the-
ories, however, have largely been developed in isolation from empir-
ical issues such as how knowledge about the world is acquired and
what the physical mechanisms are by which it is embodied in the
agents.

The present paper describes a logic-based formalism for represent-
ing knowledge about objects in space and their movement, and shows
how to build up such knowledge from the sensor data of a mobile
robot. One of the main purposes of this theory is to bridge the gap
between KR theories and practical robotics, equipping the robot with
the basic machinery for deriving and manipulating information about
physical objects (including the robot itself).

Briefly, this work proposes that incoming sensor data can be ex-
plained by hypothesising the existence of physical objects along with
the dynamic relationships that hold between them, all with respect to
a (possibly moving) viewpoint. The approach used recalls the abduc-
tive account of sensor data assimilation first proposed in [16]. How-
ever, while this earlier work deals with spatial occupancy, it does not
deal with the question of the relationship between spatially-located
objects and the viewpoint of an observer. One motivation for the
present paper is to propose a spatial representation framework ca-
pable of coping with this issue. Moreover, as pointed out in [19], the
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knowledge representation community has produced very little work
on formalisms that handle both space and time, a combination that
plays a central role in the representational system described in this
paper.

Two theories of qualitative spatial reasoning are particularly rel-
evant to this work, namely the Region Connection Calculus (RCC)
[11][1] and the Region Occlusion Calculus (ROC) [12]. From RCC,
this paper inherits the use of regions and connectivity relations in the
construction of the spatial ontology. On the other hand, the way we
deal with observer’s viewpoint is reminiscent of ROC. The present
framework, however, extends both RCC and ROC, in the sense that
it assumes sensory information as the foundation of the knowledge
representation formalism.

A brief overview of the RCC and ROC formalisms follows. RCC
is a many-sorted first-order axiomatisation of spatial relations based
on a dyadic primitive relation of connectivity (C/2) between two
regions. Assuming two regions z and y, the relation C(z, y), read as
*“z is connected with y”, is true if and only if the closures of = and y
have at least a point in common.

Assuming the C/2 relation, and that z, y and z are variables for
spatial regions, some mereotopological dyadic relations can be de-
fined on regions. They are, P(x,y) (x is part of y), O(z, y) (x over-
laps y), DR(z,y) (x is discrete from y), PP(z,y) (x is a proper
part of y), Pi/2 and PP3i/2 (the inverses of P/2 and PP/2 respec-
tively), DC(z,y) (x is disconnected from y), EQ(z,y) (x is equal
toy), PO(z,y) (x partially overlaps y), EC(z,y) (x is externally
connected with y), TPP(x,y) (x is a tangential proper part of y),
NTPP(z,y) (X is a non-tangential proper part of y), and TP P3/2
and NTPPi/2 (the inverse relations of TPP/2 and NT PP/2 re-
spectively).

Extending RCC, ROC was designed to model the spatial occlu-
sion of arbitrary shaped objects. The theory captures a set of spatial
relations expressing object interposition that can hold between pairs
of regions, each corresponding to the image of a body as seen from
some viewpoint. The present paper builds on this by supplying a dy-
namic characterization of occlusion, based on the sort of information
that is obtainable directly from the visual system of a mobile robot.

According to the present paper, the process of sensor data interpre-
tation is composed of three sub-tasks. First, visual snapshots of the
world are represented as 2D spatial regions. The relations between
these regions are characterised in a logic-based language similar to
RCC. This language is presented in Section 2. Second, from chrono-
logical sequences of these snapshots, a representation is formed of
the transitions between them, in terms of dynamic predicates over
images of objects. The way these predicates are mapped to transi-
tions in the raw sensor data is described in Section 3.

Encoded in these sensor data transitions is information about the
changing relationships between objects moving about in the world.
So the third step in the interpretation process is to hypothesise sets of



dynamic spatial relations between physical objects that can account
for the transitions in the visual sensor data. The mapping between the
predicates used to represent image transitions and those used to rep-
resent changing relationships between physical objects is described
in Section 4. Section 5 presents a brief discussion of how to make
inferences within this framework.

For brevity, the variables used in this paper are universally quanti-
fied unless explicitly mentioned.

2 A Spatial Logic Based on Regions

This section presents a many-sorted first-order axiomatisation of spa-
tial relations assuming, initially, sorts for spatial regions and real
numbers. Similarly to RCC (briefly introduced in the previous sec-
tion), the axiomatic system presented below has spatial regions and
the connectivity between them as fundamental concepts. However,
this paper assumes the distance between pairs of regions as a primi-
tive function with which the degree of connectivity is defined. There-
fore, the relations between spatial regions are defined according to
the degree of displacement (rather than connectivity) between them.

The reason for assuming distance as a primitive function for defin-
ing region relations is that an estimate of the relative distance be-
tween objects in a robot’s environment (and between pairs of regions
in images) can be extracted directly from the robot’s sensor data,
assuming the basic problems of image segmentation are overcome
using off-the-shelf machine vision techniques.

The concept of distance in this work should be understood as a
qualitative notion of displacement, i.e., we are not interested in an
accurate measure, but on how the distance between pairs of regions
changes in time. Defining qualitative notions of distance, however,
is not a straightforward task since the common sense concept of dis-
tance is context dependent [9]. Initial work on qualitative notions of
distance for artificial intelligence is presented in [7].

For the purposes of this paper, however, we assume a distance
function on pairs of spatial regions. This function can be intuitively
understood as the length of the shortest line connecting any two
points in the two region boundaries. In this work, assuming spatial
regions z and y, the distance between x and y is represented by the
function dist(x, y), read as ‘the distance between the regions z and

With the dist/2 function, three dyadic relations on spatial re-
gions are defined: DC(x, y), standing for ‘x is disconnected from y’;
EC(z,y), read as ‘x is externally connected from y’; and, Co(z, y),
read as “z is coalescent with y’. These relations, and the continuous
transitions between them, are shown in Figure 1.

The relations DC, EC and Co receive a special status in this work
(amongst all of the possible relations between spatial regions) due to
the fact that they can be distinguished via analyses on the sensor data.

Assuming the symbol § as representing a pre-defined distance
value, the relations DC, EC and Co are axiomatised by the for-
mulae (A1), (A2) and (A3).

(A1) DC(z,y) + (dist(z,y) > §)
(42) EC(x,y) ¢ (dist(z,y) < 8) A (dist(z,y) £ 0)
(A3) Co(z,y) ¢ dist(z,y) =0

The distance ¢ is determined with respect to the application do-
main. For instance, in the domain of a mobile robot, assuming that
the spatial regions in the calculus represent the regions of space occu-
pied by physical bodies, d can be assumed to be the size of the robot.
Therefore axiom (A2) can be understood as “two objects are exter-
nally connected if the distance between them constitutes an obstacle

to the robot’s motion”. Thus, EC in this case can be used to define
paths within a spatial planning system. Similar arguments apply for
Coand DC.
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Figurel. Relations on regions and the continuous transitions between

them.

Transitions between spatial relations play a central role in this
work. The next section describes the set of axioms (T1) to (T4) char-
acterising the possible transitions between the relations above.

3 Interpreting Transitions

In this section the set of axioms (A1), (A2) and (A3) are extended in
order to express the images of physical bodies with respect to view-
points and the transitions between these images in time.

In order to represent transitions, the ontology for space described
above is extended by assuming a sort for time points. New sorts for
viewpoints and visual objects are also introduced in order to repre-
sent, respectively, the observer’s viewpoint and the objects noted by
the sensors. It is worth pointing out that the visual objects sort rep-
resents all information obtained by the robot sensors, which includes
object reflections, occlusions, and sensor noise. A discussion of how
these issues affect the logic-based interpretation of robot sensor data
was initiated in [14]. However, further investigation should be con-
ducted in order to properly solve these problems.

In order to represent the raw images of visual objects obtained by a
robot’s vision system, the image function ¢/3 is introduced [12]. The
function i(z, v, t) is read as ‘the image of = as seem from v at time
t’. l.e., 1/3 represents a mapping from visual objects, viewpoints and
time points to spatial regions in the sensor images.

Assuming the arguments of Co, DC and EC to be the output of
the function ¢/3, the axioms (A1), (A2) and (A3) (as described in the
previous section) can be included in the extended ontology.

In this language, the transitions between the displacement re-
lations are represented by the dynamic predicates receding/3,
approaching/3, splitting/3 and coalescing/3. Assuming that a
and b are two distinct visual objects observed by the robot’s vision
system, the previous predicates are intuitively defined below.

e approaching(i(a,v,t),i(b,v,t)), read as ‘the image of a and b

are approaching each other as noted from the viewpoint v at time
t;

o receding(i(a,v,t),i(b,v,t)), read as ‘the images of a and b are
receding from each other as noted from the viewpoint v at time ¢’;

e coalescing(i(a,v,t),4(b,v,t)), ‘the images of a and b are coa-
lescing as noted from the viewpoint v at time t’;

o splitting(i(a, v,t),i(b, v, t)), ‘the images of a and b are splitting
from each other as noted from the viewpoint v at time ¢’.

These predicates are axiomatised in the formulae (7'1) to (7'4)
below. For these axioms to be useful in an abductive setting, it is
assumed that the interval [t1, t2] is short enough to rule out the oc-
currence of multiple discontinuities between consecutive snapshots
of the world.



The axioms make use of a notion of location, which is ontologi-
cally indistinguishable from that of a viewpoint. Accordingly, loca-
tions and viewpoints are assigned to the same sort. Intuitively, the
idea of a viewpoint includes the direction of gaze as well as the lo-
cation of the observer, but the direction of gaze plays no role in the
present formalisation.

Axioms (T'1) to (T'4) also assume Tarski’s primitive betweeness
(between/3) in order to capture an ordering on viewpoints. The
statement between(z,y, z) is read as “z lies in between y and 27,
and it is intuitively defined as ‘X, y, z are co-linear and each circle
through ¥, z cuts both circles (y, yx) and (z, zz)’ [20] (a more re-
cent treatment of betweeness is presented in [4]). In fact, as [t1, 2]
is a short time interval, there is no loss in generality on assuming
co-linearity of viewpoint pairs taken at ¢; and ¢».

(T1) approaching(i(a,v,t),i(b,v,t)) —
Ft1ta v v (b1 < t) A (E < t2) Abetween(v, vy, v2)A
DC(i((I, Vi, tl), Z(b, Vi, tl))/\
ﬂC’O(i(a: V2, t2)a Z(b: V2, t2))
A(dist(i(a,vi,t1),4(b,v1,t1)) >
dist(i(a, v2, t2), i(b, v2,t2)))

Axiom (T'1) expresses that if two images are approaching each
other at a time point ¢ then at some time point ¢; before ¢ the images
were disconnected, it is not the case that the images of a and b were
coalescing at t2, and the distance between them was larger than at a
time instant ¢, after ¢,. The condition that i(a, v2,t2) and 4(b, v2, t2)
are non coalescent at ¢, guarantees that approaching/2 does not
include coalescing/2 (axiom (T2)).

(T2) coalescing(i(a,v,t),i(b,v,t)) —
Jt1 t2 1 v2 (b1 < E) A (E < t2) Abetween(v,vr, v2)A
[EC(i(a; V1, tl)a 1(b’ V1, t1))V
DC(i(a,v1,t1),i(b, v1,1)]
/\Co(i(a, va, tz), l(b, va, tz))

If two images are coalescing at a time instant ¢ (as represented by
(T°2)) then they are externally connected (or disconnected) at a time
point ¢; before ¢ and coalescent (Co) at a t» later than ¢.

(T3) splitting(i(a,v,t),i(b,v,t)) —
Jt1 t2 1 v2 (b1 < E) A (E < t2) Abetween(v,vr, v2)A
Co(i(aa V1, tl): 'L(ba Vi, tl))/\
[EC(i(az V2, t2)a l(b: V2, tz))
VDC(i(a: V1, tZ): Z(b: V1, t2))]

Axiom (T'3) expresses that if two images are splitting at a time
instant ¢ then they are coalescent at ¢, before ¢ and externally con-
nected (or disconnected) at ¢» after ¢.

(T4) receding(i(a,v,t),i(b,v,t)) —
Ft1 ta 1 va (01 < t) A (E < t2) Abetween(v, v, v2)A
[EC(i(a, Vi, tl)a Z(b: V1, tl))v
DC(i(a,v1,t1),1(b,v1,t1))]
A(dist(i(a,v1,t1),1(b,v1,t1))
< dist(i(a, V2, tQ), l(b, va, tQ)))

If two images are receding from each other at a time point ¢, ac-
cording to (7°4), then at some time point ¢, before ¢ the images
were externally connected (or disconnected) and the distance be-
tween them was shorter than the distance at a time instant ¢o after
t.

Finally, if two images are static at time ¢ then the distance between
them does not change from time point ¢; to t» as expressed by axiom
(T5).

(T5) static(i(a,v,t),i(b,v,t)) —
Fitta (81 <t)A(t < t2)A
(dist(i(a, v, t1),i(b,v,t1)) =

dist(i(a,v,t2),i(b,v,12)))

The above axioms are used in the following way. The robot’s cam-
era acquires a series of snapshots of its environment. The task of
abduction is to find an explanation for the difference between pairs
of consecutive snapshots, by hypothesising one of five dynamic re-
lations between the 2D regions they depict. In practice, the interval
between consecutive snapshots will be determined by the frame-rate
of the robot’s camera. As we will see in the next section, further ab-
ductive inference then takes place to explain these relations, in terms
of the motion of 3D objects, including the robot itself.

4  From Transitionsto Object Relations

In this section, the five possible dynamic relations between im-
age regions presented above (approaching, coalescing, splitting,
receding and static) are related to the seven new relations on phys-
ical bodies described below.

1. getting_closer(a,b,v,t), read as ‘objects a and b are getting
closer to each other at time ¢ from the viewpoint v”;

2. ap_getting_closer(a, b, v,t), read as ‘objects a and b are appar-
ently getting closer to each other at time ¢ due to motion of the
observer’;

3. getting_further(a,b,v,t), read as ‘objects a and b are getting
further from each other at time ¢ from the viewpoint v’;

4. ap-getting_further(a,b,v,t), read as ‘objects a and b are ap-
parently getting further from each other at time ¢ due to motion of
the observer v’;

5. occluding(a, b, v, t), read as ‘one of the objects a and b is moving
in front of the other at time instant ¢ from the viewpoint v’;

6. touching(a,b,v,t), read as ‘a and b are touching each other at
time ¢ as noted by v’;

7. static(a,b,v,t), read as ‘a and b are static at time ¢”.

For the purposes of rigorously presenting the connection between
the previous set of relations and the abstract definitions defined in
the previous section, herein we assume the predicate located/3;
located(a, v, t) represents the fact that a physical body a is located
at v at time ¢. Therefore, the remaining sections assume that the robot
is equipped with a map with which it is able to locate itself in its en-
vironment. This simplification should be relaxed in future research,
so that a similar framework to that described in this paper could be
used in a robot map building process.

From here on, for brevity, we assume a constant — robot — of
the sort visual object that denotes the robot.

Based on the informal definitions above, the relationship between
the predicates on images (described in Section 3) and the predicates
on physical bodies is captured by the axioms (IO 1) to (IO 4)
below.



(IO 1) approaching(i(a,v,t),i(b,v,t)) <
located(robot, v, t) A [getting_closer(a,b,v,t)V
ap_getting_closer(a,b,v,t)]

coalescing(i(a,v,t),i(b, v,t))
located(robot, v, t) A [occluding(a, b, v, t)
Vtouching(a, b, v,t)]
[splitting(i(a,v,t),i(b,v,t))V
receding(i(a,v,t),i(b,v,t))]
located(robot, v, t) A [getting_further(a,b, v,t)V
ap-getting_further(a,b, v,t)]
static(i(a, v, t),i(b, v, t)) «
located(robot, v, t) A static(a,b,v,t)

(IO 2)

(I0 3)

(10 4)

5 Inference

The purpose of inference within the framework presented in this pa-
per is twofold: explanation of sensor data and prediction of their fu-
ture configurations. Explanation is accomplished through abduction
in a way similar to the proposed in [16]. Prediction, on the other
hand, is handled by deduction. This duality between abduction and
deduction was explored in [15] for temporal reasoning.

We briefly introduce the concept of abduction and relate it to the
definitions presented in the previous sections. Abduction is the pro-
cess of explaining a set of sentences I by finding a set of formulae A
such that, given a background theory X, I" is a logical consequence
of X U A. In order to avoid trivial explanations, a set of predicates is
distinguished (the abducible predicates) such that every acceptable
explanation must contain only these predicates.

Assuming the framework proposed in the previous sections, the
description of sensor data in terms of displacement relations (Section
2) comprises the set I'. The background theory X is, then, assumed to
be constituted by the set of axioms (7'1) to (7'5) and (I01) to (104).
Finally, the abducibles are considered to be the abstract predicates,
receding/3, approaching/3, splitting/3 and coalescing/3, de-
fined in Section 3.

In order to clarify the concepts introduced in this paper and to give
an idea of the sort of inference possible in this framework, we present
the example below. This example assumes, as an abbreviation, that
the ordering of time points is implicit in their own notation, i.e., ¢; <
t; ifand only if 2 < j (for time points ¢; and ¢;, and integers ¢ and
7) and that the viewpoint v; is related to the time point ¢; . Moreover,
lower case roman letters are used to represent variables, while upper
case letters are reserved for ground terms.

Skolemisation is also implicit in this example, lower case bold
letters are used to represent the skolem functions of their non-bold
counterpart variables (i.e., u is the skolemised version of ). Here,
skolem functions are used to maintain the reference of variables from
one inference step to the next.

For the sake of brevity, we omit in the example below details about
how to make inferences about the location of the robot in its environ-
ment.

The example below assumes depth maps taken from the viewpoint
of a robot navigating through an office-like environment (Figures 2
and 3). For the sake of simplification, the framework developed in
this paper is applied on cylindrical objects with added textures.

Consider the sequence of snapshots of the world in Figure 2. The
first step of sensor data assimilation is the description of this se-
quence in terms of the displacement relations discussed in Section
2. The result of this task is exemplified by the formula (1) below
(where O; and O represent the two objects — rectangular areas —

01 02 o1 02

Figure2. Depth maps at viewpoints V7 and V5.

in the scene; and, V1 and V4 represents the viewpoints where both
pictures in Figure 2 were taken).

(1) located(Robot1, V1, To) A located(Robot1, Va, T1)A
DC(i(0O1,V1,T0),i(02, V1,T0)) A DC(i(O1, V2, Th),
1(02, V2, T1)) A (dist(i(O1, V1, To), (02, V1,T0)) >
diSt(i(Oli Va, Tl)a i(02’ Va, Tl)))

Assuming formula (1) and the axioms described in Sections 2, 3
and 4, formulae (2) and (3) can be abducted as an interpretation of
the sensor information in Figure 2.

(2) 3 v tlocated(Robot1,v,t) A between(v, Vi, V2)A
approaching(i(O1,v,t),1(02,v,t)) ATy < tA
t < Tifrom (1) and axiom (T'1);
(3) ap_getting_closer(O1, 02, v, t), from (2), axiom (101) and
the assumption of object immovably.;

Formula (3) is a hypothesis about the state of the objects in the
world to explain the given sensor data.

From formulae (1), (2) and (3) we would like to derive a set of
expectations (predictions) about the future possible sensor data and
their interpretations in terms of object relations. One possible set of
predictions is comprised by the formulae in the Predictions| set.

Predictionsl:

(I.1) 3 w1 w1 located(Robot1, w1, u1)A
between(w1, V2, V3)A
EC(i(O1,w1,u1),4(02,w1,u1)) AT < w1

(I.2) 3wz us located(Robot1, w2, u2)A
coalescing(i(O1, w2, u2),1(02, w2, u2))A
u; < usfrom (1.1) and axiom (T2).;

(I.3) occluding(O1,02,w2,uz);
from (1.2), axiom (I02) and
the assumption of immovably of objects;

Formula (1.3) is a hypothesis about the future relationship be-
tween objects O, O» and the observer.

These predictions assume that the observer continued its motion
in the same direction after the snapshots of Figure 2 were obtained.
In the general case, however, many possible predictions can be de-
duced. Further research is required to design a set of criteria for rank-
ing competing hypotheses, and a method for handling these possible
hypotheses within the inference.

Figure 3 shows the images from the robot’s camera at viewpoints
Vs, Va and Vs.

The sensor data noted at V3 is described by formulae (4). Formulae
(5) and (6) follow from (4) and the axioms.

(4) located(Robot1, V3, Tao)A
(dist(i(O1, V3, T2),4(02, Vs, T2)) < §) from sensor data;
(5) EC(i(O1, V3, T2),i(02, Vs, Ta)) from (4) and axiom (A2);
(6) 3Fwtlocated(Roboti,v,t) A between(v, V3, Va)A
approaching(i(O1,v,t),i(O2,v,t)) ANT1 < tA
t < T, from (4), (5) and axiom (7'1);
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Figure3. Depth maps at viewpoints V3, V4 and Vs.
Similarly to the first set of predictions, Predictions Il hypothe-
sises about the future possible sensor data and about the relationship
between objects O; and O3, and the observer.

Predictions||:

(I1.1) Fw: w1 located(Roboty, w1, u1)A
between (w1, Vs, Vs)A
Co(i(O1,w1,u1), (02, w1, u1))A
Ty < up

(I1.2) 3 ws uz located(Robot1, w2, u2)A\
splitting(i(O1, w2, u2), (02, w2, u2));

(I1.3) ap_getting_further(O1,02,w2,u2)
from (I1.1) and axiom (103);

(7)  located(Roboty, Vy, Ty)A

(dist(i(O1, Va, T4), (02, V4, Ts)) = 0) from sensor data;
(8) Co(i(O1,Va, T4),1(02, Vs, Ts)) from (6) and axiom (A3);
(9) 3 wvtlocated(Roboty,v,t) A between(v, Vi, Vs)A

coalescing(i(O1,v,t),i(02,v,t)) ATs <t At < ta
from (7) and axiom (T2);

Formula (9), derived from the axioms and the descriptions of the
images, confirms the prediction (1.2) and, consequently, (1.3).

In this paper, depth information about the scene was ignored. Fur-
ther research will consider the range data given by the stereo-vision
system in the reasoning process.

6 Discussion

This paper described three sets of axioms for logic-based scene inter-
pretation. These axioms form a hierarchy. The first layer of this hi-
erarchy, constituted by the axioms (A1), (A2) and (A3), formalises
relations between pairs of spatial regions assuming a distance func-
tion as primitive. The purpose of this first set of axioms is to classify,
in terms of displacement relations, images of the objects in space
as noted by a mobile robot’s sensors. Transitions between these re-
lations in a sequence of sensor data were, then, axiomatised by the
second set of axioms ((7'1) to (7'5)), defining the second layer of the
image interpretation system.

The second layer of the hierarchy aims at the classification of tran-
sitions in the sensor data by means of abstract predicates (the left-
hand side of axioms (01) to (104)). These predicates were, then,
rewritten into possible explanations for the sensor data transitions in
terms of object-observer relations. The last set of axioms ((ZO1) to
(I04)) characterises this process, which constitutes the final layer of
the hierarchy.

The use of abstract predicates recalls the idea of abstract reason-
ing [2][6]. Abstract reasoning frameworks have concentrated mainly
on using abstractions to provide general proofs in automated theo-
rem proving in order to guide proofs in the ground space [5]. In the
present paper, however, abstraction is used to give a general interpre-
tation of an ordered pair of sensor data description. In this sense, the
main purpose of using abstract definitions is to overlook the ambi-
guities in the sensor data, keeping every plausible interpretation of

a scenario inside a more general abstract concept. Axioms (I01)
to (I04) define the abstract predicates in terms of more specific
equally-plausible hypotheses to explain particular transitions. There-
fore, not only can abstraction interleave planning and execution (as
proposed in [10]) but also it can interleave sensor data interpretation
and planning. Further examination of this issue is a subject for future
research.

Another potential topic for further investigation is the possibility
of incorporating feedback and expectation into the sensor data inter-
pretation process described in this paper, along the lines proposed in
[18].
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