
End-to-end Neuro-symbolic
Rule Learning

Nuri Cingillioglu

Motivation
The human brain has developed to
process symbolic information in a
connectionist architecture.

Yet this level harmony between neural
and symbolic research in machine
learning remains a mystery.

Goal

● Learn dense image representations
● Learn to identify objects
● Continuous dense representations

● Learn relations between objects
● Learn first-order rules to reason with
● Fuzzy logic representations

All in an end-to-end fashion, solely from examples

Relations Game
Binary image classification task with
different shapes and colours that
exhibit compound relations. 4 tasks in
total with 3 sets, pentominoes,
hexominoes and striped shapes.

Train on pentominoes, shown right,
and them evaluate on unseen
hexomonies and striped shapes.

Example images from the hexominoes set

Example images from the stripes set

Between Rule
Trained on between task with 1k
training examples, the following
symbolic rule can be used to solve
the task. The last argument is the
predicate ID.

It achieves 97% accuracy for the
hexominoes test set. Over sample test
batch of 64 examples, clingo using the
output of the neural networks achieves
90%. This is the first result that can
learn dense object representations,
relations and rules in one unifying
architecture.

Learnt rule Learnt object
representations

Learnt predicates

Threshold relations
and pass to clingo

All Tasks Rules
The following program is learnt when
all the 4 tasks are mixed together.
Here, we demonstrate predicate
invention. Nullary(0..3) correspond to
task ids, Same nullary(0), Between
nullary(1) and so on. The obj(..) is
added to make the rules ASP safe and
the uniqueness of variables are added
to let clingo prune unnecessary
bindings.

The following program achieves >90%
accuracy on all tasks combined.

Prediction
(target) label

Learnt / invented
hidden predicates

Step 1: CNN
We process the image using a CNN
that computes a dense representation
with location information added.

Input Image

CNN

Step 2: Object Selection

Using an iterative method with
Gumbel-Softmax, the model learns to
recognise a subset of those as
relevant objects. A single feed-forward
layer computes the logits for the
Gumbel-Softmax distribution, and we
sample one object at a time. Since the
sampling is random, the order of the
objects can vary.

ObjectsCNN

Step 3: Relations
A single feed-forward layer with tanh
activation learns unary and binary
relations between objects. The nullary
predicates are added in based on the
task id and are not learnt.

nullary(0).
nullary(3).
...
unary(,0).
…
binary(, ,0).

binary(, ,0).
...

Objects Relations

Step 4: Differentiable Rule Learning

MLP

AND

OR

End-to-end differentiable

Semi-symbolic Layer

If we utilise t-norms to implement fuzzy
logic, as the number of inputs
increases, the operation suffers from
vanishing gradients and becomes
unviable for downstream layers such
as CNNs. This phenomenon occurs
due to the 1 out of n failure or success
characteristic of conjunction and
disjunction respectively. Hence, we
are interested in an operation that
does not starve gradients and
eventually converges to the desired
semantics.

Delta is the semantic gate selector ranging from 0 to 1
for conjunction and -1 for disjunction. Negation naturally
is implemented as multiplicative inverse. We select f to
be tanh.

Example implementation of SL in TensorFlow

Step 4: Differentiable
Rule Learning

We construct a disjunctive normal form
layer (DNF) by stacking two semi-symbolic
layers, one conjunctive and one disjunctive.
To learn first order rules, we curate all
permutations of object to variable binding
and use the max operator to reduce
existential variables.

We construct 2 additional variants: DNF-h
has an extra hidden DNF layer which
invents 14 new predicates and DNF-r
iterates the DNF layer twice learning
recursive rules with 7 new predicates.

Learnt / invented
hidden predicates

Step 5: Pruning and
Thresholding

In order to obtain symbolic formulas,
we prune then threshold the weights
after training. Similar to decision tree
pruning methods, each weight is set to
zero and pruned if the performance
has not dropped by a fixed epsilon.
Then a threshold value is picked by
sweeping over potential values
[min|𝑤𝑖|,max|𝑤𝑖|] with a similar
performance check to pruning. Each
weight is then set to sign(w)t. We use
t=6 which gives sufficient saturation
tanh(6)≈0.999. Finally, we repeat the
pruning step to remove any wrongly
amplified weights.

End-to-end Neuro-symbolic Rule Learning

nullary(0).
nullary(3).
...
unary(,0).
…
binary(, ,0).

binary(, ,0).
...

DNF LayerInput Image

Objects Relations RulesCNN
P

erm
ute

C
onjunctive S

L

D
isjunctive S

L

R
educe E

xistential

Is the DNF model more data efficient?

Comparing DNF models to Predinet, in particular DNF-h, we observe it performs
better in median accuracy.

Can the DNF model generalise to unseen shapes and colours?

The performance of all models in the hexominoes and stripes test sets are similar
to pentominoes.

Does image reconstruction improve DNF model performance?

Comparing DNF-h to DNF-hi which has image reconstruction from selected objects, we do not observe
any improvement above 5% despite the extra computation required to reconstruct the images.

Example image
reconstructions

Can we extract symbolic rules in an image classification task?

Comparing DNF-h to DNF-h+t (thresholded weights), only if DNF-h achieves >0.99 accuracy does
DNF-h+t consistently yield better than random performance. This suggests the difficulty of learning both
the meaning of the predicates as well as the rules in tandem.

What do the learnt
predicates mean?

We remove one atom at a time and
compute the drop in accuracy. We
then plot the truth cases for the most
important atom. For the example rule,
binary(X,Y,6) drops accuracy by 18%.

Object arguments (top and bottom
rows) that make binary(X,Y,6) true and
false exhibit no common pattern to
principal concepts of the dataset.

Thank you for listening

Subgraph Set Isomorphism

X Y

t :- not nullary(1), unary(X,0),
 not binary(X,Y,0), binary(X,Y,1).

t :- nullary(1), unary(X,0), unary(Y,1),
 binary(X,Y,1), binary(Y,X,0).

not nullary(1)

binary(X,Y,1)

not binary(X,Y,0)

unary(X,0)

X Y

nullary(1)

binary(X,Y,1)

binary(Y,X,0)

unary(X,0) unary(Y,1)

Subgraph Set Isomorphism

Average rule length

Example Medium
Size Rule

Example target rule generated for the
medium dataset size. This is the task
that FastLAS does not terminate after
16 hours. Note that obj() predicate as
well as the uniqueness of variables are
added for safe ASP representation.

Subgraph Set Isomorphism Results

DNF Layer with Input
Noise

We add input noise to the subgraph
set isomorphism dataset by randomly
flipping the truth values of E(G) in the
training set with a fixed probability. We
observe that the DNF layer performs
well up to 0.3 where the median
accuracy drops below 0.9. The pruning
and thresholding steps seem to
improve the performance with lower
levels of noise, likely because incorrect
weights are removed against a
non-noisy validation set.

