Wireless Sensor Networks: **Research Challenges and Future** Directions

Anandha Gopalan

Recap

Lecture 1

- Basic background and Introduction
- A deeper look
 - Sensor node hardware
 - Example devices
 - Sensor node software
 - Operating system Programming language
- Research challenges in brief

• Lecture 2

- Research Challenges
 - Data Storage
 - Data Dissemination

2

Lecture 3: Outline

- Research Challenges
 - Power Management
- Future Directions in WSNs
- Conclusion

Power Management Techniques

- Application Layer
- Transport Layer
- Network Layer
- Data Link Layer
- MAC Layer
- Physical Layer

Application Layer

- Load partitioning
 - Process power intensive computation at the base station
- Use of *proxies* to inform applications of change in battery power
 - When in need, applications can limit their functionality and only provide most essential features
- Application specific techniques
 - Video processing
 - Use compression techniques to reduce number of bits transmitted
 - Database
 - Reduce power consumption during data retrieval, indexing, as well as querying operations

5

Data Link Layer

- Packet scheduling
 - Schedule multiple packet transmissions to occur back to back
 - Reduces overhead associated with sending each packet individually
 - Preamble bytes are sent to announce its presence on the radio channel
 - Subsequent packets "piggyback" this announcement
- Modified ARQ (Automatic Repeat Request) and FEC (Forward Error Correction) schemes
 - Use better channel encoding leading to more redundancy
 - Do not use a "one-size-fits-all" approach
 - Customize scheme to fit traffic type and channel conditions
 - Energy-efficiency is more important than throughput

Transport Layer

- Reduce the number of retransmissions necessary due to packet loss
 - Packet loss may not be due to congestion, but due to a faulty link
 - Example: TCP-Probing
 - On packet loss, do not retransmit, instead "probe" the network
 - Probe segments are composed of only segment header
 - Probe terminates when network conditions have improved sufficiently

Physical Layer

- CPU Voltage scaling
 - Run at reduced voltage as necessary
- Remote Access Switch (RCS)
 - A low power radio circuit is used to detect a certain type of activity on the channel
 - When this activity is detected, the circuit wakes up the system for reception of a packet
- Energy harvesting techniques
 - Gather energy from its surrounding environment

MAC Layer

- Sleep scheduling protocols
 - Idle power wasted on the radio while there is nothing to receive
 - Types
 - Synchronous
 - Relies on clock synchronisation between all nodes in the network
 - E.g.: S-MAC
 - Asynchronous
 - Does not rely on a synchronised clock
 - Uses preamble bytes as the starting point for incoming data stream
 - E.g.: LPL (Low Power Listening)

9

S-MAC

Motivation

- Collision
 - Corrupted packets must be retransmitted
- Overhearing
 - Receive packets destined for others
- Control packet overhead
- Idle listening
 - Dominant factor in energy consumption

10

S-MAC

Goal

- Reduce energy consumption ©
- Solutions
 - Collision avoidance
 - Overhearing avoidance
 - Switch off radio when transmission is not meant for that node
 - Control overhead message passing
 - Idle listening
 - Periodic listen and sleep

S-MAC

- Solution: Periodic listen and sleep
 - Turn off radio when sleeping

- Each node maintains a schedule table that stores schedules of its neighbours
- Schedule is agreed to by nodes by running an algorithm upon startup

S-MAC

- Collision avoidance is achieved by following 802.11 ad-hoc procedures
- Reducing control overhead
 - Don't interleave different messages
 - Long message is sent in a burst
 - Medium is reserved for entire message
- Overhearing avoidance
 - Interfering nodes go to sleep after hearing RTS/ CTS message
 - Time to sleep is provided in the packet

13

Network Layer

- Achieve energy-efficient routing
 - Backbone based
 - Some nodes are chosen to remain active at all times (backbone nodes)
 - Backbone nodes are used to establish a path between all sources and destinations
 - Energy savings are achieved by allowing non-backbone nodes to sleep periodically
 - E.g.: SPAN, ASCENT
 - Topology control based
 - Reduce transmission power of all nodes in the network so that it stays connected
 - E.g.: GAF, PEAS

S-MAC: Drawbacks

- Clock synchronisation is required
 - Protocol to synchronise (in the event of clock skew) is expensive
- During message passing, node-to-node fairness is reduced
 - Nodes with small packets to send will have to wait till message burst has been transmitted
- Overhearing avoidance scheme does not take network path into account
 - Nodes that go to sleep may be required to be awake as part of another routing path
 - Loss of packets

14

ASCENT: Adaptive Self-Configuring sEnsor Networks Topologies

Motivation

- WSNs have a high density of nodes
 - This redundancy allows the network to remain functional without all nodes participating
- Solution
 - Intentionally limit the number of communicating nodes at a given time
 - Save total network energy and energy usage of active nodes

ASCENT: States

Active

- Forwards data and routes packets
- Test
 - Sends neighbor announcement message
 - Monitors network for neighbors and data loss rates
 - Forwards data and routes packets

Passive

Monitors network for neighbors and data loss rates

Sleep

• Turns radio off and goes to sleep

Courtesy: James Watson, Virginia Tech

17

ASCENT: State Transitions

ASCENT: Drawbacks Does not deal with unexpected node failures What happens if an active node fails unexpectedly? In a very dense network, the per-node information would be very large to maintain

Lecture 3: Outline

- Research Challenges
 - Power Management
- Future Directions in WSNs
- Conclusion

21

23

Future Directions: Technical Challenges

- Noisy Sensors
 - Sensor readings can be inaccurate
 - E.g.: Relative humidity sensor accuracy of ± 5%, ± 8% at 90% relative humidity
- Wireless channel conditions and environmental factors
 - Noisy, interference, link contention

Research issues

- Achieve high quality perception
 - How can we get accuracy, variety, detail & coverage simultaneously ?
 - How do we retain acceptable performance ?

Future Directions

• To recap:

- Wireless sensor networks are an emerging technology with enormous potential
- WSNs have found a footing not only in commercial applications, but also in research as well
- This is all very well, but what now ?

22

Future Directions: Deployment Challenges

- Sensor networks will grow in size
 - Lower cost, better protocols
- Heterogeneous sensors
- Mobile sensors
- Research issues
 - How do we combine sensors with different functions ?
 - How can we achieve interoperability ?
 Do we need a standardised interface ?
 - How do we use the functionality provided by other sensors ?
 - How can we achieve data replication?

Future Directions: Underwater Sensor Networks

Research issues

- How can we increase network capacity?
 - Data compression?
- How can we communicate in hostile environments?
- Cross-layer optimization
- How can we provide location information?

25

27

Future Directions: Global Mobile Sensor Network

- Use smart phones to form a global sensor network
 - 3-axis accelerometer, GPS, Microphone, Camera, Digital Compass, Bluetooth, – significantly more capable than "sensors"
 - Answer lots of questions and build cool new applications
 - What is the air quality of a neighbourhood, school, town, or city?
 - Where are my friends and what are they doing right now?

Courtesy: Andrew Campbell, Percom '09 keynote

26

Future Directions: Context Awareness

• Research issues

- How do we build context organizers ?
- How can we be minimally intrusive, both in privacy and overhead ?
- Which context matters most in everyday settings ?
 - Application specific or generic ?
- How will applications, interfaces and interaction techniques be optimised to leverage context ?

Courtesy: Phil Gibbons, SenSys '08 keynote

Future Directions: Security Challenges

• Research issues

- Concerns about misuse and privacy
- What kind of data are we trying to protect ?
- Authentication vs. privacy
- Protect against unauthorised code
 - Sensor virus ☺

Conclusion

- Focussed on Power management
- Presented future direction and challenges of WSNs

References

For a "complete" list http://ceng.usc.edu/~anrg/SensorNetBib.html

29

General

- I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, "A Survey of Wireless Sensor Networks", IEEE Communications Magazine, 2002
- D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler, "The nesC language: A holistic approach to networked embedded systems", SIGPLAN, May, 2003

Medium Access

- IEEE 802.15.4, IEEE Standard for Information Technology-Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications for Low Rate Wireless Personal Area Networks (LR-WPANS), 2003
- W. Ye, J. Heidemann, and D. Estrin, "An Energy-Efficient MAC Protocol for Wireless Sensor Networks", Proceedings of IEEE INFOCOM, June 2002
- G. Lu, B. Krishnamachari, and C. Raghavendra, "An Adaptive Energy-Efficient and Low-Latency MAC for Data Gathering in Sensor Networks", IEEE WMAN, April 2004
- R. Zheng, C. Hou, and L. Sha, "Asynchronous Wakeup for Ad Hoc Networks", Proceedings of ACM MobiHoc, June 2003

30

Sleep-based Topology Control

- Y. Xu, J. Heidemann, and D. Estrin, "Geography-informed Energy Conservation for Ad Hoc Routing", Proceedings of ACM MobiCom, July 2001
- A. Cerpa and D. Estrin, "ASCENT: Adaptive Self-Configuring Sensor Networks Topologies", Proceedings of IEEE INFOCOM, June 2002
- B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, "Span: An Energy-Efficient Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks", Proceedings of ACM MobiCom, July 2001
- F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang, "PEAS: A Robust Energy Conserving Protocol for Long-lived Sensor Networks", Proceedings of IEEE International Conference on Distributed Computing Systems (ICDCS), 2003
- 33

Routing

- D. S. J. De Couto, D. Aguayo, J. Bicket, R. Morris, "A High-Throughput Path Metric for Multi-Hop Wireless Routing", Proceedings of ACM MobiCom, 2003
- F. Ye, G. Zhong, S. Lu, L. Zhang, "A Robust Data Delivery Protocol for Large Scale Sensor Networks", Proceedings of IPSN, September 2003
- S. Biswas, R. Morris, "Opportunistic routing in multi-hop wireless networks", Computer Communication Review, vol. 34, no. 1, pp. 69-74, 2004
- J.-H. Chang, L. Tassiulas, "Energy Conserving Routing in Wireless Ad-hoc Networks", Proceedings of IEEE INFOCOM, March 2000

34

Data-Centric Operation

- C. Intanagonwiwat, R. Govindan, and D. Estrin, "Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks", Proceedings of ACM MobiCom, August 2000
- D. Braginsky, D. Estrin, "Rumor Routing Algorithm For Sensor Networks", Proceedings of ACM WSNA, September 2002
- S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and F. Yu, "Data-Centric Storage in Sensornets with GHT, A Geographic Hash Table", in Mobile Networks and Applications (MONET), Special Issue on Wireless Sensor Networks, vol. 8, no. 4, pp. 427-442, August 2003
- X. Li, Y.J. Kim, R. Govindan, W. Hong, "Multi-dimensional range queries in sensor networks", Proceedings of ACM Sensys, November 2003
- M. Aly, A. Gopalan, J. Zhao, A. Youssef, "STDCS: A Spatio-Temporal Data-Centric Storage for Real-Time Sensor Applications", SECON, 2008

