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Abstract 
This paper addresses the question of how the brain of an animal achieves 

cognitive integration, that is to say how it manages to bring its fullest 

resources to bear on an ongoing situation. To fully exploit its cognitive 

resources, whether inherited or acquired through experience, it must be 

possible for unanticipated coalitions of brain processes to form. This 

facilitates the novel recombination of the elements of an existing 

behavioural repertoire, and thereby enables innovation. But in a system 

comprising massively many anatomically distributed assemblies of neurons, 

it is far from clear how such open-ended coalition formation is possible. The 

present paper draws on contemporary findings in brain connectivity and 

neurodynamics, as well as the literature of artificial intelligence, to outline a 

possible answer in terms of the brain’s most richly connected and 

topologically central structures, its so-called connective core. 

1. Introduction 

The brain of an animal is a massively parallel, distributed control system that attempts 

to maintain certain metabolic variables within acceptable bounds while fulfilling a 

procreative mission. Evolution has solved a very difficult control problem, namely 

how to effectively exploit all those parallel, distributed resources when responding to 

a large variety of unpredictable circumstances. Moreover, since the brain of a bee 

contains fewer than one million neurons while that of a human contains around 100 

billion, evolution has found a solution (or solutions) to this problem on a wide range 
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of scales (Chittka & Niven, 2009). What are the underlying principles of the solution 

or solutions that evolution has found? 

 The same question can be recast in more cognitive terms. Let us say that perfect 

cognitive integration is achieved when the animal brings the totality of what it knows 

to bear on the ongoing situation — its grasp of the sensorimotor contingencies of 

multiple domains and its understanding of the associated affordances, plus the full 

contents of both its long-term (episodic-like) memory and its short-term (working) 

memory. Humans excel at cognitive integration. Yet failures of cognitive integration 

are commonplace even in humans, such as when I remove the U-bend of my sink then 

pour its dirty contents back into the plug-hole, causing an unwelcome deluge. On the 

other hand, apparent triumphs of cognitive integration have been demonstrated in 

non-human animals, such as innovative tool manufacture (Weir, et al., 2002; Bird & 

Emery, 2009) 1 and sequential tool use (Bird & Emery, 2009; Wimpenny, et al., 2009; 

Taylor, et al., 2010). 2 How is cognitive integration achieved in the biological brain? 

 Drawing on the literature of computer science and artificial intelligence as well 

as that of neuroscience, this paper surveys a range of mechanisms that might underlie 

some of the most impressive feats of cognitive integration performed by non-human 

animals. The focus is on achievements, such as those just cited, that appear to require 

combinatorial search of a space of possible sequences of action, or (to put it another 

way) that show signs of “insight” in the sense of Epstein (1985, p.627), who defines 

insightful behaviour as “The spontaneous interconnection of two repertoires of 

behavior which [have] been established separately”. (For a contemporary discussion 

of the concept see Shettleworth (2010).) The paper advocates a mix of serial and 

parallel processing to explain these accomplishments. However, in the context of a 

massively parallel neural substrate, the serial processing in question bears little 

resemblance to that of a conventional computer. Rather, each serial step results from 

the competitive formation of a (possibly novel) coalition of brain processes drawn 

from a large repertoire of potential combinations. To facilitate this blend of serial and 

parallel, it is hypothesised that a certain pattern of connectivity is required, wherein 
                                                
1 Four-year old children consistently fail at the wire-bending task while eight-year old 
children typically succeed (Beck, et al., 2011), a result which lends credibility to this 
paradigm as a benchmark for a distinctive capacity for innovation. 
2 These experiments are used here as motivating examples. The aim is not to explain their 
results per se. Attempting to do this without further development of the theory would most 
likely result in just-so stories. The paper uses examples from avian cognition. For a wider 
overview of animal tool use, see Seed & Byrne (2011). 
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information and influence funnels in to and fans out from a connective core of 

cognitively important brain regions, resulting in an integrated response to the animal’s 

ongoing situation. 

2. Explaining Cognitive Prowess in Terms of Computation 

We will begin with explanations that inherit their terms from classical artificial 

intelligence and cognitive science, then move to explanations in the language of 

neurodynamics. The cognitive feats of interest all feature an element of planning, that 

is to say, the discovery of a novel sequence of actions to achieve a goal. 3 In the 

sequential tool use paradigm of Bird & Emery (2009), a stone has to be dropped into a 

narrow tube to release a trap-door. But no suitably-sized stone is available. Instead, 

the bird has to first drop a large stone into a wide tube to release a small stone, which 

can then be used in the narrow tube. Similarly, in the wire-bending paradigm of Weir, 

et al. (2002), the bird has to retrieve a bucket from a tube. But the bucket is out of 

reach, and a tool is required to retrieve it. Moreover, no suitable ready-made tool is 

available, and success at the task requires a straight piece of wire first to be bent into a 

hook. 

 Success in such tasks only counts as planning if it is achieved on first trial, 

when the subject is unfamiliar with the problem. As soon as the subject has performed 

the task successfully once, planning is no longer strictly necessary. Moreover, even if 

the task is performed successfully on first trial, this cannot be counted as planning if it 

is the result of extensive trial-and-error and / or luck. These explanations for success 

have to be ruled out. Of course, an innate behaviour involving sequences of actions, 

such as nest-building (Hansell, 2007), doesn’t necessarily require planning either, 

however complex it might be. The hallmark of a genuine planning task is the need to 

search a tree of alternative sequences of actions. 

 The topic of planning has received extensive treatment in the field of artificial 

intelligence (AI) (Russell & Norvig, 2010, Ch. 10), so it is instructive to consider the 

range of methods that can be deployed for solving planning problems on a computer 

while asking whether the brains of clever animals might operate in a similar way. 

Planning algorithms that are predominantly serial rather than parallel can be classified 

                                                
3 The term “planning” is sometimes used in the animal cognition literature to mean planning 
for the future needs (Raby, et al., 2007). Here we are using the term in the sense prevalent in 
artificial intelligence and robotics. 
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according to the order in which they explore a state space. A backward chaining 

technique is one that works backwards from a desired goal state, via an action that 

would achieve that goal state, to a subsidiary goal state. This process is then repeated 

until a state is reached that matches the current state of the world. The sequence of 

actions that is built up along the way is a plan. Conversely, a forward chaining 

technique begins with the current state of the world and works forwards, via an action 

that can be executed right away, to a successor state. This process is then repeated 

until a state is reached in which the desired goal is attained. 

 Could it be the case that non-human animals who solve planning problems do so 

in a way that resembles an AI planner using either backward chaining or forward 

chaining? If they do, then it is possible in principle to discriminate experimentally 

between the backward-chaining hypothesis and the forward-chaining hypothesis, 

using an extension of the experimental setup described by Bird & Emery (2009). 

Instead of stones and wide and narrow tubes, the extended apparatus uses multiple 

tubes, each with a cap with a uniquely shaped hole cut in it (Fig. S1). Only an object 

that matches the hole can be used in that particular tube. Using this apparatus, it’s 

possible to set up a variety of planning problems, and, by varying the combinations of 

caps and objects, to make every new trial effectively a first trial. In particular, it is 

possible to devise a pair of planning problems that differ in difficulty for a forward 

chaining method but not for backward chaining, as well as a complementary pair of 

planning problem that differ in difficulty for a backward chaining method but not for 

a forward chaining method (Fig. S2). 

 The range of options explored in AI is not exhausted by the forward chaining / 

backward chaining opposition, however. Planning techniques have also been devised 

that combine forward and backward chaining. For example, the GraphPlan algorithm 

interleaves a forward-chaining graph construction phase with a backward-chaining 

graph search phase (Blum & Furst, 1997). Perhaps, when animals plan, their brains 

use a hybrid method of this sort. Indeed, if circumstances resembling the setup just 

described arise in the wild, in which the animal is cued with both an initial state (the 

sight of the tools) and a goal state (the sight of the food) before it acts, it seems 

unlikely that either a blind forward search (disregarding the goal state) or a blind 

backward search (disregarding the initial state) would be favoured by evolution. If an 

animal’s brain uses a hybrid forward and backward method, we would not expect to 
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find a marked difference in performance between the two paired conditions using the 

apparatus just described. 

 All of the AI methods cited so far work at the level of so-called “primitive” 

actions, that is to say, actions that are immediately executable (under the right 

conditions), such as picking up a twig or approaching a stone. In hierarchical 

planning (or hierarchical task network planning), by contrast, a suitable sequence of 

actions is found by refining a high-level action (such as “get food”) into a sequence of 

lower-level sub-actions (such as “get a tool then retrieve the bucket”), then repeating 

this process until a plan comprising just primitive actions is reached (such as “get the 

wire, bend the wire, insert the wire into the tube, …”). Hierarchical organisation of 

behaviour is also implicit in many AI systems, such as those based on the cognitive 

architectures SOAR or ACT-R (Langley, et al., 2009). Could there, perhaps, be an 

element of hierarchical decomposition in the way the brain of an animal arrives at a 

novel sequence of actions to attain a goal? If this were true, we would again expect no 

performance differential between the two paired conditions in the proposed sequential 

tool-use experiment. 

3. Explaining Cognitive Prowess in Terms of Neurodynamics 

The guiding metaphor in the kind of explanation envisaged above is that of classical, 

serial computation in the von Neumann style. To properly fill out such explanations, 

an account of how the proposed computational mechanisms are realised in the brain 

must be supplied. A variety of contemporary proposals seek to provide such an 

account (Duncan, 2010; Zylberberg, et al., 2011). However, a feature common to all 

general-purpose planning methods is the need to carry out combinatorial search, and 

this is where their computational burden chiefly lies. The usual way to carry out 

combinatorial search on a conventional computer is with the aid of a dynamic data 

structure such as a stack. A stack is a structure that grows and shrinks over time in so-

called “last-in-first-out” order, like a pile of plates only the top of which is accessible. 

In a search application, the stack is used to record branches of the tree of possibilities 

that remain to be explored. Although a plausible account can be constructed of how 

the brain might realise a form of serial processing resembling that of a conventional 

computer, it is less than obvious how such an account could convincingly be extended 

to describe the neural analogue of a stack. 
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 Moreover, to implement a search algorithm on a serial virtual machine realised 

in a neural substrate would be to squander the brain’s enormous potential for 

parallelism. Undoubtedly there are cognitive processes that are best carried out in a 

strictly serial order so that the effects of one operation are available for the next, such 

as mental arithmetic (Sackur & Dehaene, 2009) or the inner rehearsal of a sequence of 

actions (Shanahan, 2006). Indeed, for planning problems with minimal search 

requirements, a few serial steps of inner rehearsal to anticipate the outcome of a two- 

or three-action plan might be adequate. Perhaps the sequential tool use paradigms of 

Bird & Emery (2009) and Wimpenny, et al. (2009) fall into this category, because the 

challenges they involve can be met without departing from a narrow set of 

possibilities for action that are given by the learned affordances of the apparatus. In 

computer science terms, the branching factor of the tree of (obvious) possibilities is 

small, whether it is searched by backward chaining or forward chaining, and the 

reward can be obtained without moving beyond the obvious. 

 By contrast, what is impressive about Betty’s performance in the wire-bending 

experiment of Weir, et al. (2002) is that it apparently combines experience from two 

micro-domains of expertise that were not previously associated, namely the domain of 

bending pliable materials and the domain of using tools to retrieve food. 4 That her 

brain was able to blend the relevant brain processes together is impressive enough. 

But even more striking is that her brain assembled the necessary raw ingredients for 

the blend in the first place, given no indication of their mutual relevance to the 

problem at hand (or at beak, rather). The branching factor of the tree of non-obvious 

possibilities for action is huge, which puts us firmly back in combinatorial territory. 

Surely this tree of possibilites is not searched by a slow, serial virtual machine 

realised on a massively parallel substrate. Could it be instead that the underlying 

massively parallel system can effect the search without sifting through an infeasibly 

large number of combinatorial possibilities one at a time? Perhaps, out of the 

maelstrom of competitive and co-operative local interactions between populations of 

neurons, a global network state corresponding to a suitable plan can emerge, 

                                                
4 Accomplishments of this sort evoke the frame problem, in the philosophers’ sense of that 
term (Fodor, 1983; Dennett, 1984; Shanahan, 2009). This is the challenge of explaining how 
all of an agent’s beliefs that are relevant to a problem or situation can be brought to bear 
without incurring an impractical cost to explicitly discriminate relevant from non-relevant 
beliefs. This is obviously closely related to the issue of cognitive integration. As a solution to 
the frame problem, the present paper builds on the proposal of (Shanahan & Baars, 2005). 
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“coalescing” out of the available dynamical elements rather than being the result of a 

sequence of discrete computational steps. 

 This is a somewhat fanciful sounding description, but it is reminiscent of a wide 

class of computations that can be characterised in terms of local interactions among 

parallel elements that collectively converge to a minimal state (an attractor). One of 

the best known examples is the Hopfield net. A Hopfield net is a network of artificial 

neurons with recurrent (feedback) connections which confer attractor dynamics on it 

(Hopfield, 1982; Amit, 1989). The network is trained to “remember” a number of 

patterns (its attractors). Given an input pattern, the trained network converges to a 

state corresponding to the nearest attractor, that is to say, to the remembered pattern 

that most closely resembles the input. It can function, therefore, as a form of 

associative memory. A Hopfield net, like any neural network, is inherently parallel, 

and each successive state is the product of strictly local computation. In other words, 

when a neuron is updated, its new state is a function only of the state of its 

neighbours, the neurons it is directly connected to. 

 Attractor networks have many practical applications (Smith, 1999), and have 

been proposed as fundamental building blocks of the brain (Amit, 1989; Freeman, 

1999, Ch. 4; Rolls, 2009; Lansner, 2009). However, our interest here is not in building 

blocks, not in mere components of the brain. Rather, we are interested in how the 

brain’s global dynamics can settle on a pattern of activity that results in effective 

motor output given a novel challenge. To see how a global solution can arise from 

local processing with brain-scale parallelism, we need to look at networks with more 

complex topologies than a conventional attractor network. Moreover, the brain 

exhibits much richer dynamics than a conventional attractor network, including 

complex temporal patterns of spiking, metastability, rhythmic activity, and 

synchronisation phenomena. In the following sections, the challenge of achieving 

cognitive integration, as exemplified by Betty’s wire-bending, is recast as a problem 

of “coalition formation” in a dynamical system of this sort. 

4. The Coalition Formation Problem 

In computer science, we know how to exploit parallelism in various narrow domains. 

For example, the simulation of physical phenomena such as the diffusion of smoke in 

a burning building or the flow of air over a wing is most efficiently carried out using 

parallel computation. Likewise, in computer vision, basic operations like edge 
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detection or optical flow are straightforwardly expressed in terms of parallel 

algorithms. In these cases, the breakdown of the overall problem into numerous sub-

problems that can be carried out independently falls right out of the spatial structure 

of the problem domain. These so-called embarrassingly parallel problems are solved 

in the brain too. The visual cortex, for example, exploits neural parallelism in order to 

detect edges and motion rapidly. But this sort of parallelism is not much use for 

achieving cognitive integration. When an animal confronts a novel situation, the 

problem of drawing on the totality of its past experience to come up with a sequence 

of motor outputs that is effective despite never having been tried before is not one that 

can be straightfowardly broken down into trivial sub-problems. 

 To see the difficulty in its proper context, we need to think of the brain not so 

much as a set of parallel, distributed computational processes that take input, produce 

output, and transmit data to each other, but rather as a collection of parallel, 

distributed dynamical processes that unfold in continuous (rather than discrete) time 

and exert continuous influence on each other (Fig. 1). This is the character of the 

wetware that is biology’s provision to cognition. Within this wetware substrate, the 

past experience of an animal is rendered into a set of brain processes that, both 

individually and in combination, are specialised for particular situations. The ongoing 

construction, maintenance and expansion of this set of specialists, and the increase in 

specialist expertise that results, is the responsibility of learning in the classical sense 

(Sutton & Barto, 1998; Shettleworth, 2010, Ch. 4). But specialist expertise is limited. 

A hallmark of cognitive sophistication is the capability to move beyond the tried-and-

tested, to transcend domain-specific expertise, and thereby to tap the full 

combinatorial potential of an established sensorimotor repertoire. 5 The basic question 

of cognitive integration, then, is how the elements of an ever-changing, ever-

expanding repertoire of specialist brain processes can be combined in previously 

untried coalitions. 

 The question, in other words, is how open-ended coalition formation is possible 

in a dynamical system like the brain. Implicit in the idea of coalition formation here is 

the idea of a winning coalition. One coalition has to arise that dominates the dynamics 

of the brain, shuts out all rivals, and dictates the animal’s behaviour. A winning 

coalition will be in the ascendant only briefly. When events move on it will be 
                                                
5 We are again reminded of the frame problem here, as well as Mithen’s (1996) notion of 
cognitive fluidity. 



9 

supplanted by a successor. But its victory, albeit temporary, must be complete. An 

animal whose brain allowed incompatible possibilities for action equal influence on 

its final motor output would not exhibit coherent behaviour. An animal cannot 

simultaneously move to the left and to the right, for example. It has just one body and 

this body is spatially confined and subject to various kinematic constraints. So the 

question of how open-ended coalition formation is possible is really the question of 

how competitive open-ended coalition formation is possible. 

 The basic question of open-ended coalition formation naturally leads to a 

number of subsidiary questions. In particular, how is it possible for a new coalition of 

sensory, motor, and memory processes to form that is effective, that results in 

behaviour that is more beneficial to the animal than if it had stuck to tried-and-tested 

combinations? There is no point in entertaining possibilities that are plain daft, for 

example. It does no good to an animal confronted with a food item that is just out of 

reach to initiate a courtship dance. But manipulating materials that resemble tools is 

promising. In short, candidate members of a successful coalition must be relevant to 

the situation at hand (or at beak). However, not every combination of relevant 

processes is effective. In variations of the trap-tube test (Seed, et al., 2006), pulling 

the plunger one way is prima facie as relevant as pulling it the other way. But one 

way results in the loss of the food reward, while the other way results in its 

attainment. The ideal system will freely explore novel coalitions of relevant 

processes, but will bias the competition between them according to their expected 

outcomes. 

 So the mechanism of coalition formation is not going to entertain every 

coalition with equal probability. The probability distribution in question will be 

shaped by experience. But our present interest is the connectivity and neurodynamics 

that makes open-ended coalition formation possible in the first place. How is it that a 

coalition of anatomically distributed brain processes can form whose constitution is 

not hardwired in advance? Cognitive integration is achieved when the animal is able 

to draw upon the full battery of its neuronal resources, mixing and matching them as 

required, to find an effective, and sometimes innovative, response to unfamiliar 

situations. A winning coalition, a coalition of brain processes that issues in overt 

behaviour, will comprise just a small subset of those resources. But to the extent that 

cognitive integration is achieved, the whole brain will have participated in an open 

competition to find that subset. 
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5. Brain Connectivity 

When one computer exchanges information with another through the Internet, the 

information in question is chopped up into packets, and each packet is sent separately 

to its destination. Packets can arrive in a different order from that in which they were 

sent (to be re-assembled in the correct order on arrival), and different packets can go 

via different routes. So the physical connections that underlie this process give away 

very little about the flow of information in the network they support. But the brain of 

an animal works very differently. If one brain region is to exercise a direct influence 

on another, it must be directly connected to that region. So the pattern of physical 

connections between brain regions is good evidence of how information and influence 

flow around the brain. It makes sense, therefore, to study brain connectivity with a 

view to understanding how arbitrarily constituted coalitions of anatomically 

distributed brain processes form. 

 The large-scale network organisation of an animal’s brain is revealed in several 

steps (Bullmore & Sporns, 2009; Sporns, 2010). First, anatomical investigations yield 

data about the existence of pathways between brain regions, either using traditional 

tracing methods or using diffusion-based imaging in vivo. This data is then compiled 

into a connectivity matrix covering a major sub-division of the animal’s forebrain — 

the cerebral cortex, say, or perhaps the entire telencephalon. This is the animal’s 

(structural) connectome. The resulting connectivity matrix is is then subjected to 

analysis using the mathematical theory of complex networks (or “graphs”), which 

reveals its large-scale organisation. The animal that has been most thoroughly 

investigated in this way is the human (Hagmann, et al., 2008; Iturria-Medina, et al., 

2008; Gong, et al., 2009, van den Heuvel & Sporns, 2011). But connectivity matrices 

and network analyses have been carried out for a number of other species, including 

the fruit-fly (Chiang, et al., 2011), the cat (Scannell, et al., 1999; Sporns, et al., 2007; 

Zamora-López, et al., 2010),  the macaque (Sporns, et al., 2007; Modha & Singh, 

2010), and the pigeon. 6 

 A number of topological features consistently arise in these studies. These 

include small-world organisation and modularity. A sparse network (all brain 

networks are sparse) is a small world if it has a mean path length comparable to, but a 

                                                
6 The pigeon connectome is the subject of ongoing collaborative work by the present author, 
Vern Bingman, Toru Shimizu, Martin Wild, and Onu Güntürkün. 
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clustering coefficient higher than, an equivalent randomly wired network (Watts & 

Strogatz, 1998) (Fig. 2A). A network’s mean path length is the average length of the 

shortest path between any two nodes, while its clustering coefficient is the proportion 

of a node’s neighbour’s that neighbour each other averaged over the whole network. 

A small world network retains a capacity for locally concentrated processing, but 

facilitates the rapid flow of information around the network as a whole. A network is 

modular if it can be partitioned into subsets of nodes (modules) that are densely 

connected internally but only sparsely connected to other subsets (Girvan & Newman, 

2002) (Figs. 2B). Modules are suggestive of functional specialisation. 

 Another consistent feature of brain networks is the presence of topologically 

significant hub nodes (Sporns, et al., 2007). Although different authors use slightly 

different criteria for designating a node as a hub, the key attribute in all cases is high 

connectivity. A hub node is one that has an unusually large number of connections, or 

one that lies on an unusually large number of short paths. Hub nodes can be further 

classified in the context of a network’s modularity. A connector hub is one that plays 

an important role in communication between modules (Fig. 2C), while a provincial 

hub is one that plays an important role in communication within a module. The 

human, macaque, and cat connectomes have all been shown to possess a pronounced 

connective core of topologically central hub nodes (Hagmann, et al., 2008; Zamora-

López, et al., 2010; Modha & Singh 2010; van den Heuvel & Sporns, 2011). 

 The addition of the pigeon to this list would be significant because it serves as a 

prototypical avian species, and it would be surprising indeed if the same network 

properties were not present in the (larger) forebrains of corvids. We might expect the 

set of hub nodes that comprises the connective core in the pigeon to be constituted by 

brain regions that are either homologous to, or functionally analogous to, connective 

core regions in humans and macaques, such as the hippocampal formation, which is 

implicated in long-term memory, and the nidopallium caudolaterale, a prefrontal-like 

region which is implicated in goal-directed action and working memory. The presence 

in all these species of a connective core that includes a prefrontal functional analogue 

as well as homologous hippocampal structures would support the hypothesis of 

convergent evolution of intelligence in apes and birds (Emery & Clayton, 2005; Seed, 

et al., 2009), suggesting a common neural substrate for cognition. 
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6. The Connective Core Hypothesis 

What are the specific cognitive implications of the fact that an animal’s forebrain has 

the network properties just listed? The contention of this paper is that a brain’s 

capacity for cognitive integration depends on the presence within the telencephalon of 

a pronounced connective core, that is to say a small set of hub nodes that are 

topologically central to the whole network and richly connected to each other 

(Shanahan, 2010a, Ch. 4). Its topologically central situation entails that information 

and influence can funnel in to and fan out from the connective core, which makes it 

ideally suited to fulfil three functional roles that together promote the availability of 

the brain’s full repertoire of process combinations. According to the hypothesis, the 

connective core is 

 1) a locus of broadcast, 

 2) a medium of coupling, and 

 3) an arena for competition. 

 The connective core is a potential locus of broadcast because the ongoing 

pattern of activity in the regions comprising it can exercise direct influence on a large 

number of other forebrain regions, and indirect influence on an even larger number 

via just a few hops in the network. Suppose an animal is presented with an unexpected 

object (such as a straight piece of wire in a tool manufacture paradigm). The resulting 

visual stimulus excites its visual areas, which in turn can influence activity in its 

connective core. Thanks to the core’s rich connections to other regions, this influence 

can then be disseminated throughout the forebrain, arousing the widespread activation 

of multiple neuronal groups (Baars, 1988; Dehaene, et al., 2006), including those 

associated with the visible affordances of the object (it can be pushed, picked up, 

pecked at, used as a prod, and so on). 

 To the extent that the connective core fulfils this broadcast role, it addresses one 

aspect of the coalition formation problem, namely how the set of brain processes 

relevant to the ongoing situation becomes active and is thereby given the opportunity 

to join a coalition that might eventually take over the animal’s motor apparatus, while 

those that are irrelevant are excluded (Shanahan & Baars, 2005). The relevance or 

otherwise of a process is not decided centrally, in any sense. Thanks to the connective 

core, this responsibility is delegated to the processes themselves, which carry it out 
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individually and in parallel. But cutting down the set of active processes to only those 

that are relevant is only half the problem. Even the pool of relevant brain processes 

may be large, and the set of possible coalitions constituted by members of that pool is 

combintaorially larger. 

 One consequence of the combinatorics is the prohibitive quantity of wiring that 

would be needed if each group of neurons was directly connected to every other group 

of neurons with which it might enter into a coalition. This is where the second 

purported role of the connective core comes into play. In much the same way that 

activity within the connective core can influence any part of the forebrain, so any part 

of the forebrain can influence the connective core and, via the connective core, any 

other part of the forebrain. So the connective core has the potential to act as a 

communications infrastructure capable of routing information and influence between 

any two brain processes, allowing them to become coupled (Shanahan, 2010a, Ch. 4 

& 5; Zylberberg, et al., 2010). Thanks to its covergent-divergent wiring pattern, the 

connective core allows arbitrary combinations of processes to become coupled 

without recourse to combinatorial wiring. This addresses the most prominent aspect of 

the coalition formation problem from the standpoint of cognitive integration, as it 

allows novel coalitions to arise. 

 However, like any channel of communication, the connective core has only 

limited bandwidth. Rival coalitions must compete for this bandwidth. In a telephone 

network, contention for limited bandwidth is resolved equitably. In the early days of 

telephony, customers on a busy trunk line had to wait until a channel became 

available, while nowadays they might have to tolerate a reduction in their quality of 

service. Either way, everyone gets a fair share of the bandwidth. By contrast, 

contention for access to the connective core is not resolved equitably, according to the 

present hypothesis. Rather, it is resolved through winner-takes-all competition. The 

coalition that ends up driving activity in the connective core will shut out its 

competitors by preventing their constituent processes from exchanging influence and 

information through it. In this sense, the competition plays out in the connective core 

itself. It thereby addresses a further aspect of the coalition formation problem, namely 
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the need for a single coalition at a time to dominate the dynamics of the brain and 

dictate the animal’s behaviour. 7 

 So far we have been imagining a single transition in the state of the brain. We 

have exmanined the putative role played by the connective core in producing the 

globally integrated brain state that determines an animal’s response to its current 

situation. So the emphasis up to now has been on parallel processing. But the 

distinctive blend of serial and parallel processing supported by the connective core 

involves many such transitions. Insofar as the connective core has only a limited 

capacity, it constitutes a central bottleneck in the brain (Pashler, 1984; Marois & 

Ivanoff, 2005). Apart from helping to enforce the sort of winner-takes-all competition 

that is necessary for an animal to commit to a coherent course of action, this central 

bottleneck facilitates serial processing, which is necessary for the chaining of mental 

operations (Sackur & Dehaene, 2009). Thanks to its limited capacity, a serial 

procession of states emerges via the connective core. Yet each state-to-state transition 

in this series is the product of competition and co-operation among massively 

numerous parallel processes (Fig. 3). 

 This unconventional model of computation can be characterised in dynamical 

systems terms. The brain settles into global, attractor-like states, mediated by the 

connective core. But these states, though attractor-like, are only temporary. That is to 

say, they are not stable but metastable (Kelso, 1995; Bressler & Kelso, 2001; Werner, 

2007; Deco, et al., 2011). A coalition is held together by its own complex dynamics, 

which will eventually precipitate its break-up. (A likely feature of this complex 

dynamics is synchronous oscillation (Fries, 2009; Shanahan, 2010b; Shanahan & 

Wildie, 2012).) Moreover, in a behaving animal, the brain is subject to external 

perturbation due to incoming sensory stimulation, which can similarly upset the 

stability of a coalition. So the overall brain-wide pattern of activity is one of coalition 

formation, followed by break-up, followed by the formation of a new coalition, and so 

on, yielding a serial procession of global metastable states punctuated by transients. 

                                                
7 Competitive mechanisms have long been thought to play an important part in brain 
dynamics (Desimone & Duncan, 1985). The need for the brain to settle into an integrated 
global state that determines a coherent behavioural outcome when faced with competing 
opportunities or threats has been dubbed the action selection problem (Prescott, 2007). 
Various structures, notably the basal ganglia, have been hypothesised to address the action 
selection problem (Redgrave, et al., 1999). The same competitive mechanisms are presumed 
to be implicated in the competition for the connective core. 
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 One way to think of the blend of sequential and parallel processing envisioned 

here is in terms of a serial virtual machine realised on a massively parallel neural 

substrate (Dennett, 1991, pp.209–226; Sloman & Chrisley, 2005). However, the 

processing carried out by this serial virtual machine is unlike that of a conventional 

von Neumann computer. In the present case as in a conventional computer we have 

states, but those states possess an ongoing internal dynamics that is absent in 

conventional computation. In the present case as in a conventional computer we have 

transitions from one state to another, but these transitions are here mediated by a rich 

temporal dynamics that is quite different from the discrete state-to-state transitions 

found in conventional computation. 

 Inherent in the way the present system operates is the possibility of dealing with 

a cognitive challenge either through a series of sequential internal steps, as in a 

conventional AI planning algorithm, or through a form of parallel search resembling 

the convergence of an attractor network, or indeed through some combination of both 

methods. However, continuing the comparison with a von Neumann architecture, we 

might ask what, in the envisaged serial virtual machine, is the analogue of memory in 

a conventional computer. For the serial machine to carry out anything resembling the 

sequential processing of an AI problem solving algorithm, it must be possible for 

certain aspects of the present state to endure and influence future states. This is 

accomplished in the framework of this paper in the following way. When the 

presently dominant coalition of processes breaks up and gives way to a successor, 

certain members of the outgoing coalition can remain active, retaining information, 

possibly to join a later dominant coalition. There is ample evidence — from lesion 

studies with delayed response tasks, for example — that mnemonic brain processes of 

this sort are supported by the prefrontal cortex in mammals (a member of the 

connective core), and by its analogue in birds (the nidopallium caudolaterale) (Fuster, 

2008; Güntürkün, 2005). 

 To summarise, the presence of a small set of topologically central forebrain 

regions has been established empirically. The potential implications of this finding for 

understanding animal cognition, and perhaps for understanding animal consciousness, 

are profound. They are encapsulated by the following slogan: unity from multiplicity, 

serial from parallel. Unity arises from multiplicity because the connective core 

ensures that a singular, coherent response to the ongoing situation is integrated from 

the brain’s full resources. Serial emerges from parallel because brain-wide 
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information and influence are channeled through the connective core, which acts as a 

limited bandwidth processing bottleneck, allowing mental operations to be chained 

together. 

7. Synthetic Methodology 

The connective core hypothesis purports to explain how the brain’s connectivity and 

dynamics enable certain kinds of sophisticated cogntion that have been demonstrated 

experimentally in non-human animals. How can we test this hypothesis and, insofar as 

it is true, build a profile of the serial and parallel activity involved in the successful 

performance of different tasks? The behavioural paradigm described earlier is one 

approach. But to really get at the underlying mechanisms, such behavioural methods 

need to be supplemented. Although neuroanatomy, imaging, and electrophysiological 

recording are vital sources of relevant data, the focus of this final section is a 

complementary but less well-established methodology, namely the construction of 

computer and robot models. 

 As Braitenberg (1984) noted, in his law of “uphill analysis and downhill 

invention”, it is often more difficult to infer principles of internal operation from 

experimental observation than it is to invent mechanisms that produce the same 

outward behaviour. Invention cannot be a substitute for observation, because more 

than one mechanism is typically capable of generating a given behaviour. What we 

seek are computer and robot models that not only generate the required behaviour, but 

are also consistent with the empirical findings of neuroscience. A computer program 

is not a scientific theory, of course, and nor is a working robot. But properly 

engineered computer programs and robots are built according to principles and 

specifications, and it is these principles and specifications, rather than any artefact 

conforming to them, that contribute to our scientific understanding. A computational 

model of a neuroscientific hypothesis is a demonstration that the hypothesis is 

sufficiently clear to be implementable. Moreover, the rigours of implementation often 

reveal unexpected nuances of a hypothesis, as well as extensions and alternatives that 

might otherwise have been missed. 

 This is the rationale behind the field of computational neuroscience. But here 

we are advocating the extension of this synthetic methodology to the embodied case, 

to the use of robots. This approach has been applied to various brain structures, 

including the hippocampus (Fleischer, et al., 2007), the basal ganglia (Prescott, et al. 



17 

2006), and the amygdala (Ziemke & Lowe, 2009), as well as to low-level behaviours 

such as phonotaxis in invertebrates (Webb, 2002). (For an overview of recent work, 

see Krichmar & Wagatsuma (2011).) In lieu of detailed experimental data, can the 

synthetic approach be used to bolster the connective core hypothesis, and the claim 

that it can explain aspects of animal cognition? 

 Some steps in this direction have already been taken. In Shanahan (2006), a 

cognitive architecture is presented whose key component is a network of artificial 

neurons (the global workspace (Baars, 1988)) that fulfils the same role as that 

imputed to the connective core. It is an arena for competition among rival groups of 

neurons, each of which attempts to make it settle into a particular pattern of 

reverberating activation. The winning pattern is broadcast back to the full cohert of 

competitors, giving rise to a cycle of competition followed by broadcast. Thus, a 

serial procession of states is produced, but each serial step is the outcome of parallel 

processing in tens of thousands of artificial neurons. This serial process is used to 

rehearse the consequences of actions before they are carried out. The resulting 

predictions modulate the salience of possible actions in the context of a winner-takes-

all action selection mechanism, which controls a simple simulated robot. The 

resulting model was used to emulate a classic experiment of Tolman and Gleitman 

(1949) that appeared to show a capacity for look-ahead in rats (Fig. S3). 

 The work just described showed that a global neuronal workspace — a structure 

analogous to a connective core — could form the basis of serial computation in a 

massively parallel setting, and demonstrated its deployment in a control architecture 

for a robot. However, the model used a form of artificial neuron that lacks biological 

fidelity. A more realistic computer model of competitive access to a global neuronal 

workspace was developed by Deheane and colleagues using spiking neurons 

(Dehaene, et al., 2003; Dehaene & Changeux, 2005). A complementary spiking 

model of global neuronal workspace broadcast was later reported in Shanahan (2008) 

(Fig. 4), and then elaborated by Connor and Shanahan (2010). A related model 

showcasing the possible role of the brain’s connective core in inter-process 

communication was described by Zylberberg, et al. (2010). 

 While these models contain many of the elements required to instantiate the 

connective core hypothesis, they are also lacking certain crucial features. In particular, 

they do not address the issue of coalition formation, which is central to the present 

paper. On the assumption that elevated levels of synchronous oscillation in spatially 
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separated brain regions are a sign that those regions are operating as a coalition, the 

model described Shanahan (2010b) is a step in the right direction. The model is based 

on oscillators, and is thus defined at a higher level than spiking neurons. Moreover, 

although its connectivity is modular and small-world, it lacks a connective core. 

Nevertheless, the model shows how metastable coalitions can form and break up in a 

modular, small-world network of dynamical elements. Cabral, et al. (2011) have 

shown that a similar setup can be used to model human resting state fMRI data, 

including the default mode network in which the regions of the human connective 

core are prominent. 

 A more complete implementation of the connective core hypothesis, one that 

could actually exhibit cognitive integration, would combine the important features of 

each of the models described. The first step would be to reverse engineer the basic 

blueprint of the vertebrate brain, something akin to what Striedter (2005) calls the 

“vertebrate brain archetype” (after the 19th Century biologist Richard Owen). This 

should describe the simplest viable brain that incorporates every structure common to 

all vertebrates (whether as homologues or functional analogues), and retain those 

connectivity properties that are similarly shared. The next step would be to construct a 

model brain according to this blueprint that conforms to the connective core 

hypothesis. 

 The key features of this model would be 1) biologically realistic network 

topology, specifically a hierarchically modular small-world network with a connective 

core of hub nodes, 2) functional differentiation to include at least sensory, motor, 

basal gangliar, amygdaloid, hippocampal, and prefrontal regions, and 3) embodiment 

in a behaving robot endowed with a basic motivational system and associative 

learning mechanisms. To be consistent with the framework of the present paper, the 

connective core would be expected to exhibit certain dynamical properties, namely 1) 

episodes of (metastable) broadcast punctuated by competition, and 2) the formation of 

coalitions of brain processes drawn from a large, open-ended repertoire. If the 

proposals of the present paper are correct then, by scaling up the model in different 

ways, it ought be possible to replicate the cognitive feats of a range of species, 

including those that seemingly demonstrate “insight”. 
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8. Concluding Remarks 

There is growing evidence that the brains of cognitively sophisticated animals are 

hierarchically modular small-world networks with connective cores comprising sets 

of connector hubs. According to the hypothesis of this paper, possession of a 

connective core is a prerequisite for sophisticated animal cognition. As well as 

unifying the distributed activity of the brain’s massively parallel resources, the 

connective core promotes cognitive integration by allowing the formation of novel 

coalitions of brain processes, and facilitates serial mental operations. However, 

possession of a connective core is no guarantee of cognitive sophistication. Indeed, 

the evolutionary pressures that led to this network organisation may at first have been 

less to do with cognitive prowess than to do with the space and energy costs of 

connecting large numbers of neurons to each other. 

 It is typically taken for granted that the most parsimonious explanation of an 

animal’s behaviour is to be preferred in the absence of evidence ruling it out. Yet it is 

not always obvious what constitutes pasimony (Heyes, 2012). A simple explanation 

of a simple behaviour may look like the right choice at the level of a single species. 

But from a wider scientific perspective, a unified theory that encompassed the full 

spectrum of animal behaviour would be preferable. The goal of supplying such a 

theory is likely to be furthered by a better understanding of the underlying neural 

mechanisms. It may be the case, for example, that behaviours that can be given an 

associative account and behaviours that seem to demand a cognitive account both 

emerge from the same underlying network organisation. Perhaps the neural 

underpinnings of “insight”, far from being mysterious, are prevalent in large 

centralised nervous systems, thanks to massive parallelism, rich dynamics, and a 

particular network organisation. 
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Figure 1: Competitive coalition formation. A coalition of coupled brain 

processes forms (shown as hatched circles) to the exclusion of rival 

coalitions, partly under the influence of internal dynamics (including the 

preceding coalition) and partly under the influence of external stimuli. 

Coalition membership is drawn from a large pool that includes sensory, 

motor, and memory processes. Brain processes are anatomically localised, 

functionally specialised populations of neurons, but a coalition of brain 

processes can be anatomically distributed and functionally diverse. The 

dominant coalition governs the behaviour of the animal until it breaks up 

and is succeded by a new coalition. 
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Figure 2: (A) A small-world network built using the Watts-Strogatz 

procedure (Watts & Strogatz, 1998). This network lacks modularity. (B) A 

modular small-world network that more closely resembles the large-scale 

structural connectivity of an animal’s brain (but lacks connector hubs). (C) 

A modular small-world network with connector hubs. A node is designated 

a connector hub if it plays a significant role in communication between 

modules. (D) The connector hubs, along with their dense interconnections, 

are designated the connective core of the network. 

A B 

C D 
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Figure 3: The connective core supports a distinctive blend of serial and 

parallel processing. The transition from one broadcast state to another 

results from competition (differently coloured circles) and co-operation 

(similarly coloured circles) among parallel brain processes (here organised 

into five modules). In this case, the broadcast influence of the green 

coalition gives rise to a competition among three potential successors 

(yellow, cyan, and magenta). The magenta coalition triumphs, giving rise 

to the next broadcast state. 
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B A 

Figure 4: (A) The architecture of the spiking neuron model of a global 

neuronal workspace presented in Shanahan (2008). The workspace nodes 

and their interconnections are functional analogues of the connective core, 

according to the hypothesis of the present paper. (Compare Fig. 2C.) The 

blue portions were included in the computer simulation. (B) A raster plot 

of the output from the model, showing the sequential production of 

reverberating spatial patterns in the connective core (global workspace). 
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Figure S1: A modified version of the apparatus of Bird & Emery (2009). 

Only an object of the right shape can be inserted through the cap on the 

tube to release the reward. Combinations of such boxes with different caps 

can be used to present multiple new instances of a planning problem. Photo 

courtesy of Alex Taylor. 
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Figure S2: An experiment using multiple variants of the apparatus of Fig. S1 for 

discriminating between a forward chaining approach to planning and a backward 

chaining approach. If the subject uses backward chaining, then B (three initial 

possibilities) should be a greater challenge than A (two possibilities), with little 

difference between C and D (two possibilities each). Conversely, if the subject 

uses forward chaining then D (three possibilities) should be a greater challenge 

than C (two possibilities), with little difference between A and B (two 

possibilities each). 

A B 

C D 
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Figure S3: (A) The T-maze experiment of Tolman and Gleitman (1949). The rat 

explored the maze freely, and was rewarded in both arms (dark- and light-coloured). 

It was then removed from the maze, and subjected to a shock in a dark-coloured 

room. Subsequently it showed a preference for the right (light-coloured) arm of the 

maze, although neither arm was visible when it made its choice, suggesting a 

capacity to anticipate the effects of actions. (B) A robot analogue of Tolman & 

Gleitman’s experiment (Shanahan, 2006). The robot has an initial preference for 

turning right when facing green. But it is trained to associate turning right with red, 

for which it has an aversion. Thanks to an inner rehearsal mechanism, it can 

anticipate the effect of turning right, causing it to overcome its prior preference and 

turn left instead. 

B A 


