
C Recap for Pintos

Nuri Cingillioglu1

https://www.doc.ic.ac.uk/~nuric

Imperial College London

2020

1thanks to Ioannis Papagiannis, Pedro Mediano, Feroz Salam, Mark Wheelhouse

https://www.doc.ic.ac.uk/~nuric

The C Preprocessor

The preprocessing is the first stage in the compilation of any C program.

It carries out the tokenization and comment removal.

In general, directives starting with # are preprocessor instructions.

Including the obvious #include

You can call it with gcc -E

#define

What?

#define identifier replacement

Example: #define PI 3.0

Subsequent occurences of identifier will be replaced by replacement

Usage

Use #define to replace small amounts of code to make it more readable or avoid
magic numbers

Use it to define constants at compile time:
#define DEBUG 1

Macros

What?

#define can also be used with parameters.

#define identifier(params) replacement

Example: #define P(X) printf(‘‘%d’’,(X))

Subsequent occurences of identifier will be replaced by replacement, with
params substituted in.

Usage

Use #define to replace small amounts of code to make it more readable or define
simple functionality

Macros run like inline functions

Macro Safety

Some general points to be aware of when using macros in C:

You should surround each term of a macro with parentheses:

#define TWICE(x) x * 2

TWICE(3 + 5)

result: 3 + 5 * 2

You should surround the whole macro replacement with parentheses:

#define TWICE(x) (x) * 2

10 / TWICE(5)

result: 10 / (5) * 2

The correct version of this macro is:

#define TWICE(x) ((x) * 2)

Macro Safety contd.

For macros that execute full statements, a dumb do-while loop helps
encapsulation:

#define P(X) do { printf(‘‘\%d’’,(X)); } while (0)

(the final semicolon is missing on purpose so you can write P(n); in your code)

Beware: debugging macros can be a nightmare

Beware: macros do not have types

You should always try to keep macros simple

Do not use them as function replacements

Include Guards

Multiple definition problems can occur when multiple files include the same header

my lib.h

struct my_struct {int x;};

my extended lib.h

#include "my_lib.h"

my program.c

#include "my_lib.h"

#include "my_extended_lib.h"

Include Guards

Solution: #ifdef and #ifndef

Used to control preprocessing with conditional statements that are evaluated
during preprocessing, allowing selective inclusion of code

#ifndef MY_LIB_H /* If not defined... */

#define MY_LIB_H /* Define the macro MY_LIB_H */

struct my_struct {int x;};

#endif

Conditional Compilation

#ifdef and #ifndef are also used for conditional compilation

Example:

struct my_struct {

int x;

#ifdef VERBOSE

char buffer[1000];

#endif

};

Common uses are:

Debug/test/verbose

Platform-dependent code

To address dependency issues

Defining with gcc

You can also define flags in the terminal.

This:

#define DEBUG 1

Is the same as this:

$ gcc -D DEBUG main.c

Very useful when used in Make or CMake!

Warnings

Warnings are diagnostic messages that report constructions that are not
inherently erroneous but that are risky or suggest there may have been an error.

By default, always call gcc as

$ gcc -Wall -Wextra -Werror main.c

WARNINGS ARE BUGS, so fix them!

Pointers

A pointer is a special variable type in C

A pointer contains a memory address you can access through it

Any variable type has a pointer associated to it

Declaring pointers

To declare a pointer prepend a * to the variable’s name

double *doublePtr; /* Pointer to a double */

int *intPtr; /* Pointer to an int */

int *a, b; /* Pointer to int ‘a’ and ‘b’ */

int **intPtrPtr; /* Pointer to pointer to an int */

Pointers can have arbitrary levels of indirection
– i.e. you can have a pointer to a pointer.

Pointer operators

We mostly use two operators to deal with pointers:

The address operator & takes a value and returns an address.
Can be read in English as “address of.”

The dereference operator * takes a pointer and returns the value it points to.
Can be read in English as “content of.”

Pointer operators contd.

char c = ’t’;

char *p;

p = &c;

c = ’t’

p = 0x2b00b1e5
0x2b00b1e5:

0x2b0a43e0:

*p = ’u’;

c = ’u’

p = 0x2b00b1e5
0x2b00b1e5:

0x2b0a43e0:

Stack and heap

In C we handle two kinds of memory:

The stack

Handled entirely by the CPU

Emptied at the end of current scope

Slightly faster access

The heap

Handled mostly by the programmer

Lives forever (or until freed)

Much bigger space

Memory allocation

Stack

float v[10];

Heap

float *v;

v = (float *) malloc(10*sizeof(float));

if (v == NULL) { PANIC("malloc failed"); } /* Check malloc success */

...

free(v) /* Remember to free the memory! */

It is good practice to check if malloc() succeeded, to avoid surprises later

Other than that, float v[] and float *v can usually be treated equivalently.

But it can get messy if mixed – agree with your teammates.

Memory leaks

Failure to free memory will result in a memory leak.

We say a chunk of memory is leaked when it is still reserved but all references to
it are lost.

void f(void) {

float *a = malloc(sizeof(float) * 5);

foo(a);

}

Use tools like valgrind to detect memory leaks.

Or simply comment the free for every malloc

Pointers and arrays

There’s no array type in C

We use pointers with reserved memory locations

char *s = (char *) malloc(8*sizeof(char));

s

space reserved for s

For any integer n, *(s+n) is equivalent to s[n]

Pointer Arithmetic

When adding to pointers, the type of the pointer is important.

struct my_struct {

int a;

int b;

};

struct my_struct s[2];

struct my_struct *sp = &s[0];

int *ip = (int *) sp;

sp++; /* now points to the second my_struct in s */

ip++; /* now points to second int of first my_struct */

A word about const

With pointers, you can have constant pointers, pointers to constant values or
both.

int val = 5;

const int *ptr1 = &val; /* ptr1 can change, val cannot */

int *const ptr2 = &val; /* val can change, ptr2 cannot */

const int *const ptr3 = &val; /* neither val nor ptr3 can change */

Very powerful resource.

Gets messy very quickly with multiple levels of indirection.

Use const where you can...

Pointers as arguments

Pass by reference

When you want to modify an argument inside the function, pass a pointer.

void setInt(int *v, int i) { *v = i; }

Passing pointer-const instead of value

Very useful trick!

void foo(int n, const float *X)

Benefits:

Enforce const-ness of input

Avoid potentially expensive useless copies

Linked lists

Anatomy of a (doubly) linked list:

5 13 21

List element structure

struct list_elem {

struct list_elem *prev; /* Previous list element. */

struct list_elem *next; /* Next list element. */

};

Operations on linked lists

Insertion:

5 13 21

8

Deletion:

5

13

21

Implementation of a linked list

List element structure

struct list_elem {

struct list_elem *prev; /* Previous list element. */

struct list_elem *next; /* Next list element. */

};

Declaring a struct to be used in a list

struct my_element {

int a;

struct list_elem item; };

The list structure itself

struct list {

struct list_elem head; /* List head. */

struct list_elem tail; /* List tail. */

};

Lists in Pintos

It’s very important that you understand how to use lists in Pintos

The Pintos list implementation in <list.h> contains several useful functions.

Don’t reinvent the wheel – use them!

Declaring and initialising a list

struct list my_list;

list_init(&my_list);

Lists in Pintos contd.

Inserting an item

/* thing_before is the list_elem of the struct that

you want to insert the new thing item after */

list_insert (&(thing_before.item) , &(thing.item));

Fetching the front element

struct list_elem *my_item = list_front (&my_list);

Casting a list elem to its parent struct

struct my_element *thing =

list_entry(my_item, struct my_element, item);

Function Pointers

Just like you can have a pointer to a variable in C, you can also have a pointer to a
function.

Declare Function Pointer

int (*fp)(int);

Define Functions

int f1(int x) { return x; }

int f2(int x) { return x+1; }

Pair Function Pointer to Function

fp = f1; /* fp = &f1; also accepted */

Execute Function Using Pointers

int r = (*fp)(5);

Function Pointers contd.

Function pointers are everywhere in the standard library

Example: sort array wrt function compar:

void qsort(void *base, size_t nitems, size_t size,

int (*compar)(const void *, const void*))

They’re also in Pintos:

void list_sort (struct list *,

list_less_func *, void *aux);

Function pointers are cool and make other functions generic.

typedef and function pointers

Declaring function pointers can get cumbersome

Enter typedef

Example from Pintos:

typedef bool list_less_func(const struct list_elem *a,

const struct list_elem *b,

void *aux);

Careful with the naming. It’s very easy to lose track and confuse them with
variable pointers

C99 data types

Booleans

stdbool.h defines type ‘bool’

‘true’ expands to 1

‘false’ expands to 0

Examples of use in code same as in any other language, really

The stdbool.h source

#define bool _Bool

#define true 1

#define false 0

Coding Standards

Maintaining a consistent coding standard will help you:

Debug large blocks of code

Work with other people’s code

Get more marks
(remember we’re marking the style of your code!)

Coding Standards

Some general points to keep in mind:

Comment your code
(but don’t leave old code commented-out in your source files, this will only be
confusing for the markers and your group)

Common sense goes a long way, if you think something is messy or
over-complicated, it probably is!

Bear in mind the golden rules: KISS, RTFM, DRY

Write code that tells you how
and comments that tell you why

The End

Don’t be afraid

We had a student finish Pintos alone in 3 days. Don’t do this!

Useful books

The Pragmatic Programmer, by Hunt and Thomas
Addison Wesley, 1st edition

The C Programming Language, by Kernighan and Ritchie
Prentice Hall, 2nd edition

C Traps and Pitfalls, by Andrew Koenig
Addison Wesley, 1st edition

