Learning Invariants through Soft Unification

Alessandra Russo
a.russo@imperial.ac.uk

Nuri Cingillioglu

nuric@imperial.ac.uk

Abstract

Humans learn what variables are and how to use them at a young age. We
explore whether machines can also learn and use variables solely from
examples without requiring human pre-engineering. We propose Unification
Networks, an end-to-end differentiable neural network approach capable of
lifting examples into invariants and using those invariants to solve a given
task. The core characteristic of our architecture is soft unification between
examples that enables the network to generalise parts of the input into
variables, thereby learning invariants. We evaluate our approach on five
datasets to demonstrate that learning invariants captures patterns in the
data and can improve performance over baselines.

Unification Networks

Our motivation stems from pretend play where children at a young age learn
how symbols can vary to become other symbols such as how a sword can
be substituted with a stick [2], also related to representative imitation [1].
We want a similar behaviour in which a model can detect and use variables
and invariants to predict new example data points.

Algorithm 1: Unification Networks

Input: Invariant I consisting of example GG and variableness network 1), example K, features network ¢,
unifying features network ¢¢7, upstream predictor network f
Output: Predicted label for example K

1 begin> Unification Network

2 | return f o g(I, K) > Predictions using Soft Unification g
3 begin> Soft Unification function g

4 foreach symbol s in G do

5 A — ¢(s) > Features of (G, A c RIGIxd
6 | Bs,. « ou(s) > Unifying features of G, B € RIGIxd
7 foreach symbol s in K do

8 Cs.. < ¢(s) > Features of K, C € RIXIxd
9 | D, ou(s) > Unifying features of K, D € R[4
10 Let P = softmax(BD™) > Attention map over symbols, P € RICI*IK]
11 Let E = PC > Attended representations of G, E € RI¢Ixd
12 foreach symbol s in G do

13 L Us,. < Y(s)Es. + (1 —1(s))As,. > Unified representation of I, U e RI¢Ix4
14 | returnU

Assuming there exists a single common pattern in a dataset, we want to

predict the answer of an example K by transforming example G:

1. We start with an example from the dataset, G, that consists of some
input and output. Coupled with a variableness network g, the invariant
predicts which of the symbols in G are variables.

2. We compute, an embedding ¢ to be used by the upstream network f
and unifying features ¢, to capture a common latent space (lines 5-9).

3. Using the unifying features, we compute an attention map to assign
new values to variable symbols, i.e. what should be the new value of
the variable? (lines 10-11).

4. An intermediate unified representation is computed by interpolating
between G and K based on how much each symbol is a variable in G.
This representation is the result of soft unification of G towards K.

5. The unified representation is passed to an upstream predictor f.
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We observe higher performance in data constraint settings for our
approach (in orange) against plain counter-parts (in blue) with MLP, CNN
and RNN for Sequence, Grid and Sentiment datasets respectively using the

following objective function:

Original output Unification output Sparsity
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Datasets

We use four synthetic datasets of increasing complexity from fixed length
sequences to iterative logical reasoning tasks that involve negation by
failure. We also use one real-world dataset of sentiment analysis.

Dataset Context Query Answer  Training Size
Sequence 8384 duplicate 8 < 1k, <50
Grid 8 (1) g corner 7 < 1k, < 50
8 57
bAbI g&;‘g&i‘iﬁ’eﬁz giﬁzzar ton  Whereis Mary?  kitchen 1k, 50
Logic 58()) —aX). p(a). True 2k, 100
Sentiment A. easily one of the best films Sentiment Positive 1k, 50

Analysis

To analyse the learned invariants, we threshold the variableness network g
for each symbol and represent them in bold face with a V prefix. We observe
that more likely than not symbols that contribute to the final answer
become variables capturing the underlying pattern in the tasks.

V:john travelled to the V:office
V:john V:left the V:football

where 1s the V:football

this V:morning V:bill went to the V:school
yesterday V:bill journeyed to the V:park
where was V:bill before the V:school

office park
5864 const 2 oOovvy 010 001 Vi (T)« ViI(T),
V:8331 head 8 Oovvy o6VE8 0514 Vi(U)«— Vix(U),
831V:5 tail 5 000 070 78YV Vix(K)+ V:n(K),
V:i143V:l dup 1 box centre  corner Vin(Vio)FV:ii(V:o)

When we look at the attention maps computing in line 10 of Algorithm T,

we observe three main patterns: .
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One-to-one mapping, bernhard
interpolated towards brian

One-to-many, the model may squeeze
the information to achieve sparsity

Many-to-one, upstream f learns
to differentiate p(q,q) and p(q)

Limitations

e The invariants capture nothing about how the model actually solves
the tasks or utilise the interpolated unified representations.

e No guarantee that the model will learn the “desired” invariant in a
dataset or expose the expected common underlying pattern.
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