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Abstract

The Event Calculus of Kowalski and Sergot only deals with discrete
change. This paper introduces a simplified version of the Event Calculus and
extends it to deal with continuous change, as in the height of a falling object or
the level of liquid in a filling vessel. The idea of autotermination is introduced. A
period of continuous change autoterminates if it brings about the event which
terminates it. For example, when the increasing level of water in a sink reaches
the overflow, it ceases to increase. The formulation is applied to a simple
example with liquid filling a sink, and to a more complicated one with many
tanks discharging liquid into another tank.
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Introduction

The Situation Calculus of McCarthy and Hayes [1969] represents a changing world by a
discrete and strictly ordered sequence of "snapshots", each representing the complete state of the
world at a given instant. The ontology of the Situation Calculus makes it hard to represent partially
ordered or simultaneous events, or continuous change. To overcome these shortcomings, several
authors have developed richer calculi for representing change [McDermott, 1982, Hayes, 1985,
Allen, 1984, Kowalski and Sergot, 1986].

The Event Calculus of Kowalski and Sergot [1986] is one such formalism. In the Event
Calculus, events initiate periods during which properties hold. A property which has been initiated
continues to hold by default until some event occurs which terminates it. Partially ordered and
simultaneous events can be represented. However, in the Event Calculus described by Kowalski
and Sergot, all change is discrete. It needs to be extended to be able to represent continuously
changing quantities, such as the height of a falling object, the position of a rotating wheel or the
level of liquid in a filling vessel. This paper presents such an extension.

I introduce a simplified version of the Event Calculus, and then present an extension which
copes with continuous change. The idea of autotermination is introduced — if a period of
continuous change carries on for long enough, it can cause the event which terminates it, as when a
sink overflows or a falling object hits the ground. The extended Event Calculus is then applied to a
number of examples of continuous change involving vessels filling and emptying.

1. The Event Calculus

In Kowalski and Sergot's Event Calculus [Kowalski and Sergot, 1986] and its variants
[Kowalski, 1989], the ontological primitives are events, which initiate and terminate periods
during which properties hold. The Horn clause subset of the Predicate Calculus is used,
augmented with negation-as-failure. The Event Calculus used in this paper is a simplified version
of that given by Kowalski and Sergot in their paper. Only two clauses are necessary, as follows.

holds-at(P,T2) if (1.1)
happens(E) and time(E,T1) and T1 < T2 and
initiates(E,P) and not clipped(T1,P,T2)

clipped(T1,P,T3) if (1.2)
happens(E') and time(E',T2) and terminates(E',P) and
T1 ≤ T2 and  T2 < T3

The formula holds-at(P,T) represents that property P holds at time T. The formula
happens(E) represents that the event E occurs and the formula time(E,T) represents that the time of
event E is T. Times are ordered by the usual comparative operators. The formula initiates(E,P)
represents that the event E initiates a period during which property P holds, and terminates(E,P)
represents that the event E terminates any ongoing period during which property P holds. The not
operator is interpreted as negation-as-failure. The use of negation-as-failure in Axiom (1.1) gives a
form of default persistence. The formula clipped(T1,P,T2) represents that the property P ceases to
hold at some time between T1 and T2. Note that a property does not hold at the time of the event
which initiates it, but does hold at the time of the event which terminates it.

The problem domain is (partly) captured by a set of initiates and terminates clauses. For
example, the Blocks World is described by the following clauses. The term on(X,Y) names the
property that block X is on top of block Y or at location Y, and the term clear(X) names the
property that block or location X has nothing on top of it. The term move(X,Y) names the event or
act type of moving block X onto block or location Y.

initiates(E,on(X,Y)) if act(E,move(X,Y)) (2.1)
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initiates(E,clear(Z)) if (2.2)
act(E,move(X,Y)) and time(E,T) and
holds-at(on(X,Z),T) and Z≠Y

terminates(E,clear(Y)) if act(E,move(X,Y)) (2.3)
terminates(E,on(X,Z)) if act(E,move(X,Y)) and Z≠Y (2.4)

A particular course of events is represented by a set of happens, act and temporal ordering
clauses. For example, to represent that block a was moved to location x and then to location y, we
write

happens(e1) (3.1)
act(e1,move(a,x)) (3.2)
happens(e2) (3.3)
act(e2,move(a,y) (3.4)
e1 > e2 (3.5)

We can use these axioms deductively to predict the locations of blocks at different times.
We can also use the Blocks World Axioms (2.1) to (2.4) abductively to generate explanations of
the locations of blocks in terms of possible events [Shanahan, 1989].

2. Events Which Are Caused

In the simplified form of the Event Calculus described above, like the original Kowalski
and Sergot formalism, it is not clear how to represent that a certain type of event invariably follows
a certain other type of event, or that a certain type of event occurs when some property holds. We
will need to be able to do this to represent autoterminating periods of continuous change. In the full
Predicate Calculus, the natural way to represent this sort of law is to use an existentially quantified
conjunction as the consequent of an implication. For example, we might write something of the
form

∀E1[∃E2[happens(E2)∧P1...Pn]←[happens(E1)∧Q1...Qm]] (4.1)

Using only Horn clauses plus negation-as-failure, it is necessary to eliminate the existential
quantifier by skolemisation. We get a clause of the form

happens(f(E1,X)) if happens(E1) and Q1 ... Qm (4.2)

and n clauses of the form

Pi if happens(E1) and Q1 ... Qm (4.3)

The skolem function f(E1,X), where X is a tuple of all universally quantified variables in
(4.1), names an event caused by E1. In fact, the event can often be uniquely named without
including all these variables in X. The function name f identifies the type of the event.

Suppose, for example, that we wanted to represent a law that says whenever an alarm is set
at time t it goes off at time t+n. The following axioms will suffice.

happens(go-off(E)) if happens(E) and act(E,set-alarm) (4.5)
time(go-off(E),T2) if time(E,T1) and T2 = T1 + n (4.6)
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3. Continuous Change

The Event Calculus provides a representational framework for a variety of temporal
reasoning problems. Problems involving discrete changes, such as Blocks World problems, are
easily represented. But many temporal reasoning problems, especially in the domain of
commonsense physics, demand an ability to represent continuous variation in some quantity, and
this is not provided by the Event Calculus as it stands. For example, we may wish to represent the
changing height of a falling object, or the rotation of a cog or wheel, or the motion of a billiard ball
across a table.

A continuously varying quantity takes on values from some quantity space. The quantity
space in question could be many-dimensioned, such as the position in physical space of a moving
object, or it could be one-dimensional, such as the height of a falling object, the angular position of
a wheel or the level of liquid in a vessel. A quantity space which is in reality a continuum can be
represented as such, that is quantitatively, or alternatively can be represented qualitatively as a
discrete, ordered set of values of interest.

The approach I will take is to axiomatise a particular example first — that of the rising level
of water in a kitchen sink — and then to consider some axioms for continuous change in general. I
will consider both the quantitative and qualitative representations of the quantity space. Finally I
will axiomatise a more complicated example involving a number of tanks discharging into each
other.

rim

overflow

bottom

10

7

0

L2 = L1 + 2T

Figure 1: A Kitchen Sink

Consider the kitchen sink in Figure 1. When the tap is turned on, it starts to fill up. The
level of water increases continuously until either the tap is turned off or an outlet is reached. The
task is to represent this scenario in the Event Calculus. We might consider representing the level of
water either quantitatively or qualitatively, depending on our purposes and the information at hand.

If we choose to represent it quantitatively, then the level of water is a real number L2, and it
is given by the equation L2 = L1 + R * T, where L1 is the level of water before the tap is turned
on, R is the rate of filling and T is the time elapsed since the tap was turned on. The bottom is at
level 0, the overflow is at level 7, and the rim is at level 10. We will assume that the rate of filling
R is 2 units of length per unit of time.

For various reasons, we might choose to represent the level qualitatively, perhaps because
an exact equation of filling is not known or perhaps because we want to represent and reason at a
higher level of abstraction than exact numerical values. We can represent the level as simply one of
three values; the bottom, the overflow and the rim. This set of values represents all the points at
which anything interesting can happen, such as the sink overflowing. Rather than having a
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quantitative equation characterising the increase in the level, it simply passes through each of these
points in turn.

4. Representing the Kitchen Sink

I will consider the quantitative case first. To capture the continuous variation in the level of
water once the tap has been turned on requires a new holds-at axiom, since Axiom (1.1) only
caters for discretely changing properties. Let us suppose that level(L) names the property that the
water is at level L.  We can write

holds-at(level(L2),T2) if (5.1)
happens(E) and act(E,tap-on) and time(E,T1) and
holds-at(level(L1),T1) and L2 = L1 + 2 * (T2 - T1)

Using this axiom, we can infer the level of the sink at any time while it is filling. But the
sink can stop filling either because the tap is turned off or because it overflows. To represent this,
we can introduce another property filling , which represents that the level of water in the sink is
increasing. This property is initiated when the tap is turned on and terminated when it is turned off
or when the sink overflows. Whilst filling  holds, the level of water is a function of the time that
has elapsed since the tap was turned on. Replacing (5.1) we have

holds-at(level(L2),T2) if (6.1)
happens(E) and act(E,tap-on) and time(E,T1) and
holds-at(level(L1),T1) and L2 = L1 + 2 * (T2 - T1) and
not clipped(T1,filling,T2)

initiates(E,filling) if act(E,tap-on) (6.2)
terminates(E,filling) if act(E,tap-off) (6.3)
terminates(E,filling) if act(E,spill) (6.4)

Finally, we need to add axioms which describe how a spill event can occur. These
autotermination axioms are very common with problems of continuous change. They capture the
fact that, if left alone, the period of filling terminates itself. In general, it represents that if the
continuously changing quantity reaches a threshold value,  an event occurs which terminates the
period of continuous change. Using the convention described in Section 2, for this example we
write

happens(spills(E)) if (6.5)
happens(E) and time(E,T1) and initiates(E,filling) and
holds-at(level(L1),T1) and outlet(L2) and
L2 = L1+ R * (T2 - T1) and T1 < T2 and
not clipped(T1,filling,T2)

time(spills(E),T2) if (6.6)
happens(E) and time(E,T1) and initiates(E,filling) and
holds-at(level(L1),T1) and outlet(L2) and
L2 = L1+ R * (T2 - T1) and T1 < T2 and
not clipped(T1,filling,T2)

act(spills(E),spill) (6.7)

Recall that a property still holds at the time of the event which terminates it. Without this
convention, autoterminating periods would be difficult to represent. We add to Axioms (6.1) to
(6.7) a description of the particular problem at hand; there are outlets at levels 7 and 10, and the tap
is turned on at time 0.

outlet(7) (7.1)
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outlet(10) (7.2)
happens(e0) (7.3)
time(e0,0) (7.4)
act(e0,tap-on) (7.5)
holds-at(level(0),0) (7.6)

We can then prove, for example

holds-at(level(7),3.5) (8.1)

and therefore that

happens(spills(e0)) (8.2)
time(spills(e0),3.5) (8.3)

That is, the level reaches the overflow at time 3.5. The level does not, of course, reach the
rim because the filling autoterminates when the level reaches the overflow. So we cannot prove
either of

holds-at(level(10),5) (9.1)
time(spills(e0),5) (9.2)

If the overflow were blocked and Axiom (7.1) were absent, then we would not be able to
prove (8.3), but would be able to prove (9.1) and (9.2).

5. The General Case

From the example above, we can see how, in general, to write Event Calculus axioms
which describe continuous change. Generalising from (6.1), we write

holds-at(P,T2) if (10.1)
happens(E) and time(E,T1) and
T1 < T2 and initiates(E,Q) and
not clipped(T1,Q,T2) and trajectory(Q,T1,P,T2)

This introduces the idea of the trajectory of a continuously changing quantity, which is a
path plotted against time through the corresponding quantity space. For example, the level of liquid
in the sink increases linearly from the time of the start of a period of filling. The formula
trajectory(Q,T1,P,T2) represents that property P holds at time T2 on the trajectory of the period of
continuous change Q which starts at time T1. Effectively, this formulation isolates the function
which describes the continuous change from the holds-at axiom. So, for the kitchen sink problem
we simply write

trajectory(filling,T1,level(L2),T2) if (11.1)
holds-at(level(L1),T1) and L2 = L1 + 2 * (T2 - T1)

We can also generalise the autotermination axioms (6.4) to (6.7). The term end(E,Q) is
introduced to denote the event which terminates the period of continuous change Q which was
initiated by the event E. Instead of spills(E) we write end(E,filling). The general axioms are

happens(end(E,Q)) if (12.1)
happens(E) and time(E,T1) and initiates(E,Q) and
autoterminates(P,Q) and trajectory(Q,T1,P,T2) and
not clipped(T1,Q,T2)

time(end(E,Q),T2) if (12.2)
happens(E) and time(E,T1) and initiates(E,Q) and



6

autoterminates(P,Q) and trajectory(Q,T1,P,T2) and
not clipped(T1,Q,T2)

terminates(end(E,Q),Q) (12.3)

The formula autoterminates(P,Q) represents that the period of continuous change Q is
terminated when and if the property P holds. For the kitchen sink problem we write

autoterminates(level(L),filling) if outlet(L) (13.1)

To use the general axioms for the sink problem, Axiom (6.1) is replaced by (10.1) and
(11.1), and Axioms (6.4) to (6.7) are replaced by (12.1) to (12.3) and (13.1). Then, the same
consequences follow from the example represented by (7.1) to (7.6).

6. The Qualitative Version

Perhaps the exact, quantitative equation describing a quantity's trajectory is not known. For
example, the rate of filling of the sink might be unknown, or the sink might fill up eratically rather
than linearly. However, we still know that the liquid will reach every level in the sink up to the
level at which it spills, and we can predict that the spilling will take place at the level of the
overflow. This can be axiomatised by substituting a qualitative version of trajectory for the
definition of (11.1).

A qualitative quantity space can be represented as an ordered set of landmark values
[Kuipers, 1986]; those points in the corresponding quantitative space which are of interest for
some reason. The continuously changing quantity in question can either be at one of the landmark
values or between two adjacent ones. There are only three points of interest in the qualitative space
of liquid levels in the kitchen sink; the bottom, the overflow and the rim. We write
follows(P1,P2,Q) to express that P1 and P2 are adjacent landmark values in the trajectory of the
period of continuous change Q. Also, we write in(P,Q) to express that the property P is in the
trajectory of the period of continuous change Q. So, for the sink we have

in(level(bottom),filling) (14.1)
in(level(overflow),filling) (14.2)
in(level(rim),filling) (14.3)

follows(level(overflow),level(bottom),filling) (14.4)
follows(level(rim),level(overflow),filling) (14.5)

outlet(overflow) (14.6)
outlet(rim) (14.7)

Then, the following axioms define the general case of the qualitative version of the
trajectory predicate.

trajectory(Q,T,P,time-of(P,Q,T)) if in(P,Q) (15.1)

trajectory(Q,T,between(P1,P2),T2) if (15.2)
time-of(P1,Q,T) < T2 < time-of(P2,Q,T) and
follows(P2,P1,Q)

time-of(P,Q,T) > T if in(P,Q) (15.3)

time-of(P2,Q,T) > time-of(P1,Q,T) if follows(P2,P1,Q) (15.4)
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The term time-of(P,Q,T) represents the time at which the property P holds on the trajectory
of the period of continuous change Q which starts at time T. The comparative operators now range
over these terms, as well as the real numbers, keeping all their usual properties, such as
transitivity. The property between(P1,P2) represents that the continuously changing quantity is
between the adjacent landmark values P1 and P2. To describe a scenario in which the tap is turned
on at time 0, we write as before

happens(e0) (16.1)
time(e0,0) (16.2)
act(e0,tap-on) (16.3)

We can then prove

happens(spill(e0)) (17.1)
time(spill(e0),time-of(level(overflow),filling,0)) (17.2)

but we cannot prove

holds-at(level(rim),T) (17.3)

7. The Many Tanks Problem

As a final exercise, I will present an axiomatisation of a slightly more complex problem,
involving many tanks discharging liquid into another tank. Figure 2 shows an example of the two
tank case. Each tank has an associated tap which can be turned on or off and which discharges
liquid at a given rate. This problem is more elaborate than the kitchen sink problem because both
taps can be discharging liquid at the same time.

Suppose that initially both taps are off. First, tap1 is turned on, then tap2 is turned on, then
tap2 is turned off, and then tap1 is turned off. There are two ways of looking at this scenario. We
might consider this as a single period of continuous change. After all, the bottom tank is filling up
uninterruptedly from the time the first tap is turned on until it is turned off again. Then, to
axiomatise it using the Event Calculus, we would have to write a suitable set of trajectory clauses
which captures the variation in the rate of filling which occurs when the second tap is turned on
and off.

tank1

tank3

tank2

tap1 tap2

Figure 2: The Two Tank Problem
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However, regarding this as a single period of continuous change would be a mistake for
two reasons. First, it turns out to be very hard to write a suitable set of trajectory clauses. Second,
it confuses discrete and continuous change. A better way is to consider this scenario as composed
of four connected periods of continuous change. When the tap1 is turned on, a period of
continuous change is initiated. But when the tap2 is turned on, a discrete change takes place — the
rate of filling is (effectively) instantaneously increased by some amount. So the previous period of
continuous change is terminated and a new one is initiated in which the sink is filling at a different
rate.

8. Representing the Many Tanks Problem

The following set of axioms is for the n tanks problem. The terms tap-on(N) and tap-off(N)
denote the acts of turning tap N on and off respectively. The term filling(V,R) represents the
property that tank V is filling continuously at rate R. A tank cannot be filling at rate 0. Rather, it is
not filling at all. The formula connects(N,V1,V2) represents that tank V1 discharges into tank V2
via tap N, and the formula rate(N,R) represents that tap N discharges liquid at rate R. First we
have axioms which describe how a tank fills.

initiates(E,filling(V2,R3)) if (18.1)
act(E,tap-on(N)) and rate(N,R1) and time(E,T) and
holds-at(filling(R2),T) and R3 = R1 + R2 and
connects(N,V1,V2)

terminates(E,filling(V2,R)) if (18.2)
act(E,tap-on(N)) and connects(N,V1,V2)

initiates(E,filling(V2,R3)) if (18.3)
act(E,tap-off(N)) and rate(N,R1) and time(E,T) and
holds-at(filling(R2),T) and R3 = R2 - R1 and R3 > 0
connects(N,V1,V2)

terminates(E,filling(V2,R)) if (18.4)
act(E,tap-off(N)) and connects(N,V1,V2)

initates(E,filling(V2,R2)) if (18.5)
act(E,tap-on(N)) and rate(N,R2) and time(E,T) and
not holds-at(filling(R1),T) and connects(N,V1,V2)

The term emptying(V,R) denotes the property that tank V is emptying at rate R. The next
two axioms describe how a tank empties. If tank V1 discharges into V2 via tap N, then the act of
turning tap N on initiates two periods; one in which V2 is filling at some rate and another in which
V1 is emptying.

initiates(E,emptying(V1,R)) if (18.6)
act(E,tap-on(N)) and rate(N,R) and connects(N,V1,V2)

terminates(E,emptying(V1,R)) if (18.7)
act(E,tap-off(N)) and connects(N,V1,V2)

When a tank is neither emptying nor filling, its level remains constant. So, when the last tap
is turned off, a period is initiated in which the level of the tank remains constant. Likewise, when
the first tap is turned on, this terminates a period during which the level in the tank remains
constant. In the kitchen sink example, this was ignored.

initiates(E,level(V2,L)) if (18.8)
act(E,tap-off(N)) and connects(N,V1,V2) and
time(E,T) and rate(N,R) and holds-at(filling(V2,R),T) and
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holds-at(level(V2,L),T)

initiates(E,level(V1,L)) if (18.9)
act(E,tap-off(N)) and connects(N,V1,V2) and
time(E,T) and holds-at(level(V1,L),T)

terminates(E,level(V2,L)) if (18.10)
act(E,tap-on(N)) and connects(N,V1,V2) and
time(E,T) and not holds-at(filling(V2,R),T)

terminates(E,level(V1,L)) if (18.11)
act(E,tap-on(N)) and connects(N,V1,V2)

The trajectory of the filling of a tank is defined in a way similar to that for the kitchen sink.
Also, the trajectory of the emptying of a tank needs to be defined. The term level(V,L) represents
the property that the liquid in tank V is at level L.

trajectory(filling(V,R),T1,level(V,L2),T2) if (18.12)
holds-at(level(V,L1),T1) and L2 = L1 + R * (T2 - T1)

trajectory(emptying(V,R),T1,level(V,L2),T2) if (18.13)
holds-at(level(V,L1),T1) and L2 = L1 - R * (T2 - T1)

As with the kitchen sink problem, periods of filling and emptying can autoterminate. If a
tank is filled to capacity, then its filling autoterminates. Similarly, if a tank drains its contents
completely then its emptying autoterminates. The formula rim(V,L) represents that the rim of tank
V is at level L.

autoterminates(level(V,L),filling(V,R)) if rim(V,L) (18.14)

autoterminates(level(V,0),emptying(V,R)) (18.15)

Given any sequence of tap-on and tap-off events, we can use this formulation to predict the
levels of the tanks at different times. Unfortunately, the formulation does not work if two taps are
turned on or off simultaneously. This is because the Event Calculus, as it stands, cannot easily be
used to represent events which occur simultaneously and which have a cumulative effect on the
same property, the rate of filling in this instance. This problem is separate from the problems of
representing continuous change, and is beyond the scope of this paper.

Concluding Remarks

Some techniques have been presented for representing continuous change in the Event
Calculus, to complement its exisitng capability for representing discrete change. A simplified
version of Kowalski and Sergot's formulation was introduced and extended to cope with
continuous change. A simple example involving a kitchen sink filling with liquid was axiomatised.
The idea of autotermination was introduced, whereby a period of continuous change can bring
about the event which terminates it, as when the level of liquid in the sink overflows. A more
complex example involving many tanks discharging into another tank was also presented.

Since the axioms presented are all Horn clauses, they can be used with a Prolog interpreter
to solve a variety of prediction problems. As they stand, they require some transformation to
prevent looping, and for some problems a delaying mechanism for inequalities is required. A
CLP(R) interpreter has this sort of mechanism built in, and can answer many queries which
ordinary Prolog cannot.

Only a handfull of other authors have attended to the problem of using logic to represent
continuous change. McDermott [1982, Section 4] outlines a framework for representing
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continuous change, based on a different ontology to that used in this paper but producing a similar
effect. Hayes's work [1985] concentrates on continuous change. He presents a set of axioms
which represent the behaviour of liquid under various conditions, but his approach is entirely
different to that of this paper. Hayes's ontology is based on the idea of a history, which is a piece
of spacetime. Histories lead to a different style of axiomatisation, in which the axioms constrain the
ways histories may be connected together. More recently, Sandewall [1989] has described a
framework which combines logic and differential equations to represent continuous change. A
thorough comparison of these approaches is the subject of further work.

The field of qualitative reasoning is also concerned with representing continuous change.
DeKleer and Brown's calculus of confluences [1985], for example, can represent a large variety of
problems involving continuous change, and in some respects is a more powerful formalism than
that offered in this paper. In particular, the omnidirectionality of a confluence (a qualitative
differential equation) cannot easily be represented using the formalism described here. On the other
hand, the formalisms used for qualitative reasoning are weak when it comes to representing
discrete change. A combined formalism for temporal and qualitative reasoning would seem to be
the way ahead [Shanahan, 1990].
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Appendix: The Collected Axioms

Here are the collected general purpose axioms of the Event Calculus, extended to deal with
qualitative and quantitative continuous change, and autotermination.

holds-at(P,T2) if (1.1)
happens(E) and time(E,T1) and T1 < T2 and
initiates(E,P) and not clipped(T1,P,T2)

clipped(T1,P,T3) if (1.2)
happens(E') and time(E',T2) and terminates(E',P) and
T1 ≤ T2 and  T2 < T3

holds-at(P,T2) if (10.1)
happens(E) and time(E,T1) and
T1 < T2 and initiates(E,Q) and
not clipped(T1,Q,T2) and trajectory(Q,T1,P,T2)

happens(end(E,Q)) if (12.1)
happens(E) and time(E,T1) and initiates(E,Q) and
autoterminates(P,Q) and trajectory(Q,T1,P,T2) and
not clipped(T1,Q,T2)

time(end(E,Q),T2) if (12.2)
happens(E) and time(E,T1) and initiates(E,Q) and
autoterminates(P,Q) and trajectory(Q,T1,P,T2) and
not clipped(T1,Q,T2)

terminates(end(E,Q),Q) (12.3)

trajectory(Q,T,P,time-of(P,Q,T)) if in(P,Q) (15.1)

trajectory(Q,T,between(P1,P2),T2) if (15.2)
time-of(P1,Q,T) < T2 < time-of(P2,Q,T) and
follows(P2,P1,Q)

time-of(P,Q,T) > T if in(P,Q) (15.3)

time-of(P2,Q,T) > time-of(P1,Q,T) if follows(P2,P1,Q) (15.4)


