
Distributed Systems © M. Sloman

Time Service

� Requirements & problems
� Clock Compensation
� Physical Clock Synchronisation Algorithms

1 Distributed Systems © M. SlomanTime Service

Requirements

• Measure delays between distributed components
• Synchronise streams e.g. sound and vision
• Detect event ordering for causal analysis
• Utilities use modification timestamps e.g. archive, make

Local Time Service

� Quartz crystal oscillates and decrements counter
� On zero, counter is reset to the value in clock register and causes

an interrupt.
� Interrupt rate controlled by value in register.
� Interrupt handler updates software clock e.g. secs since 1/1/1970
� Provide calls to read, compare, convert to and from printable time

sec:min:hours:day:month:year

2 Distributed Systems © M. SlomanTime Service

• A clock’s frequency varies with temperature
• Clocks on different computers drift due to

differing oscillation period

Problems

10:05:17 10:05:14 10:05:15

� Typical accuracy is 1 in 10 -6 = 1 sec in 11.6 days

� Centralised time service?
� Impractical due to variable message delays

3 Distributed Systems © M. SlomanTime Service

Time Sources

� Universal Coordinated Time (UTC)
Based on atomic clocks but leap seconds inserted to keep in phase
with astronomical time - earth’s orbit round sun.

� Radio stations broadcast UTC & provide a short pulse every second.
Random atmospheric delays make accuracy ±10 msec

� Geostationary Environment Operation Satellite (GEOS) or Global
Positioning Systems (GPS) provide UTC to ±0.5msec

� Require (GPS or UTC) receivers on servers to support a clock
synchronisation service.



4 Distributed Systems © M. SlomanTime Service

Clock Compensation

� Assume 2 clocks can each drift at rate
of r msec/s.
Max difference = 2r msec/s
To guarantee accuracy between 2 clocks
to within d msecs requires resynch
every d/2r secs.

� Get UTC and correct software clocks
What happens if local clock is 5 secs fast and you set it right?
Time must never run backward!
Rather slow clock down so that it is reset over a period.

� Clock register normally set to generate interrupts every 10msec and
interrupt handler adds 10msec to software clock.
Instead add 9 until correction is made or add 11 to advance clock.

5 Distributed Systems © M. SlomanTime Service

Cristian’s Algorithm

� Estimate of message propagation time p = (T1 - T0 - h)/2

� Set clock to UTC + p

� Measure T1 - T0 over a number of transactions but discard any that are over a
threshold as being subject to excessive delay or take minimum values as being
most accurate

� Single point of failure & bottleneck

� Could broadcast to a group of synchronised servers

� An impostor or faulty server sending incorrect times can wreak havoc
� need authentication

Client Time server

h = interrupt
handler time

Time Server with
UTC receiver

gives accurate
current time

T0 Request

T1
UTC Time

6 Distributed Systems © M. SlomanTime Service

Berkley Algorithm

� Co-ordinator chosen as master & periodically polls slaves to query clocks.

� Master estimates local times with compensation for propagation delay

� Calculate average time, but ignore occasional readings with propagation delay
greater than a cut-off value or whose current clock is badly out of synch.

� Sends message to each slave indicating clock adjustment

2:59:50 3:00:25 2:59:51 3:00:26 2:59:52 3:00:27

3:00:00 3:00:01 3:00:02

Synchronisation
feasible to within
20-25 msec for
15 computers,
with drift rate of
2 x 10 -5 and
max round trip
propagation
time of 10 msec.

3:00:00

3:00:00 3:00:00

Query

0

-10 +25

Response

+5

+15 -20

Adjust

7 Distributed Systems © M. SlomanTime Service

Network Time Protocol (NTP)

� Multiple servers across the Internet
� Primary servers are directly connected to UTC receivers
� Secondary Servers synchronise with primaries
� Tertiary Servers synchronise with secondary servers etc.

– less accurate due additional errors at each level.
� Scales to large numbers of servers and clients

1

33 3

2 2

= active synchronisation

= backup synchronisation
exchange timing
information, but do not
use it to synchronise
clocks

Copes with failures of
servers – e.g. if primary’s
UTC source fails it
becomes a secondary, or if
a secondary cannot reach a
primary it finds another one.

Authentication used to
check that time comes from
trusted sources



8 Distributed Systems © M. SlomanTime Service

NTP Synchronisation Modes

� Multicast
� 1 or more servers periodically multicast to other servers on high

speed LAN.
� They set clocks assuming some small delay.

� Procedure Call Mode
� Similar to Cristian’s algorithm. A client requests time from a few

other servers.
� Used where there is no multicast or higher accuracy is needed e.g.

a group of file servers on a LAN

� Symmetric protocol
� Used by master servers on LANs, and layers closest to primaries

� highest accuracy based on pairwise synchronisation.

9 Distributed Systems © M. SlomanTime Service

NTP Symmetric Protocol

t = transmission delay (e.g. 5 ms)
o = clock offset of B relative to A (e.g. 3 ms)
Assume T1 = 10 then T2 = 18, and T3 = 20 then T4 = 22
Let a = T2 - T1 = t + o, Let b = T4 - T3 = t’ - o
Round trip delay = t + t’ = a + b = (T2 - T1) + (T4 - T3)

= 18-10 + 22-20 = 10
2o = a - b = (T2-T1) - (T4 - T3) + (t - t’) = (T2-T1) - (T4 - T3) = 8-2 = 6
Clock offset o = (a-b)/2 = ((T2-T1) - (T4 - T3))/2 = 3 (assuming t ≈ t)

Server B T2 T3

Server A T1 T4

t+o t’-o
10

18 20

22

10 Distributed Systems © M. SlomanTime Service

NTP Symmetric Protocol

� T4 = current message receive time is determined at receiver

� Every message contains:
� T3 = current message send time
� T2 = previous received message receive time
� T1 = previous received message send time

� Data filtering: values of o which correspond to minimum values of t are
used to get average values of actual clock offset.

� Peer selection: exchange messages with several peers looking for
most reliable values favouring lower level ones (e.g. primaries)

� 20-30 primaries and over 2000 secondaries can synchronise to within
30ms.

11 Distributed Systems © M. SlomanTime Service

Logical Time

� For many purposes it is sufficient that processes agree on the same time (i.e.
internal consistency) which need not be real or UTC time.

Event Ordering
� a → b = a happens before b

1. If a and b are events in the same process and a occurs before b
then a → b is true

2. If is a is the event of message sent from process A and
b is the event of message receipt by process B then a → b is true

3. If a → b and b→ c then a → c
4. If x and y happen in different processes which do not exchange messages

then x → y is not true and y → x is not true ie x and y are said to be
concurrent and nothing can be said about their order.

� Logical time denotes causal relationship but the → relationship may not reflect
real causality
E.g. a process may receive message x and then send message y so
x → y even though it would have sent y if x had not been received.



12 Distributed Systems © M. SlomanTime Service

Logical Clocks

� A monotonic software counter can be used to implement logical clocks.
Each process p keeps its own logical clock Cp which it uses to
timestamp events

1. Cp is incremented before assigning a timestamp to an event at
process p

2. When a process p sends a message m, it timestamps it by
including the value t = Cp (after incrementing Cp)

3. When a process q receives a message (m, t) it sets
Cq := max (Cq, t) then Cq is incremented and assigned as a
timestamp to the message received event.

� Note: a → b implies Ta < Tb but not Ta < Tb implies a → b

13 Distributed Systems © M. SlomanTime Service

Logical Clocks - Total Ordering

� Logical Clocks give a partial order on the set of all events as distinct
events can have the same identifier.

� A total ordering can be imposed by including the process identifier with
the event identifier

� (Ta, Pa) < (Tb, Pb) if and only if Ta < Tb ,
or Ta = Tb and Pa < Pb

� E.g. a → d, d → g , b → h using process identifiers

p

q

r

Time

1

a
1

d
1

g

2

b
3

e

4

f
6

l

2

h

3

i

4

j

5

k

7

m

8

c

14 Distributed Systems © M. SlomanTime Service

Summary

♦ Local clock drifting results in non-synchronised clocks

♦ Synchronisation algorithms have to cope with variable message delays
between nodes

♦ Clock compensation algorithms send local readings,
and estimate average delays to derive clock adjustments eg
� Cristian
� Berkley
� NTP

♦ Logical clocks are sufficient for causal ordering
e.g. event dependencies – based on incrementing counters


