
DeepLogic
Towards End-to-End Differentiable Logical Reasoning

Nuri Cingillioglu & Alessandra Russo
Imperial College London
nuric@imperial.ac.uk

Abstract
Combining machine learning with logic-based expert systems in order to get the best of both worlds

are becoming increasingly popular. However, to what extent machine learning can already learn to reason
over rule-based knowledge is still an open problem. We explore how symbolic logic, defined as logic pro-
grams at a character level, is learned to be represented in a high-dimensional vector space using iterative
recurrent neural networks to perform reasoning.

Introduction

Deep learning [2] has emerged as a tool for learning human level tasks such as recognising
objects in images, transcribing speech to text and translating between different natural lan-
guages. Logic [3] is the field of study that attempts to formalise the reasoning process and
valid inference. Computational logical reasoning can take the form of first-order logic and
express inferences such as “human(X)→mortal(X) ∧ human(socrates) ⊢ mortal(socrates)”
to derive conclusions. Can we thus make machines learn such forms of reasoning using
neural networks? DeepLogic [1] takes the first steps towards:
1. If and how neural networks learn to represent symbolic constructs from logic?
2. If and how iterative neural networks use those representations to perform reasoning over

logic programs?

Dataset

To train the neural networks we generate 12 classes of normal logic program tasks that
capture various reasoning processes such as logical and, logical or and negation by failure.

f (C,Q) =

{
1 if C ⊢ Q

0 otherwise

In total, there are 20k programs per task. The programs do not
contain function symbols, recursion and have symbol lengths up
to 2 during training. A ground query atom Q together with the
logic program C are used to provide a true or false target whether
the context entails the query or not C ⊢ Q.

1: Facts 5: 3 Steps 8: Transitivity 10: 2 Step NBF 12: OR NBF

e(l).
i(u).
n(d).
v(h,y).
p(n).

p(P,R) :- b(R,P).
b(A,L) :- a(A,L).
a(W,F) :- v(F,W).
v(t,i).
c(V,V) :- d(V,V).
l(D) :- t(D).

f(A,W) :- q(A,P) , d(P,W).
q(h,t).
d(t,j).
q(d,m).
d(n,g).
s(S,F) :- x(S,A) , e(A,F).

r(C) :- -o(C).
o(P) :- l(P).
l(o).
g(u).
p(U,L) :- e(U,L).
p(X,X).

y(Z) :- -e(Z).
y(Z) :- b(Z).
y(r).
e(d).
s(a).
b(m).

? e(l). 1
? i(d). 0

? p(t,i). 1
? p(i,t). 0

? f(h,j). 1
? f(d,g). 0

? r(u). 1
? r(o). 0

? y(a). 1
? y(d). 0

Table 1: Sample logic programs from the dataset. At test time, we generate 4 test sets of increasing difficulty:
validation, easy, medium and hard which have up to 2, 4, 8 and 12 characters for predicates and constants as
well as added number of irrelevant rules respectively.

Approach

Figure 1: Graphical overview of the iterative cell of the Iterative
Memory Attention (IMA) model. The context and query are pro-
cessed at the character level to produce literal embeddings, then
an attention is computed over the head of the rules. A weighted
sum of the unifier GRU outputs using the attention, updates the
state for the next iteration.

We can consider the logic
program context a read-
only memory and the proof
state a writable memory
component. In a similar
fashion to backward chain-
ing algorithm [3], we aim to
have (i) a state to store in-
formation about the proof
such as the query, (ii) a
mechanism to select rules
via attention and (iii) a com-
ponent to update the state
with respect to the rules.
To that end, we introduce
the Iterative Memory At-
tention (IMA) network that
given a normal logic pro-
gram as context and a pos-

itive ground atom as query, embeds the literals in a high dimensional vector space, attends
to rules using soft attention and updates the state using a recurrent network.

Results

Model LSTM MAC DMN IMA
Embedding - rule rule literal lit+rule

Attention - sm σ σ sm sm

Easy Mean 0.57 0.81 0.79 0.91 0.90 0.88
Medium Mean 0.52 0.70 0.70 0.86 0.81 0.79

Hard Mean 0.51 0.63 0.66 0.83 0.75 0.72

Table 2: Mean accuracy of the models when trained all the tasks
at the same time; sm stands for softmax activation.

We take each test set that
consists of 10k generated
logic programs per task and
show the mean accuracy
for the best single train-
ing run out of 3 for each
model with state size d =
64. All models seem to
degrade in performance as
the difficulty of test sets in-
crease; we speculate this

stems from the fixed size state vector that needs to store more information as symbols
lengths get longer at test time.

Analysis

Figure 2: Structurally different literals first cluster by
whether they are negated or grounded then by arity
(grey lines added as visual aids).

Figure 3: Repeating character predicates saturate
the embedding and converge to respective points,
equidistant lines are plotted in grey.

Figure 4: Structurally different literals first cluster by
whether they are negated or grounded then by arity
(grey lines added as visual aids).

Figure 5: Rule embeddings form clusters based on
their structure with a distinction between negated
and positive rules (grey line as visual aid).

Figure 6: Attention maps produced for query p(a) for IMA with softmax attention performing backward chaining
in the left column and IMA with literal + rule embedding forward chaining in the right column on tasks 5 to 7.

Figure 7: When models are iterated beyond the train-
ing number of steps (grey line) to perform increas-
ing steps of deduction, the accuracy degrades for all
models. We speculate this is caused by noise intro-
duced to the state at each iteration.

Figure 8: The models can cope, in particular IMA
with literal embeddings, when predicate and con-
stant symbols of increasing length are randomly
generated. We speculate the models only look at
few characters to determine uniqueness.

Conclusions

Fully differentiable models trained end-to-end have their inherent disadvantages: they seem
to degrade in performance as the number of iterations is increased and the embedding space
is limited in capacity. However, such networks might still hold the key to incorporate sym-
bolic prior knowledge into a continuous space by understanding how that embedding space
is organised to store symbolic information.

Forthcoming Research

Since such neural networks provide a differentiable but approximate reasoning engine over
logic programs, in the future we hope to induce rules using continuous embeddings of logical
rules and expand this to different mediums such as natural language.

References

[1] Nuri Cingillioglu and Alessandra Russo. Deeplogic: End-to-end logical reasoning. AAAI-
MAKE19, 2019. https://arxiv.org/abs/1805.07433.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[3] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (3rd Edition).
Pearson, 2016.

https://arxiv.org/abs/1805.07433
http://www.deeplearningbook.org

