
Keras Deep Learning 101
October, 2018
https://www.doc.ic.ac.uk/~nuric

Deep learning

TensorFlow

Lower level “tensor” manipulation library with
some high level API. Use directly if working on
deep learning architectures or bulk data
processing. If not, it is a little messy and
non-intuitive despite Python API (it has package
globals, runner sessions etc)

Runs on CPU and GPGPU for faster processing.
But it would depend on your model, ex RNNs
might run faster on CPU.

Keras

Actually a deep learning library built on
Tensorflow or Theano (you can pick). Designed
to be intuitive and hides all scaffolding code
needed. If your data shapes match, it is plug and
play using Numpy data similar to scikit-learn.

It still gives access to TensorFlow to build
custom functions but not as flexible as using
the actual library.

But what is a tensor?

3 # a rank 0 tensor; a scalar with shape []

[1., 2., 3.] # a rank 1 tensor; a vector with shape [3]

[[1., 2., 3.], [4., 5., 6.]] # a rank 2 tensor; a matrix with shape [2, 3]

[[[1., 2., 3.]], [[7., 8., 9.]]] # a rank 3 tensor with shape [2, 1, 3]

Think n-dimensional array, what it represents depends on the application

import tensorflow as tf

Model parameters

W = tf.Variable([.3], dtype=tf.float32)

b = tf.Variable([-.3], dtype=tf.float32)

Model input and output

x = tf.placeholder(tf.float32)

linear_model = W*x + b

y = tf.placeholder(tf.float32)

loss

loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares

optimizer

optimizer = tf.train.GradientDescentOptimizer(0.01)

train = optimizer.minimize(loss)

Variables are trainable
through automatic

differentiation.

Placeholders are your
inputs and outputs, the

values you set

training data

x_train = [1, 2, 3, 4]

y_train = [0, -1, -2, -3]

training loop

init = tf.global_variables_initializer()

sess = tf.Session()

sess.run(init) # reset values to wrong

for i in range(1000):

 sess.run(train, {x: x_train, y: y_train})

evaluate training accuracy

curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x: x_train, y: y_train})

print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))

Setup Session and start
training what will adjust

Variables

Training y = w*x + b with TensorFlow, the execution graph

Keras
Building complex networks

Well that’s enough of TensorFlow.
Using the good bits we are
interested in larger, more complex
neural networks. Keras allows us to
create modular networks with a
cleaner API.

import numpy as np
from keras.models import Sequential
from keras.layers import Dense

model = Sequential()
model.add(Dense(1, activation='linear', input_dim=1))

model.compile(loss='mse',
 optimizer='sgd',
 metrics=['accuracy'])

x_train = np.array([1, 2, 3, 4])
y_train = np.array([0, -1, -2, -3])

model.fit(x_train, y_train, epochs=5, batch_size=1)

print(model.predict(np.array([5, 6]))

Dense layer implements
Wx + b

Compile just sets what
loss and training we want

Representation of a Dense layer.

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
 activation='relu',
 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

Convolution layers + Max
Pooling

Final dense layer for
P(X=x) output using
sigmoid functionhttps://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py

Recursive Neural Networks (RNNs)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

model = Sequential()

model.add(LSTM(128, input_shape=(maxlen, len(chars))))

model.add(Dense(len(chars)))

model.add(Activation('softmax'))
LSTM layer applies the
same LSTM unit over a
time series (timesteps)

https://github.com/fchollet/keras/blob/master/examples/imdb_lstm.py

Surely it’s not that simple? Well there
is always preparing the data into the
format the neural network expects...

End to End memory networks - https://arxiv.org/abs/1503.08895

Captioning videos using CNN + RNN

Not so fast

● You need good data to train these

models. Having 2 sets of MRI images will
not give a magic results on cancer
diagnosis.

● Getting the data ready is often more

work than building the network. Ex,
vectorising inputs, loading images etc.

● Easy to build large network but much

harder to train. Don’t go crazy with

extra layers to create a deeper network.

● Expect failure and frustration more often
than not...

Tips

● Run your network with random weights,

do you get random outputs? Or is
it all 0s, 1s, check that.

● Try to overfit a single
point. Does your network actually

learn? If it cannot on a single data point
something is wrong.

● Use fit_generator for large data that is
streamed into the network like videos.

● A GPU might be slower for

your network architecture test before
crying for GPUs.

Code + data

Put code in Gitlab +
Github, data and external
libraries locally

Preprocess

Parse Trump tweets,
setup vocabulary
(parse, vectorise etc.)

Training

Checkpoint every epoch; can
even train multiple models with
different hyperparameters if
you have resources

Front-end

Deploy so some web server (flask,
preferably something Python as
well) and hook up the neural model

Clean up

Back up generated
files such as model
weights, clean up any
bad weights, unused
data etc.

Questions?
https://www.doc.ic.ac.uk/~nuric

https://github.com/keras-team/keras/tree/master/examples

