
Learning Invariants through Soft Unification

Unification Networks
Our motivation stems from pretend play where children at a young age learn 
how symbols can vary to become other symbols such as how a sword can 
be substituted with a stick [2], also related to representative imitation [1]. 
We want a similar behaviour in which a model can detect and use variables 
and invariants to predict new example data points.

Abstract
Humans learn what variables are and how to use them at a young age. We 
explore whether machines can also learn and use variables solely from 
examples without requiring human pre-engineering. We propose Unification 
Networks, an end-to-end differentiable neural network approach capable of 
lifting examples into invariants and using those invariants to solve a given 
task. The core characteristic of our architecture is soft unification between 
examples that enables the network to generalise parts of the input into 
variables, thereby learning invariants. We evaluate our approach on five 
datasets to demonstrate that learning invariants captures patterns in the 
data and can improve performance over baselines.

We follow a graphical overview 
of soft unification whereby an 
invariant sequence “V:7 4” 
(blue) correctly unifies and 
predicts the answer of another 
example “3 9” (red). Here V:7 
represents a variable with 
default symbol 7, i.e. the 
default value of the variable. 
The pattern is the head of a 
sequence and the invariant 
example is transformed to let f 
(purple) predict the correct 
symbol using the unifying 
features (green).

Assuming there exists a single common pattern in a dataset, we want to 
predict the answer of an example K by transforming example G:
1. We start with an example from the dataset, G, that consists of some 

input and output. Coupled with a variableness network ψ, the invariant 
predicts which of the symbols in G are variables.

2. We compute, an embedding ϕ to be used by the upstream network f 
and unifying features ϕU to capture a common latent space (lines 5-9).

3. Using the unifying features, we compute an attention map to assign 
new values to variable symbols, i.e. what should be the new value of 
the variable? (lines 10-11).

4. An intermediate unified representation is computed by interpolating 
between G and K based on how much each symbol is a variable in G. 
This representation is the result of soft unification of G towards K.

5. The unified representation is passed to an upstream predictor f.
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Adjust lambda K and I to 
pre-train or serve as a baseline

Add sparsity 
constraint to avoid 
the trivial solution: 
everything is a 
variable and 
invariant gets 
completely replaced

One-to-one mapping, bernhard 
interpolated towards brian

One-to-many, the model may squeeze 
the information to achieve sparsity

Many-to-one, upstream f learns 
to differentiate p(q,q) and p(q)

Limitations
● The invariants capture nothing about how the model actually solves 

the tasks or utilise the interpolated unified representations.
● No guarantee that the model will learn the “desired” invariant in a 

dataset or expose the expected common underlying pattern.

Analysis
To analyse the learned invariants, we threshold the variableness network ψ 
for each symbol and represent them in bold face with a V prefix. We observe 
that more likely than not symbols that contribute to the final answer 
become variables capturing the underlying pattern in the tasks.

We observe higher performance in data constraint settings for our 
approach (in orange) against plain counter-parts (in blue) with MLP, CNN 
and RNN for Sequence, Grid and Sentiment datasets respectively using the 
following objective function:

Datasets
We use four synthetic datasets of increasing complexity from fixed length 
sequences to iterative logical reasoning tasks that involve negation by 
failure. We also use one real-world dataset of sentiment analysis.

Experiments

Competitive or higher 
performance against 
comparable baselines in 
bAbI (top) and logic 
(bottom) datasets.

When we look at the attention maps computing in line 10 of Algorithm 1, 
we observe three main patterns:


