
Distributed Systems Course 335

Unassessed Coursework No. 2
Lecturer: M. Sloman

1a The following message passing primitives are supported by a set of library calls:

send (dest, msg) – an asynchronous send message primitive, where dest is the name of
the process to which the message msg is to be sent.

receive (source, msg) – this causes the receiving process to block waiting for a message

from the process with name source. msg is a buffer into which the
incoming message is copied.

receiveany (source, msg) – the process is blocked waiting for a message from any

source. The name of the sender is received in source and the
incoming message is received in msg.

i) Explain what is meant by an asynchronous send message primitive and why it may

lead to buffer exhaustion at the receiver.
ii) Explain why both the above receive and receiveany primitives are needed.

b Using the above message primitives, design a simple printer service for a distributed
system with multiple printers, each controlled by a process called printer. There are also
multiple users. When a user process wants to print a document it sends a message
containing its process type (i.e. user) to a single coordinator process which allocates free
printers. The coordinator replies with the name of a free printer when one is available, and
the user send a page at a time to the printer. When a printer is free it sends a message
containing its process type (i.e. printer) to the coordinator to indicate it is now available for
printing.

 Give pseudocode outlines for the user, coordinator and printer processes, using the

above message primitives. Your solution should describe any datastructures needed by
the coordinator process.

 Assume the printer process has sufficient buffer space for a single message containing one

page to print, and that communication is reliable so timeouts and retransmissions can be
ignored.

2a What is the exported interface and imported interface of a component in a distributed

system. Briefly outline the functions performed by a Remote Procedure Call (RPC)
support system when a server exports an interface and when a binding takes place
between a client and a server?

b Explain why the implementation of a Remote Procedure Call (RPC) requires a stub

procedure for both client and server and explain the functions performed by both client
and server stubs.

Distributed Systems Course 335
Unassessed Coursework No. 2 Solution

Lecturer: M. Sloman

1a i) Asynchronous send: this is an unblocked send in which the sender process sends the message

and continues once the message has been copied out of its address space. It does not know when
or if the message is received by the destination. One particular sender (or multiple processes)
may send messages to a receiver at a rate faster than the receiver can process the messages.
Each message has to be buffered at the receiver while waiting to be processed – this can lead to
buffer overflow if the receiver cannot process messages fast enough as there will be a finite
number of buffers.

ii) The receive permits the receiver to selectively receive messages from a single source. A server

process such as a file server does not know which sources will be sending requests so needs the
ReceiveAny to be able to receive a message from any source.

1b) User: // when ready to print

send (coordinator, userName, userProc)
receive (coordinator, pn) // get name (pn) of free printer
loop
 send (pn, nextpage)
 receive(pn, ack)
until EOF //end of file
send (pn, EOF)

Coordinator

procnames: a linked list of process names
//either user processes waiting for a printer or available printers
// assume 2 procedures addtail (name), removehead (name)
printersavailable: Boolean // true indicates printers on procnames

set procnames to null
printersavailable := false
loop {

receiveany (source, proctype)
if (proctype = printer) then { // printer request
 if (printersavailable = false) & (procnames != null) then {

 removehead (name) //users Q’d
 send (source, name) //send UserNname to printer
 send (name, source) // send printerName to 1st user on Q }

 else { addtail (source) ; printersavailable := true}/ // no users waiting so Q printer
}
if (proctype != printer) & (printersavailable = true) then { // message from user

removehead (name) // remove printer from Q
if procnames = null then printersavailable := false
send (source, name) // send printerName to user }
send (name, source) // send userName to 1st printer on Q }

if (proctype != printer) & (printersavailable != true) then // message from user
{addtail (source) } // Q user

}

Printer

loop {
send (coordinator, printerName, printerProc) //printer available
receive (coordinator, name) //get user name
loop {

receive (name, msg)
print (msg)
send (name, ack)
} until msg = eof

 }

2a Exported interface defines parameters and procedure names of set of procedures
implemented by server.

 Imported interface defines parameters and procedure names of set of remote

procedures called by client.

Export: Server registers itself with a name server as offering service defined by
exported interface.

 Provides its address and exported interface type.

Bind: Client queries name server to find suitable instance of server which has

exported interface corresponding to imported interface type.
 Check for type compatibility, & that server still available & exporting

interface.
Obtain address of server to use for RPC calls.

2b RPC stub: This is the outline procedure which acts as the local representative of

the remote procedure. There is a stub for each remote procedure called at the
client and one at the server for each procedure it provides which can be called by
a remote client.

 Client stub marshalls call parameters into a message, performs any transformation

to cater for heterogeneity and accesses the transport layer communication
primitive to send the message to the remote node.

 Eventually receives response message, performs transformations, unpacks

message into return parameters and performs local return to client process.

 Server stub receives message from local dispatcher, transforms representations,

unpacks message into calling parameters, makes local call on client procedure.
When client returns, it marshals return parameters, performs transformations and
sends message to remote client.

