
Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.1)

Symmetric Key CryptographySymmetric Key Cryptography

Michael Huth
M.Huth@doc.ic.ac.uk

www.doc.ic.ac.uk/~mrh/430/

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.2)

Introduction
 Also known as SECRET KEY,

SINGLE KEY, PRIVATE KEY

 Assumption: Sender and Receiver
share already a secret key

 Assumption requires solution to
key-distribution problem

 Symmetric key algorithms also
popular for file encryption, then

 Encrypter = Decrypter

WEAK ALGORITHMS
 Classical substitution and

transposition ciphers, as
discussed last week

“STRONGER” ALGORITHMS
 DES – No longer considered safe
 Triple-DES
 AES (Rijndael)
 IDEA
 RC5, RC6
 Blowfish
 Many others

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.3)

Encryption & Decryption

Encrypt (E)Plaintext (P) Ciphertext (C)

C = EK (P)

Plaintext (P)

P = DK (C)

P = DK (EK (P))

Key (K)

Decrypt (D)Ciphertext (C)

Same Key (K)

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.4)

DES - Data Encryption Standard
 Intended usage:
 * Unclassified government business

(USA)
 * Sensitive private sector business

 Was legally a munition in the US, like
rocket launchers. DES could not be
legally exported from the US as
software (but could be published in a
US book, or printed on a T-Shirt!)

 Re-certified every five years, i.e.
1983, 1988, 1993. US NSA
(“National Security Agency” aka “No
Such Agency”) were reluctant for
DES to be re-certified in 1988.

 1973 - US NBS (“National Bureau of
Standards”, now called NIST) request
for proposals.
None judged worthy.

 1974 - 2nd request for proposals.
* US NSA urges IBM to submit its
cipher Lucifer
* US NSA modifies IBM’s submission.

 1975 - US NBS publishes proposal
Much comment about US NSA
modifications, e.g. fear of backdoors,
shortening of key from 128 to 56 bits

 1976 - DES Standard published.
US NSA thought standard would be HW
only, but NBS published enough details
for software implementation.

 1976 - 1998 DES widely used worldwide
 1998 – DES brute force attackable

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.5)

 Plaintext encrypted 64-bits at a
time.

 56 bits used for key.
 256 = 7.2x1016 possible keys

 DES is an example of a BLOCK
CIPHER (but can also be
operated as a STREAM CIPHER)

Basics
Desired Design Criteria:
 Ciphertext should depend on the

plaintext and key in a complicated
and involved way (CONFUSION)

 Each bit of ciphertext should
depend on all bits of plaintext and all
bits of the key (DIFFUSION)

 AVALANCHE EFFECT
Small changes to input cause massive
variation in output. In DES flipping 1
bit of the key or 1 bit of a 64-bit
input block will flip 50% of the
output block’s bits

56-bit Key

E64-bit
P

64-bit
C

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.6)

................................

Structure of DES
ENCRYPTION
 Each block is subjected to 16 rounds

of substitutions and permutations
(transpositions).

 Permutations act to ‘diffuse’ data,
substitutions act to ‘confuse’ data
(SHANNON’s terminology)

 Each round uses 48 bits from key
called the subkey.

 Initial and final permutation appear
to be redundant.

DECRYPTION
 Same process as encryption but with

subkeys applied in reverse order

64-bit Plaintext

Swap L & R halves

Inverse of IP

64-bit Ciphertext

Round 1

56-bit Key

Initial Permutation (IP)
64

Round 16

64 56

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.7)

Feistel Cipher: a cipher design pattern
Encryption
 N rounds
 Plaintext = (L0, R0)
 For 1 <= i <= n

 Li = Ri-1
 Ri = Li-1 xor f(Ri-1 , Ki)

 Subkeys Ki derived from key K
 Ciphertext = (Rn, Ln)

Note: swapped halves

Decryption
 As Encryption above, but subkeys

applied in reverse order:
 N, N-1, N-2, …

 Block size: Large block size better.
128-bit or 256-bits blocks best

 Key size: These days at least 128
bits, more better, e.g. 192 or 256
bits

 Number of rounds: Typically at least
16 rounds needed

 Round function f and subkey
generation:: Designed to make
cryptanalysis difficult

 Round function f: typically built from
transpositions, substitutions,
modular arithmetic, etc.

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.8)

Feistel Cipher

PlaintextL0 R0

L1=R0 R1=L0 xor f(R0, K1)

L2=R1 R2=L1 xor f(R1, K2)

L3=R2 R3=L2 xor f(R2, K3)

R3 L3 Ciphertext

Feistel Cipher for 3 rounds This example should also make clear
why Decryption needs to supply

• key K3 in the first round,
• key K2 in the second round, and
• key K1 in the third round

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.9)

A Round of DES

Key out (56)

56
8 non-linear S-Boxes

32
P-Box
32

Key-Box
56

48

Key in (56)

Left (32)

32

32

Right (32)
32

Left (32) Right (32)

E-Box
48

48

is XOR

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.10)

A Round of DES

8 S-Boxes
32
P-Box
32

Left (32)

32

32

Right (32)
32

Left (32) Right (32)

E-Box
48

48

A Round
Lefti = Righti-1

Righti = Lefti-1 xor fi

fi = P º S º (E(Righti-1) xor
 Subkeyi)

Subkey (48)

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.11)

E-Box
32 bits

48 bits

 E box expands & permutates (from 32-bits to 48 bits). Changes order
as well as repeating certain bits (Helps with avalanche effect).

.............................

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.12)

S-Boxes
48 bits

32 bits

S[1] S[8]

 Each S-box takes 6-bits of input and produces 4-bits of output.
 S-Boxes give DES it’s security. Other boxes are linear and easier to

analyse. S-Boxes are non-linear and much harder to analyse.

.................................

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.13)

S-Box [n]
 b1 b2 b3 b4 b5 b6

 r1 r2 r3 r4

Result = SBOX [n] [Row] [Column]

 Each S-box has its own substitution table. Outer 2 bits select row,
middle 4 bits select column of substitution table. Entry gives new 4 bit
value.

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.14)

Substitution table for S-Box S5

http://en.wikipedia.org/wiki/S-box

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.15)

P-Box

32 bits

32 bits

 P-Box is just a mathematical
permutation.

.................................

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.16)

Key Box: determines subkeys
56 bits

Rotate Left 1 or 2 bits Rotate Left 1 or 2 bits

Permutation & Compression

28 28

28 28

56 bits

2828
48

48

Subkey

new input for key box

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.17)

DES block cipher: modes of usage

 So far, we saw how DES encrypts one 64-bit block
 How to encrypt general plain-text messages?
 Cut up plain-text into 64-bit chunks.
 Practical question: What about plain-text that is not a multiple of 64

bits?
 Answer: add bits (but in a way proscribed by the DES standard!) to

make plain-text fit.

 Encrypting each block in isolation may not be desirable.
 We now study different modes of using DES to encrypt sequences of

64-bit blocks.
 Practical aspect: if errors occur in encrypting one block, what other

blocks will be affected by this error?

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.18)

ECB - Electronic CodeBook

 Cn = E (K, Pn)

 Simplest operation mode of DES, no
feedback between blocks

 Used for short values (e.g. keys) to
prevent opponent building a code book.

 Identical blocks of plaintext -> identical
ciphertext block

 ECB easily parallelizable.
 No processing before a block is seen,

though.

 What if 1-bit of Ci is changed?

 What if 1-bit is inserted/deleted into Ci?

P1

E

C1

P2

E

C2

.....

C1 C2

D

P1

D

P2

.....

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.19)

Wiki example of ECB Mode

Plain-Text Cipher-Text

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.20)

CBC - Cipher Block Chaining
 Cn = E (K, Pn xor Cn-1)

C0 = IV = random value
 called an initialization vector

 Adds feedback to encryption of next
block. Most used mode. Conceals any
repeated patterns in plaintext.

 Choose C0=Initialisation Vector (IV)
randomly. So Ciphertext has one extra
block at start. Ensures P will generate
different C at each encryption time.

 (Alternatively generate IV by encrypting
nonce, include nonce in message.)

 Need to pad last P block if shorter than
64-bits. How to do this best?

C1

P2

E

C2

.....

E

P1

IV

is XOR

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.21)

Wiki example of non-ECB mode

Plain-Text Cipher-Text

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.22)

CFB - Cipher Feedback (Stream Cipher)

 Cn = Pn xor E (K, Cn-1)

 Self-Synchronising Stream
Cipher.

 If Pn is less than 64-bits, e.g if 8
bits, use top 8 bits of Cn, and
shift into bottom 8 bits of input
to E (input is a 64-bit shift
register). Only need to send 8-
bit values in this case.

 1 bit → CFB1
 8-bits → CFB8

64-bits → CFB64

P1 P2

C1 C2

E ...E

IV
E

IV: least significant bits
Output: most significant bits

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.23)

CFB - Shift Register (Sending)

Encrypt
Discard bottom 7 bytes

Input Reg.

Output Reg.

Load Input Reg
with IV at start P N

byte

C N

byte

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.24)

OFB - Output Feedback (Stream Cipher)

 Cn = Pn xor Xn, Xn = E (K, Xn-1)
 X0 = IV = randomvalue

 Synchronous Stream Cipher

 Like CFB, OFB is used for smaller
bit-groups, e.g. bytes

 Good for nosier channels.

 Keystream can be pre-computed
offline

 1 bit → OFB1, 8 bits → OFB8, etc...

C1

P1 P2

C2

E ...

...
E

IV
E

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.25)

OFB - Shift Register (Sending)

Encrypt
Discard bottom 7 bytes

Input Reg.

Output Reg.

Load Input Reg
with IV at start P N

byte

C N

byte

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.26)

Security of DES
 Design criteria (particularly of

S-Boxes) not revealed until 1994

 No known trapdoors. No proof of
non-existence either

 Oddity: If both plaintext and
key are complemented so is
resulting ciphertext.

 DES has 4 weak keys & 6 pairs of
semi-weak keys which should not
be used.

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.27)

Security of DES
BRUTE FORCE ATTACK
 256 keys but brute force attacks are

now becoming feasible
 In 1993 Michael Wiener showed that

it was possible to cheaply build
hardware that undertook a known-
plaintext attack:
in 3.5 hours for $1 million
in 21 mins for $10 million
in 35 hours for $100,000

 Intelligence agencies and those with
the financial muscle most probably
have such hardware.

 See link “How to break DES” on
course home page:
www.cryptography.com/des/

 Differential Cryptanalysis
Exploits how small changes in
plaintext affect ciphertext.

For DES, requires 2^47 chosen
plaintexts for 16 rounds ! Can
break 8-round DES in seconds.

 Linear Cryptanalysis
Approximate effect of
encryption (notably S-boxes)
with linear functions.

For DES, requires 2^43 known
plaintexts for 16 rounds !

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.28)

Double DES (Multiple Encryption)
 Encrypt twice with two keys

MEET-IN-THE MIDDLE ATTACK
 Known plaintext attack (i.e. have crib

P1 & C1)

 For all K1 encrypt P1: list all results
in Table T

 For each K2 decrypt C1 -> X. If X in
T, check K1 & K2 with new crib (P2,
C2). If okay then keys found.

 Reduces 2112 to 256 for Double DES,
but T is huge!

E

K1

P E

K2

C

P1 C1E

*

D

*

X
find X

T

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.29)

Triple DES (part of DES standard)
TRIPLE DES WITH 2 KEYS (EDE2)
 3 keys considered unnecessary
 Cost of 2 key attack is thus 2112

 2nd Stage is decryption because
if K2=K1 we gain backward
compatibility with Single DES

 Available in PEM (Privacy
Enhanced Mail), PGP, and others.

TRIPLE DES WITH 3 KEYS (EDE3)
 Preferred by some
 168-bit key length

D

K2

E

K1

P CE

K1

D

K2

E

K1

P CE

K3

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.30)

IDEA RC5
 Lai and Massey, ETH Zurich, 1991

 International Data Encryption
Algorithm

 Patented but blanket permission for
non-commercial use

 64-bit block cipher, 128-bit key

 Uses XOR, Modular + and * in each
round (8 rounds)

 Considered strong, but 6-round
attack requires 264 known plaintexts
and 2126.8 operations

 Used in PGP

 Designed by Ron Rivest (Ron’s Code
5) of RSA fame in 1995

 Patented by RSA Inc

 Variable block size (32, 64, 128)

 Variable key size (0 to 2048)

 Variable no. of rounds (0 to 255)

 Uses XOR, modular + and circular
left rotations.

 12-round version subject to
differential attack, needs 244 plain-
texts

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.31)

The Advanced Encryption StandardThe Advanced Encryption Standard

Michael Huth
M.Huth@doc.ic.ac.uk

www.doc.ic.ac.uk/~mrh/430/

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.32)

Introduction
 In January 1997 US NIST

solicited proposals for new
Advanced Encryption Standard
(AES) to replace DES as a
federal standard. Approved for
classified US governmental
documents by US NSA

 Five algorithms shortlisted.
Winner: Rijndael (by Joan Rijmen
& Vincent Daemen from Belgium).
AES is minor variant of Rijndael

 Web Page:
csrc.nist.gov/encryption/aes

 US FIPS PUB197, Nov 2001

 Resistant to Known Attacks, at
least in “full” version

 Very fast. Parallel Design.
 Blocksize: 128 bits

Keysizes (Rounds): 128 (10), 192
(12) & 256 (14) bits.

 Simple operations over bytes and
32-bit words.

 Bytes/words -> polynomials
 Implementations for wide range

of processors incl. smartcards.
 Encryption # Decryption

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.33)

Byte - b7b6b5b4b3b2b1b0

 Bytes represent finite field elements in GF(28), GF means “Galois Field”
 Correspond to a 8 term polynomial, with 0 or 1 coefficients.

b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x
 + b0

Example:

x6 + x5 + x3 + x2 + 1 polynomial

{0110 1101} binary

6D hex

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.34)

Byte Addition in GF(28)
 To add 2 finite fields elements in GF(28) we add coefficients of

corresponding powers modulo 2
 In binary: xor (⊕) the bytes

Example:

(x6 + x4 + x2 + x + 1) + (x7 + x + 1) = (x7 + x6 + x4 + x2)

{0101 0111} ⊕ {1000 0011} = {1101 0100} binary
57 ⊕ 83 = D4 hex

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.35)

Byte Multiplication in GF(28)
 To multiply (denoted by •) 2 finite fields elements in GF(28) we multiply the

polynomials modulo an irreducible polynomial of degree 8 (i.e. ensures result is
less than degree 8).

 Irreducible if only divisors are 1 and itself. Can find multiplicative inverse
using Extended Euclidean algorithm (with works for any “integral domains”,
certain kinds of rings).

 For AES we use (x8 + x4 + x3 + x + 1) as the irreducible polynomial, i.e.
multiplication is:

c(x) = a(x) • b(x) mod m(x)
where m(x) = (x8 + x4 + x3 + x + 1)

Multiplication • is the basis for non-linear behaviour of AES: it’s easy to understand
over polynomials, but hard to predict as operation on bytes.

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.36)

Byte Multiplication in GF(28) - Example

(x7 + x6 + 1) • (x2 + x) = (x9 + x8 + x2) + (x8 + x7 + x)
 = x9 + x7 + x2 + x

 x8 + x4 + x3 + x + 1 x9 + x7 + x2 + x
 x9 + x5 + x4 + x2 + x
 x7 + x5 + x4

Result = x7 + x5 + x4

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.37)

xtime - multiplication by x i.e. {02}
 If we multiply a byte by x we have

xtime (byte p) = (p << 1) ⊕ (if p < 80 then 00 else 1B)

b7x8 + b6x7 + b5x6 + b4x5 + b3x4 + b3x3 + b1x2 + b0x

 If b7=0, then the result is okay, otherwise we need to subtract m(x). This is
known as the xtime operation in AES: <<1 is shift left one

 We can use xtime repeatedly to multiply by higher powers

AE • 02 = xtime AE = (AE << 1) ⊕ 1B
= {1010 1110} << 1 ⊕ {0001 1011} = {0101 1100} ⊕ {0001 1011}
= {0100 0111} = 47 i.e. x6 + x2 + x + 1

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.38)

Word
 Word = 32-bits = 4 bytes.
 Words corresponds to 4 term polynomials, where coefficients are finite field

elements in GF(28), i.e. coefficients are bytes

a(x) = a3x3 + a2x2 + a1x + a0

a(x) + b(x) = (a3⊕b3)x3 + (a2⊕b2)x2 + (a1⊕b1)x
 + (a0⊕b0)

Addition of two (word) polynomials corresponds to “adding” the coefficients
(i.e. xor-ing the words)

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.39)

d0 = (a0 • b0) ⊕ (a3 • b1)
 ⊕ (a2 • b2) ⊕ (a1 • b3)

d1 = (a1 • b0) ⊕ (a0 • b1)
 ⊕ (a3 • b2) ⊕ (a2 • b3)

d2 = (a2 • b0) ⊕ (a1 • b1)
 ⊕ (a0 • b2) ⊕ (a3 • b3)

d3 = (a3 • b0) ⊕ (a2 • b1)
 ⊕ (a1 • b2) ⊕ (a0 • b3)

Word Multiplication
 We multiply word-polynomials modulo a polynomial of degree 4 (i.e. to ensure result is

less than degree 4).
 For AES we use (x4 + 1) as the polynomial. Note: this polynomial is not irreducible.

However in AES we only ever multiply word-polynomials by the fixed word polynomial:
a(x) = {03}x3 + {01}x2 + {01}x + {02} which does have an inverse
a-1(x) = {0B}x3 + {0D}x2 + {09}x + {0E}

Modular product d(x) = a(x) ⊗ b(x) = a(x) • b(x) mod (x4 + 1)
 d(x) = d3 x

3 + d2 x
2 + d1 x

 + d0 where

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.40)

encrypt (plaintext, roundkey)
state = plaintext // note plaintext is 1-dim., state 2-dim.
state = AddRoundKey (state, roundkey[0])
for round = 1 to ROUNDS

state = SubBytes (state)
state = ShiftRows (state)
if round < ROUNDS then state = MixColumns (state)
state = AddRoundKey (state, roundkey[round])

end
return state // convert to 1-dim. and return as ciphertext

Encrypt Block (Cipher) // simplified

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.41)

 Bytes of State correspond to finite field elements in GF(28)
 Columns of State correspond to WORDS, i.e. 4-term polynomials with finite

field elements in GF(28), as coefficients.

State

State 0 1 2 3
 0 in[0] in[4] in[8] in[12]
 1 in[1] in[5] in[9] in[13]
 2 in[2] in[6] in[10] in[14]
 3 in[3] in[7] in[11] in[15]

 State is a 4 by 4 array of bytes, initialised (col-by-col) with the 16-byte
plaintext block (see below)

 Final value of state is returned as ciphertext

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.42)

 AffineTransformation is a function that performs a matrix multiplication
followed by a vector addition. See Stallings or Huth for specifics of matrix
and vector used in AES.

SubBytes Transformation
 Change each byte of State with corresponding byte from SBOX matrix:

State [Row, Col] = SBOX [X, Y]
where X = State[Row, Col] div 16, Y = State [Row, Col] mod 16
For example if State [3,6]= 4F we would lookup SBOX[4,F]

 SBOX is 16x16 byte array (indexed by hex digits 0..F, 0..F) defined as follows:

SBOX [X, Y] = AffineTransformation ({XY}-1)
For example: if {95}-1 = 8A then
 SBOX[9,5] = AffineTransformation (8A) = 2A

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.43)

ShiftRows Transformation
 Cyclically rotate LEFT last 3 ROWS of state matrix by 1, 2 and 3 bytes resp.

a b c d a b c d
e f g h Rotate left 1 Byte f g h e
i j k l Rotate left 2 Bytes k l i j
m n o p Rotate left 3 Bytes p m n o

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.44)

m {02}•m ⊕ {03}•n ⊕ p ⊕ q
n m ⊕ {02}•n ⊕ {03}•p ⊕ q
p m ⊕ n ⊕ {02}•p ⊕ {03}•q
q {03}•m ⊕ n ⊕ p ⊕ {02}•q

MixColumns Transformation
 Multiply each column by {03}x3 + {01}x2 + {01}x + {02} mod (x4 + 1)

i.e. columns are word-polynomials
 This is equivalent to replacing the 4 bytes (m,n,p,q) in a column as follows:

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.45)

128
[1]

AddRoundKey Transformation
 XOR round key with state.
 The cipher key (either 128/192/256 bits) is “expanded” into round keys (1 for each

round, plus 1 for the initial AddRoundKey transformation). Note: each Round key is, say,
128-bit treated as a 2-dim. byte array. The cipher key words occupy the start of these
round key words, the remaining ones are calculated from it.

 See Stallings or Huth for details of the key “expansion” function used.

128
[0]

128
[1]AES-128

128
[0]AES-192

128
[11]

128
[12]

128
[0]

128
[1]AES-256

128
[13]

128
[14]

128
[10] 11 round keys

13 round keys

15 round keys

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.46)

decrypt (ciphertext, roundkey)
state = ciphertext // note cipher is 1-dim., state 2-dim.
state = AddRoundKey (state, roundkey[ROUNDS])
for round = ROUNDS-1 to 0

state = InvShiftRows (state) // ShiftRows inverse mode
state = InvSubBytes (state) // SubBytes inverse mode
state = AddRoundKey (state, roundkey[round])
if round > 0 then state = InvMixColumns (state)

end
return state // convert to 1D and return as plaintext

Decrypt Block (Inverse Cipher) // simpl.

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.47)

Inverse Transformations

 InvShiftRows Rotate Right last 3 rows of state
 InvSubBytes Inverse SBOX uses inverse of AffineTranformation & then

takes multiplicative inverse in GF(28)
 InvMixColumns Multiply columns by inverse of a(x), i.e by

 a-1(x) = {0B}x3 + {0D}x2 + {09}x + {0E}
 AddKeyRound Is its own inverse!

 Encryption polynomial a(x) optimized for 8-bit processors
 Decrpytion polynomial a-1(x) not optimal for 8-bit processors
 Note: It is possible to write Decrypt (Inverse cipher) with the same sequence of

transformations as Encrypt, with the transformations replaced by their Inverse ones.
This uses the fact that (Inv)SubBytes and (Inv)ShiftRows commute (i.e. order can be
swapped), and that (Inv)MixColumns is linear, i.e
MixColumns(State xor RoundKey)=MixColumns (State) xor MixColumns(RoundKey)

 See Stallings or Huth for details

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.48)

Implementation
8-bit Processors, e.g. Smartcards (typically 1Kbyte of code)
 ShiftRows and AddRoundKey -> Straightforward
 SubBytes requires a table of 256 bytes
 Above three transformations combined & executed serially for each byte
 MixColumns can be simplified to xor and xtime operations. InvMixColumns is

much slower however due to large coefficents of a-1(x)
 The Round keys can be expanded on-the-fly during each round.

32-bit Processors
 With straightforward algebraic manipulations, the four transformations in a

round can be combined to produce a table-lookup implementation that requires
four table lookups plus four xor’s per column. Each table is 256 words.

 Most of the operations of the key expansion can be implemented by 32-bit
xor’s, plus use of the S-box and a cyclic byte rotation.

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.49)

Wide Trail Strategy
- Resistance to Differential and Linear Cryptanalysis
- Each round has three distinct invertible layers of transformations
 Linear Mixing layer - ShiftRows & MixColumns provide high diffusion
 Non-Linear layer - Parallel S-Boxes provide optimal worst-case non-

linear properties
 Key addition layer - XOR of round key. Note: layers cannot be “peeled

off” since key addition is always applied at beginning & end of cipher.

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.50)

Security of AES
 Attacks aim to have less

complexity than Brute Force
 Reduced round attacks:

7 rounds for AES-128
8 rounds for AES-192
9 rounds for AES-256

 Algebraic Attacks
AES can be expressed in
equations (continued fractions)
- huge number of terms
however. Some claim to able to
solve such equations with less
complexity than brute force
(e.g. XSL attack)

 Side Channel Attacks
Most successful technique to date.
Bernstein showed that delays in
encryption-time due to cache-misses
could be used to work out the AES
key. Demonstrated against a remote
server running OpenSSL's AES
implementation. More recently Osvik
et al. demonstrated memory timing
attacks that can crack AES in milli-
seconds! (.. given access to the
encrypting host)

Network Security (N. Dulay & M.
Huth)

Symmetric Key Cryptography (3.51)

Problems with Symmetric Key Cryptography

SCALABILITY
 For full and separate communication

between N people need N(N-1)/2
separate keys

KEY MANAGEMENT
 Key Distribution

 Key Storage & Backup

 Key Disposal

 Key Change

 READING
Stallings - Chapters 3 and 5
(and 4)

