
Publish-Subscribe Systems 

!  What is publish-subscribe 
!  Data model 
!  Subscription classification 
channel, topic, content, type - based   

!  Composite events  
!  Case Studies:  Siena, SMC and Hermes 
!  Large-scale multibroker systems 
!  Event Routing  
!  Pub/Sub issues. 

2 Distributed Systems M. Sloman Publish-Subscribe 

Acknowledgements 

The slides are derived from tutorials by: 
!  Prof. Peter Triantafillou, University of Patras 
!  Antonio Carzaniga and Prof Alex Wolf 

3 Distributed Systems M. Sloman Publish-Subscribe 

Characteristics of a  
Pub/Sub System 

"  Information consumers express their interests in information 
with subscriptions,  identifying which items are of interest. 

"  Information producers, publish information by submitting 
publications (a.k.a. publication events or event 
notifications). 

"  Information producers may advertise information about events 
they publish 

"  A pub/sub system: 
"  Stores (and indexes appropriately) subscriptions 
"  Processes events 
"  Matches each produced event to the set of appropriate 

subscriptions. 

4 Distributed Systems M. Sloman Publish-Subscribe 

Event Notification Protocol 

Publisher 

Subscriber  

Subscribe stock, IBM, price >50  

Publish stock, IBM, price =55 

Unsubscribe stock, IBM, price >50 

Advertise stock, IBM 

Notify stock, IBM, price =55 

Unadvertise stock, IBM, 



5 Distributed Systems M. Sloman Publish-Subscribe 

Database View of Pub/Sub 

"  Events correspond to data (“data-carrying events”). 
"  Subscriptions correspond to queries: 

"  Continuous 
"  Define predicates on attributes 

"  Fundamentally different model: 
"  Instead of storing/indexing data and issuing queries to access it 
"  Queries (subscriptions) are stored/indexed and  

incoming data (events) is matched against stored queries. 
"  The pub/sub system performs information filtering,  

"  Events are filtered (evaluating the predicates of stored subscriptions) 
"  Filtered events are delivered to interested subscribers. 

6 Distributed Systems M. Sloman Publish-Subscribe 

Pub/Sub Communication Model 

"  Akin to multicasting  i.e. , 1-N communication 
"  Events may be published to a large number of subscribers. 

"  Anonymous communication  
"  Subscribers do not name (“know”) publishers and vice versa 
"  Destination determined by receiver not sender  

"  Asynchronous communication  
"  Publish and subscribe do not block clients 

"  Decoupling of sender/receiver  
"  Flexible Adaptation 
"  Can easily add new publishers or subscribers – scalability  
"  Reactive – computation driven receipt of message c.f. policies 
"  Facilitates interaction between large numbers of entities 

7 Distributed Systems M. Sloman Publish-Subscribe 

Publish/Subscribe Middleware 
Service 

publish/subscribe 
service 

want"
low air fares"
to Europe"

want to fly"
December"
DEN-MXP"

want"
special offers"
by United"

subscribe 

notify 

United offers"
DEN-MXP"
October"

Alitalia offers"
DEN-MXP"
Nov-Feb"

publish 

subscriber 

publisher 

subscription 

publication 

notification 

8 Distributed Systems M. Sloman Publish-Subscribe 

Applications 
"  Obligation Policy Triggers  

"  Management systems, context changes in ubiquitous systems.  
"  Broadcasting of live data 

"  RSS feeds (news reports, stock exchanges, …) 
"  Satellite data, etc. 

"  Monitoring 
"  The web: issue subscriptions for page updates, etc. 
"  Network & system management – alarms etc. 
"  Sensor networks  

"  Social Networking  
"  Sharing events with friends 
"  Twitter  

"  Multi-player Games 



9 Distributed Systems M. Sloman Publish-Subscribe 

Basic Elements of a Pub/Sub 
Service Model 

"  Data model – message structure 
"  structure 
"  types 

"  Subscription model 
"  filter language 
"  scope/expressiveness  – channel, topic, content, type based 
"  subscription modifications 

"  General challenge 
"  expressiveness versus scalability 

10 Distributed Systems M. Sloman Publish-Subscribe 

Data Model 

United DEN MXP 850 USD 

Fare Offer 

getAirline 

setAirline 

getOrigin 

setOrigin 

getDestination 

setDestination 

getPrice 

setPrice 

getCurrency 

setCurrency 

Airline United 
Origin DEN 
Destination MXP 
Price 850 
Currency USD 

string 

list of values 

set of named values 

<fare-offer> 
  <al>United</al> 
  <orig>DEN</orig> 
  <dest>MXP</dest> 
  <price>850</price> 
  <cur>USD</cur> 
</fare-offer> 

tree of named values 
full type system 

United DEN MXP 850 USD 

11 Distributed Systems M. Sloman Publish-Subscribe 

string prefix, suffix, substring, regular expression 

list of values value operators + indexing 
e.g. msg [2] = DEN, msg[5] = USD 

named values value operators + selection 
e.g. msg.Origin = DEN, msg.Currency = USD 

tree value operators + structure walk 

full type user-defined operators 

Subscription Model: Filter 
Language 

"  Operators are implied by the data model 

12 Distributed Systems M. Sloman Publish-Subscribe 

Subject Fare Offer 

Airline United 

Origin DEN 

Destination MXP 

Price 850 

Currency USD 

Channel Subscriptions 

"  Channel 
"  channel identifier 
"  equality over channel 

identifier 
"  channel ID could map to 

topics 

joinChannel(37) 

channel 
37 



13 Distributed Systems M. Sloman Publish-Subscribe 

Topic-based Subscriptions 

"  Subject (or topic) 
"  Designated subject field – 

descriptive name or keyword is 
minimum addressable info unit 

"  General filter applied to designated 
field i.e. whole topic c.f. news 
groups 

"  Topics can be hierarchically 
organised  

"  Publications refer to a topic  in the 
tree 

"  Client subscribing for T1.1, gets all 
events ‘naming’ T1.1 including 
T1.1.1 & T.1.1.2 

Subject Fare Offer 

Airline United 

Origin DEN 

Destination MXP 

Price 850 

Currency USD 

subscribe(“Fare*”) 

T1 

T1.1 

T1.1.1 T1.1.2 

T1.2 

T1.2.1 

14 Distributed Systems M. Sloman Publish-Subscribe 

Content-based Subscriptions 
"  Content 

"  All message fields 
"  General filter (predicate) applied to 

all fields in message 
"  Allow much finer granularity in 

addressing info units and thus much 
greater flexibility.  

"  Subscriptions can be very 
‘expressive’ 

Subject Fare Offer 

Airline United 

Origin DEN 

Destination MXP 

Price 850 

Currency USD 

subscribe(“Origin=DEN, Price<900”) 

"  An atomic subscription is a conjunction of a set of 
predicates on a number of attributes in a single event 

"  A composite subscription is a boolean combination of 
atomic subscriptions i.e. combining multiple events 

15 Distributed Systems M. Sloman Publish-Subscribe 

Content-based Subscriber outline 

public class FlightReq implements Serializable { 
 public string destination, airline; 
 public float price 

} 
public class FlightSubscriber implements Subscriber{ 

 public void notify (Event e) { 
  bookFlight() 

}} 

string criteria = (airline == “United” AND price < 900 AND price > 300); 
Subscriber sub = new FlightSubscriber(); 
EventService.subscribe(sub,criteria);  

16 Distributed Systems M. Sloman Publish-Subscribe 

 Type-Based Subscription 
"  Use Type-based language for defining events  
"  Clients can subscribe to different event types 
"  Event types can also be hierarchically organized in terms of 

inheritance  
"  A subscription refers to a subtree root 
"  Events referring to any subtype in that subtree are delivered to the 

subscription  
e.g. stockQuote and stockRequests are subtypes of stock.  Subscribing 
to stock gets both types of events.  

"  Content-based filtering on event type attributes  
"  Type-based systems offer benefits for programming the 

system: 
"  Type safety 
"  Encapsulation 



17 Distributed Systems M. Sloman Publish-Subscribe 

Composite Event Subscriptions 

Example: If a person has entered a building and has not left within 2 
minutes of a fire alarm, generate an indanger event for the 
person  

 entered (name) ; (fire + [2*min]) ! left (name)  
 when (entered.name == left.name))  
 notify.indanger (entered.name) 

"  Event correlation # more abstract events 
"  Combine atomic events using composition operators:  

a & b  occurs when both a and b occur, irrespective of order  
(a ; b) ! c  a followed by b with no interleaving c 
a ; b  a followed by b (only composite in Siena) 
a | b  a or b occurs 
a = b  a and b occur simultaneously 

18 Distributed Systems M. Sloman Publish-Subscribe 

Composite Event Issues 

"  Used in Active Databases 
"  Complex implementation: 

"  Time window in which to match events  
"  What is simultaneous? 
"  Need time synchronization for distributed composite event matching  
"  Storing and then discarding events 

"  Sometimes implemented as a client which subscribes to 
required atomic events and publishes composite events.  

"  Supported by Hermes 
 Composite Event Detection as a Generic Middleware Extension 
http://www.doc.ic.ac.uk/%7Epeter/manager/doc/
IEEE_Network_Composite_Event_2004.pdf 

"  GEM: a generalized event monitoring language for distributed systems  
http://www.iop.org/EJ/article/0967-1846/4/2/004/ds7204.pdf 

19 Distributed Systems M. Sloman Publish-Subscribe 

Example: Siena Data Model 

"  An event is a set of typed attributes 

attribute ! (type, name, value) 

20 Distributed Systems M. Sloman Publish-Subscribe 

Example: Siena Filter Language 

"  A filter is a list of attribute constraints 

attribute constraint ≡ (type,name,operator,value) 

Prefix match 



21 Distributed Systems M. Sloman Publish-Subscribe 

Example: Siena Matching 
Rules 

"  Matching is defined by covering relations 

publication p filter f 

p matches f (or f covers p) 

airline = United 
price < 900 
price > 300 

destination any 

refundable = no 
price = 850 

destination = MXP 
airline = United 

22 Distributed Systems M. Sloman Publish-Subscribe 

Siena Publisher 
import siena.*; 

public class HelloWorld { 

  public static void main(String [] args)  

  throws SienaException { 

    Siena siena = new ThinClient("tcp:host.domain.net:1234"); 

    Notification n = new Notification(); 

    n.putAttribute("greeting", "Hello World!"); 

    siena.publish(n); 

  } 

} 

HelloWorld.java 

23 Distributed Systems M. Sloman Publish-Subscribe 

Siena Subscriber 
import siena.*; 

public class Subscriber implements Notifiable { 

  public void notify(Notification n) { 

    System.out.println(n); 

  } 

  public static void main(String [] args)  

  throws SienaException { 

    Siena siena = new ThinClient(args[0]); 

    Filter f = new Filter(); 

    f.addConstraint("greeting", >*, "Hello"); 

    siena.subscribe(f, new Subscriber()); 

  } 

} 

Subscriber.java 

Prefix 

24 Distributed Systems M. Sloman Publish-Subscribe 

Pub/Sub Processing Model 
"  Publisher is a client which advertises and publishes events 
"  Subscriber is a client which subscribes to events and receives 

matched notifications 
"  An event e is said to match a subscription s  

"  if and only if all attribute-value predicates in s are satisfied by the 
values carried by e. 

"  Brokers are servers in the infrastructure which store 
subscriptions, receive published events, match these to 
subscriptions and deliver matched notifications to subscribers.  

"  Matching entails 3 phases: 
"  Subscription processing: Indexing and storing subscriptions. 
"  Event processing: upon event arrival, access subscription indices and 

identify all matched subscriptions. 
"  Event delivery: deliver event to clients with matched subscriptions. 

"  Large-scale systems have a network of brokers which have to 
propagate subscriptions and events around the network 



25 Distributed Systems M. Sloman Publish-Subscribe 

Network of Brokers 

"  Each broker has a local event matching engine 

26 Distributed Systems M. Sloman Publish-Subscribe 

Large-scale Systems 

"  Subscriptions must be propagated through the network 
and stored at appropriate brokers. 

"  Events must be  
"  Propagated through the network to ‘meet’ all relevant 

subscriptions 
"  Delivered to the clients that issued the matched subscriptions. 

"  Objectives 
"  Route only 1 event along common paths – minimize duplication 
"  Minimize propagation and storage of subscriptions – generalized 

subscription covers specialized   
e.g. Price < 500 covers Price < 400 

"  How these are accomplished efficiently is the major 
challenge facing large-scale pub/sub systems. 

27 Distributed Systems M. Sloman Publish-Subscribe 

Performance Trade-offs 

"  Event-friendly approach: 
"  Bcast a subscription to all 

broker nodes; 
"  Each broker stores subscription 
"  Events sent to just one broker 

"  Subscription-friendly 
approach: 

"  Send a subscription to just one 
broker node, where it is stored. 

"  Bcast events to all brokers. 

"  Favor event processing against subscription 
processing, or vice versa 

"  Two ends of the design spectrum: 

Flooding subscriptions or events should be avoided 

28 Distributed Systems M. Sloman Publish-Subscribe 

Gryphon matching process 

"  A (parallel) tree is employed to index subscriptions. 
"  The tree has a number of levels equal to the number 

of attributes in the schema. 
"  Subscriptions build the tree, level by level, defining 

new branches, based on the values for their 
attributes. 

"  Subscriptions are stored at the tree leaves. 
"  Events traverse the tree, level by level,  following the 

branches defined by event values and match all 
subscriptions at the leaves. 



29 Distributed Systems M. Sloman Publish-Subscribe 

Gryphon Example 
"  Example system with a 5-attribute schema. 
"  Subscription <α1=1, α2=2, α3=3, α5=3> follows rightmost 

path. 
"  Event <α1=1, α2=2, α3=3, α4=1, α5=2> visits all dark 

nodes. 

α1 

α2 

α3 

α4 

α5 

30 Distributed Systems M. Sloman Publish-Subscribe 

General Service 
Implementation 

publish/subscribe service 

subscribe publish notify 

"  Publications must meet subscriptions somewhere 
"  Service must decide whether publications match 

subscriptions 
"  Service must notify subscribers 

31 Distributed Systems M. Sloman Publish-Subscribe 

Centralized Implementation 

publish/subscribe service 

subscribe publish notify 

server/dispatcher/broker 

32 Distributed Systems M. Sloman Publish-Subscribe 

Centralized SMC Event Service 

"  Content-based subscriptions with single router 
"  At-most-once, reliable event delivery. 
"  Caters for intermittent loss of wireless comms. 
"  To an individual recipient, events are delivered in the 

same order as received by the router. 
"  Quenchable publishers to minimise number of 

messages and power consumption i.e. do not publish 
if no active subscribers 

"  Supports heterogeneous communication. 
"  Implemented on small smartphone-like devices  



33 Distributed Systems M. Sloman Publish-Subscribe 

SMC Event Service 
Architecture 

34 Distributed Systems M. Sloman Publish-Subscribe 

Evaluating Centralized 
Implementation 

$  Simple 
"  every (client) application sends subscriptions and 

publications to a single server 
"  the server maintains and evaluates all subscriptions locally 

%  But not very “scalable” 
"  one server handles every subscription and every message of 

every client 
"  the server becomes a network bottleneck 
"  all clients must trust the same server (privacy) 

35 Distributed Systems M. Sloman Publish-Subscribe 

Naïve Extension: Broadcast 
Replication 

subscribe publish notify 

"  Publications are relayed to every server 
"  Subscriptions remain local to their servers 

replicated servers 

36 Distributed Systems M. Sloman Publish-Subscribe 

Evaluating Broadcast 
Replication 

$  Simple 
"  hopefully making use of network-level broadcast 

$  Reduces computation 
"  only local subscriptions 
"  same number of publications 

%  Still not very scalable 
"  little flexibility 
"  little privacy 
"  increased network traffic 

"  What publish/subscribe patterns might this suit? 



37 Distributed Systems M. Sloman Publish-Subscribe 

Another Simple Extension: 
Federation 

subscribe publish notify 

"  Import/export statements 
"  Static, user-defined routes 

4 

1 3 

2 

x,y,a,b  !1 
x,a,~b  !3 
x,y,z  !4 

… 

… 

… 

… 

conditional relay 

38 Distributed Systems M. Sloman Publish-Subscribe 

Evaluating Federation 

$  Reduces traffic 
"  only imported/exported traffic goes through 

$  Improves privacy 
$  Reduces computation 

"  local subscriptions plus import/export 

%  Still not very scalable 
"  little flexibility 
"  suboptimal network usage 
"  potential errors due to misconfiguration 

39 Distributed Systems M. Sloman Publish-Subscribe 

Advanced: Fully Distributed 
Architecture 

subscribe 

dynamic routing 

… 

… 

… 

… … 

… 

… 
… 

… 

40 Distributed Systems M. Sloman Publish-Subscribe 

Advanced: Fully Distributed 
Architecture 

publish notify 

dynamic routing 

… 

… 

… 

… 
… 

… 

… … 

… 

subscribe 



41 Distributed Systems M. Sloman Publish-Subscribe 

Dynamic Routing 

"  Servers are interconnected through statically 
configured links 

"  Servers function as store-and-forward publication 
dispatchers 

"  Servers exchange subscription information according 
to a routing protocol 

"  Servers forward publications according to  
"  subscription information 
"  forwarding protocol 

42 Distributed Systems M. Sloman Publish-Subscribe 

Evaluating Fully Distributed 
Architecture 

$  Increases reliability 
"  exploiting multi-connected topologies 

$  Adapts automatically 
"  to changes in applications (subscriptions) 
"  to changes in network (topology) 

$  Reduces computation and communication 
"  using optimized routing and forwarding 

%  Requires complex protocols 
"  to handle topological routing information 
"  to handle content-based routing information 

43 Distributed Systems M. Sloman Publish-Subscribe 

Example: Hierarchical Routing 
simple extension of centralized server 

1 3 

2 

“master” server 
connection 

…!1 

1 

A 

2 

C 

B 

4 

5 

3 …!1 

…!A 

44 Distributed Systems M. Sloman Publish-Subscribe 

Example: Hierarchical Routing 
simple extension of centralized server 

1 3 

2 

“master” server 
connection 

…!1 

1 

A 

2 

C 

B 

4 

5 

3 …!1 

…!A 



45 Distributed Systems M. Sloman Publish-Subscribe 

Evaluating Hierarchical 
Routing 

$  Reduces traffic and computation 
"  “leaf” nodes process only local traffic and traffic that 

matches local subscriptions 
"  no unnecessary traffic goes down the hierarchy 

%  Still not very scalable 
"  root server processes every subscription and publication 

46 Distributed Systems M. Sloman Publish-Subscribe 

Hierarchical Routing Improved 
combine and simplify subscriptions 

1 

A 

3 

2 

S1 

B 

S1 !A 

S1 !1 S1 

47 Distributed Systems M. Sloman Publish-Subscribe 

Hierarchical Routing Improved 
combine and simplify subscriptions 

1 

A 

3 

2 

S2 

B 

S1 covers S2 

S1=[airline=“UA”] 
S2=[airline=“UA”, dest=“MXP”] 
! do not propagate S2 

S1 !A 

S1 !1 S1 !1 
S2 !2 

48 Distributed Systems M. Sloman Publish-Subscribe 

Hierarchical Routing Improved 
combine and simplify subscriptions 

1 

A 

3 

2 

S3 

B 

S1 covers S2 

S1=[airline=“UA”] 
S2=[airline=“UA”, dest=“MXP”] 
! do not propagate S2 

S1 !A 

S1 !1 
S2 !2 
S1 !1 
S2 !2 
S3 !3 

S1 ,S2, and S3 are similar 

S1=[airline=“UA”] 
S2=[airline=“UA”, dest=“MXP”] 
S3=[airline=“AZ”] 
! propagate S*=[airline=any] 

S* !A 

S* 



49 Distributed Systems M. Sloman Publish-Subscribe 

Evaluating Improved 
Hierarchical Routing 

$  Reduce traffic and computation 
"  only “new” subscriptions are propagated 
"  servers store and process fewer, more generic subscriptions 

$ Open to a variety of heuristic optimizations 
"  e.g., based on actual traffic profiles 

$  Applies to other architectures 
"  concept of “content-based subnet address” 

50 Distributed Systems M. Sloman Publish-Subscribe 

Siena System Fundamentals 
"  Subscriptions are propagated in the network  
"  Whenever a broker B1 forwards a subscription s to 

B2, B2 stores s and notes that s came from B1. 
"  Whenever B2 receives an event e that matches s, it 

forwards e to B1. 
"  Thus, event propagations follow the reverse 

paths setup by subscription propagations. 
"  This basic approach, however, may still incur high 

overheads. 

51 Distributed Systems M. Sloman Publish-Subscribe 

SIENA Improvements 
"  To improve performance, SIENA incorporated two 

influential concepts: 
"  Publication advertisements, and 
"  Subscription subsumption. 

"  Publication advertisements 
"  Describe events that will be published 
"  Exploit the fact that (sometimes) publishers are aware of their 

publications. 
"  The key idea is to  

"  push this information into the network,  
"  and exploit it during subscription propagation to place 

subscriptions only on the relevant nodes where events will be 
published 

52 Distributed Systems M. Sloman Publish-Subscribe 

Siena Publication Advertisements 

"  Advertisements are propagated to form an advertisement 
tree,  rooted at the publisher’s broker.  

"  Whenever a subscription arrives at a node that is a member of 
the tree, it is sent ‘up’ the tree. 

"  Events from the publisher are sent ‘down’ the tree, following 
the reverse tree paths setup by matching subscriptions. 

"  A node may partake in many advertisement trees, and 
"  Some popular publications may be published from many 

different nodes 

B 

P 

S s! s! A publisher’s P advertisement tree 



53 Distributed Systems M. Sloman Publish-Subscribe 

Siena Subscription Subsumption 

"  Subscription subsumption (a.k.a. coverage) buys 
additional performance savings. 
"  e.g. S1 subsumes S2 as Price 50-60 includes 52-55 

Category String “Book” 

Title String “Weird Oz” 

Price Float [50, 60] 

Category String “Book” 

Title String “Weird Oz” 

Price Float [52,55] 

S1! S2!

"  Upon arrival of subscription S2 at 
B1, If B1 has already forwarded a 
subsuming subscription S1 to B2, 
then no need to forward S2  to B2 
as well. 

"  Maintenance problems for 
changing or deleting subscriptions 

B1 B2 

S1: [50,60) 

S2: [52,55] 

S2: [52,55] 

? 

54 Distributed Systems M. Sloman Publish-Subscribe 

Hermes Rendezvous Nodes 
"  Publisher P1 hashes event type to select Rendezvous node 

R and registers type T1   
"  P2 advertises event A2 of type T1, so B1 sends it to R 
"  P1 advertise event A1 of type T1, which is covered by A2 

so discarded by B1 

P2 
B1 B2 

B5 B4 

B3 

P1 

S2 
S1 

R 

T1 T1 

T1 

A2:T1 

A2:T1 

A1:T1 A1:T1 

55 Distributed Systems M. Sloman Publish-Subscribe 

Hermes Event Routing 
"  Subscriber S1 generated subscription S1 of Type T1 so it is routed 

to R 
"  S2 generates subscription S2 of type T1 which is also routed to R 
"  P2 generates publication p1 of Type T1 which follows path of 

adverts to  R but also results in notifications N1 traversing reverse 
paths of matching subscriptions.  

"  Can have multiple event dissemination trees 

P2 
B1 B2 

B5 B4 

B3 

P1 

S2 
S1 

R 

p1 

S1 

S1 

S1 

S2 
S2 

p1 

N1 

N1 
N1 N1 

56 Distributed Systems M. Sloman Publish-Subscribe 

Flooding vs Rendezvous 

"  With rendezvous, in general, fewer network nodes 
can be involved in subscription and event processing 
"  Fewer messages, less bandwidth, less aggregate CPU cycles, 

less state, etc. 
"  Possible load imbalances due to non-uniform data item 

popularity distributions. 

"  Rendezvous may require specific network support 
and characteristics, such as DHT lookup in order able 
to route towards a specific rendezvous node. 



57 Distributed Systems M. Sloman Publish-Subscribe 

Pub/Sub Issues 

"  Hierarchical architectures for the broker network  
& avoid flooding; may incur only O(tree_depth) hops for subscription 

and some event processing. 

"  Hierarchical organizations for brokers per publisher  
& avoid single, heavily-loaded brokers for all traffic (e.g. root). 

"  Store extra routing state at brokers – paths setup by 
subscriptions and followed by events as in dynamic routing 

"  Further filtering of subscription traffic through exploitation of 
subsumption relationships among subscriptions. 

58 Distributed Systems M. Sloman Publish-Subscribe 

Implementation Issues 
"  Extra state maintained at nodes 

"  Additional hierarchies (parent/children) 
"  Subscriptions and where they were forwarded from 
"  Subsumed subscriptions and their relation 
Does not come for free !  

"  Nodes fail/recover: need to maintain 
"  Hierarchical information 
"  Subscription paths 

"  Subscriptions are updated and deleted 
"  Subsumption relation and information needs maintenance. 

"  Popular events, with many publishers, even with 
advertisements and subscription-subsumption exploitation, 
can still lead to flooding-like performance. 

59 Distributed Systems M. Sloman Publish-Subscribe 

Topic- vs Content-based 

"  Topic-based systems: 
"  Simplicity, ease of programming and deployment, 
"  High performance for event matching and delivery. 

"  Content-based systems: 
"  Flexibility and expressiveness, when defining subscriptions 
"  Increased complexity 
"  Lower performance. 

60 Distributed Systems M. Sloman Publish-Subscribe 

Attribute Type Support 

"  For equality operators, in subscription predicates, it is 
trivial to support both numerical and string types. 

"  If subscriptions (contents) are spread/replicated 
throughout the network (c.f. flooding-like approaches), it 
is also easy to support all attribute types. 

"  If rendezvous and/or network-independent approaches 
are used, it is more challenging to support advanced 
operators (such as ranges, >, <, etc for numerical and 
also prefix / suffix, / substring operators for strings. 
"  How does one define a rendezvous node for “*abc*” ? 



61 Distributed Systems M. Sloman Publish-Subscribe 

Available Pub/Sub Systems 

"  XML Blaster: Open Source XML event encoding with 
XPath  expression subscription  
http://www.xmlblaster.org/ 

"  IBM Microbroker MQTT Small footprint for sensor 
networks http://www.alphaworks.ibm.com/tech/rsmb 

"  Elvin Simple content based system 
http://www.elvin.org/ 

"  Siena  http://www.inf.unisi.ch/carzaniga/siena/
software/index.html 

62 Distributed Systems M. Sloman Publish-Subscribe 

References  

"  Online survey  http://www.medianet.kent.edu/
surveys/IAD04F-pubsubnet-shennaaz/
Survey2.html#submodel 

"  P. Eugster et. al. The many faces of publish/
subscribe,  ACM Computing Surveys, Vol. 35, No. 2, 
June 2003, pp. 114–131. 

"  Siena:  Design and evaluation of a wide-area event 
notification service, ACM Trans. on Computer 
Systems (TOCS), Vol19, No.3, Aug. 2001, PP 332-383 
http://www.inf.unisi.ch/carzaniga/siena/ 

"  Peter Pietzuch publications 


