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Motivation
The human brain has developed to 
process symbolic information in a 
connectionist architecture.

Yet this level harmony between neural 
and symbolic research in machine 
learning remains a mystery.



Goal

● Learn dense image representations
● Learn to identify objects
● Continuous dense representations

● Learn relations between objects
● Learn first-order rules to reason with
● Fuzzy logic representations

All in an end-to-end fashion, solely from examples



Relations Game
Binary image classification task with 
different shapes and colours that 
exhibit compound relations. 4 tasks in 
total with 3 sets, pentominoes, 
hexominoes and striped shapes.

Train on pentominoes, shown right, 
and them evaluate on unseen 
hexomonies and striped shapes.



Example images from the hexominoes set



Example images from the stripes set



Between Rule
Trained on between task with 1k 
training examples, the following 
symbolic rule can be used to solve 
the task. The last argument is the 
predicate ID.

It achieves 97% accuracy for the 
hexominoes test set. Over sample test 
batch of 64 examples, clingo using the 
output of the neural networks achieves 
90%. This is the first result that can 
learn dense object representations, 
relations and rules in one unifying 
architecture.

Learnt rule Learnt object 
representations

Learnt predicates

Threshold relations 
and pass to clingo



All Tasks Rules
The following program is learnt when 
all the 4 tasks are mixed together. 
Here, we demonstrate predicate 
invention. Nullary(0..3) correspond to 
task ids, Same nullary(0), Between 
nullary(1) and so on. The obj(..) is 
added to make the rules ASP safe and 
the uniqueness of variables are added 
to let clingo prune unnecessary 
bindings.

The following program achieves >90% 
accuracy on all tasks combined.

Prediction 
(target) label

Learnt / invented 
hidden predicates



Step 1: CNN
We process the image using a CNN 
that computes a dense representation 
with location information added.

Input Image

CNN



Step 2: Object Selection

Using an iterative method with 
Gumbel-Softmax, the model learns to 
recognise a subset of those as 
relevant objects. A single feed-forward 
layer computes the logits for the 
Gumbel-Softmax distribution, and we 
sample one object at a time. Since the 
sampling is random, the order of the 
objects can vary.

ObjectsCNN



Step 3: Relations
A single feed-forward layer with tanh 
activation learns unary and binary 
relations between objects. The nullary 
predicates are added in based on the 
task id and are not learnt.

nullary(0).
nullary(3).
...
unary(      ,0).
…
binary(      ,       ,0).

binary(      ,       ,0).
...

Objects Relations



Step 4: Differentiable Rule Learning

MLP

AND

OR

End-to-end differentiable



Semi-symbolic Layer

If we utilise t-norms to implement fuzzy 
logic, as the number of inputs 
increases, the operation suffers from 
vanishing gradients and becomes 
unviable for downstream layers such 
as CNNs. This phenomenon occurs 
due to the 1 out of n failure or success 
characteristic of conjunction and 
disjunction respectively.  Hence, we 
are interested in an operation that 
does not starve gradients and 
eventually converges to the desired 
semantics.

Delta is the semantic gate selector ranging from 0 to 1 
for conjunction and -1 for disjunction. Negation naturally 
is implemented as multiplicative inverse. We select f to 
be tanh.



Example implementation of SL in TensorFlow



Step 4: Differentiable 
Rule Learning

We construct a disjunctive normal form 
layer (DNF) by stacking two semi-symbolic 
layers, one conjunctive and one disjunctive. 
To learn first order rules, we curate all 
permutations of object to variable binding 
and use the max operator to reduce 
existential variables.

We construct 2 additional variants:  DNF-h 
has an extra hidden DNF layer which 
invents 14 new predicates and DNF-r 
iterates the DNF layer twice learning 
recursive rules with 7 new predicates.

Learnt / invented 
hidden predicates



Step 5: Pruning and 
Thresholding

In order to obtain symbolic formulas, 
we prune then threshold the weights 
after training. Similar to decision tree 
pruning methods, each weight is set to 
zero and pruned if the performance 
has not dropped by a fixed epsilon. 
Then a threshold value is picked by 
sweeping over potential values 
[min|𝑤𝑖|,max|𝑤𝑖|] with a similar 
performance check to pruning. Each 
weight is then set to sign(w)t. We use 
t=6 which gives sufficient saturation 
tanh(6)≈0.999.  Finally, we repeat the 
pruning step to remove any wrongly 
amplified weights.



End-to-end Neuro-symbolic Rule Learning

nullary(0).
nullary(3).
...
unary(      ,0).
…
binary(      ,       ,0).

binary(      ,       ,0).
...
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Is the DNF model more data efficient?

Comparing DNF models to Predinet, in particular DNF-h, we observe it performs 
better in median accuracy.



Can the DNF model generalise to unseen shapes and colours?

The performance of all models in the hexominoes and stripes test sets are similar 
to pentominoes.



Does image reconstruction improve DNF model performance?

Comparing DNF-h to DNF-hi which has image reconstruction from selected objects, we do not observe 
any improvement above 5% despite the extra computation required to reconstruct the images.



Example image 
reconstructions



Can we extract symbolic rules in an image classification task?

Comparing DNF-h to DNF-h+t (thresholded weights), only if DNF-h achieves >0.99 accuracy does 
DNF-h+t consistently yield better than random performance. This suggests the difficulty of learning both 
the meaning of the predicates as well as the rules in tandem.



What do the learnt 
predicates mean?

We remove one atom at a time and 
compute the drop in accuracy. We 
then plot the truth cases for the most 
important atom. For the example rule, 
binary(X,Y,6) drops accuracy by 18%.

Object arguments (top and bottom 
rows) that make binary(X,Y,6) true and 
false exhibit no common pattern to 
principal concepts of the dataset.



Thank you for listening



Subgraph Set Isomorphism

X Y

t :- not nullary(1), unary(X,0),
     not binary(X,Y,0), binary(X,Y,1).

t :- nullary(1), unary(X,0), unary(Y,1),
     binary(X,Y,1), binary(Y,X,0).

not nullary(1)

binary(X,Y,1)

not binary(X,Y,0)

unary(X,0)

X Y

nullary(1)

binary(X,Y,1)

binary(Y,X,0)

unary(X,0) unary(Y,1)



Subgraph Set Isomorphism

Average rule length



Example Medium 
Size Rule

Example target rule generated for the 
medium dataset size.  This is the task 
that FastLAS does not terminate after 
16 hours. Note that obj() predicate as 
well as the uniqueness of variables are 
added for safe ASP representation.



Subgraph Set Isomorphism Results



DNF Layer with Input 
Noise

We add input noise to the subgraph 
set isomorphism dataset by randomly 
flipping the truth values of E(G) in the 
training set with a fixed probability. We 
observe that the DNF layer performs 
well up to 0.3 where the median 
accuracy drops below 0.9. The pruning 
and thresholding steps seem to 
improve the performance with lower 
levels of noise, likely because incorrect 
weights are removed against a 
non-noisy validation set.


