Imperial College London

Learning Invariants through Soft Unification

Nuri Cingillioglu, Alessandra Russo

Source: The Power of Pretend Play by Holly Pevzner Photo Credit: Dana Gallagher

Learning Invariants through Soft Unification

V:bernhard is a V:frog V:lily is a V:frog V:lily is V:green what colour is V:bernhard green

Variable with default symbol **lily**

bAbl task 16. Single invariant can solve all of training, validation and test examples correctly by unifying variables with new values.

Dataset	Context	Query	Answer	Training Size
Sequence	8384	duplicate	8	≤ 1 k, ≤ 50
Grid	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	corner	7	≤ 1 k, ≤ 50
bAbI	Mary went to the kitchen. Sandra journeyed to the garden.	Where is Mary?	kitchen	1k, 50
Logic	$p(X) \leftarrow q(X).$ q(a).	p(a).	True	2k, 100
Sentiment A.	easily one of the best films	Sentiment	Positive	1k, 50

Bribi Batabet										
Training Size	1k			50		1k				
Supervision	Weak		Strong			Weak			Strong	
# Invs / Model	1	3	1	3	3	N2N	GN2N	EntNet	QRN	MemNN
Mean	18.8	19.0	5.1	6.6	28.7	13.9	12.7	29.6	11.3	6.7
# > 5%	10	9	3	3	17	11	10	15	5	4

Unification Memory Networks perform competitively against baselines with minor improvements in performance

hAbl Dataset

Logical Reasoning Dataset									
Model		UMN					IMA		
Training Size		2	k		100	2k			
Supervision	Weak		Strong			Weak	Strong		
# Invs	1	3	1	3	3	-			
$Mean \\ \# > 5\%$	37.7 10	37.6 10	27.4 10	29.0 11	47.1 12	38.8 11	31.5 11		

Pre-train **f** so that the memory network selects the correct sentences to unify

pre-train or serve as a baseline

One-to-one mapping, bernhard interpolated towards brian

One-to-many, the model may squeeze the information to achieve sparsity

Many-to-one, upstream f learns to differentiate p(q,q) and p(q)

Invariants capture nothing about how the model actually solves the tasks or utilise the interpolated unified representations

Thank you

https://github.com/nuric/softuni