
Project Survival 101
November 22, 2017 nuric@

What to do?
So many

possibilities
● Give up and code in Haskell
● I have a macbook, I’m good
● SSH into every lab machine
● Say I didn’t have enough

time or resources

Have 20GB of data,
deep neural model,
need to pre-process
some images, big
data, machine
learning data deep
big blockchain
learning machine
mining

Source Code, github + gitlab

● Use github to keep a copy for yourself as part of your profile (if you want make it private
with the student package)

● Use gitlab to integrate CI locally within DoC network
● Try to integrate a linter (ex pylint if in Python) to keep things tidy early, it will get messy

● Automate repetitive work done after writing code using Gitlab Runners

Gitlab Continuous Integration (CI)

Local gitlab integrates well with other
infrastructure we have. Use gitlab CI to
automate repetitive tasks, doesn’t have to be
just unit tests.

You use runners to actually execute the CI
pipeline, we will use the DoC IaaS (cloudstack)
to create them.

.gitlab-ci.yaml

test:

 script:

 - make test

BIG DATA
Things to consider carefully:

● Size of data, is it BIG? Videos are the
worst.

● Interaction, is it read or write heavy, for
example external library vs data you
generate

● Origin, is it public, bound to university,
medical data is often restricted

Mainly have 5 options:

● Home dir (~/), good for code, smaller data
you generate, has quota limit but can be
extended if all other options fail

● Bitbucket (/vol/bitbucket/$USER), good
for large read-only data, can be slow

● Local (/data/$USER) local SSD disk, high
performance, limited to only one machine

● Postgres (db.doc.ic.ac.uk), for structured
sql data, good for filtering querying etc

● Onedrive (1TB) good for personal backup

BIG DATA
Housekeeping:

● zip old courseworks and backup on some
personal cloud account.

● ~/Downloads, always has stale stuff, like
specs from first year.

● ~/.cache, is mostly filled with browser
stuff, change their settings

For coding stuff:

● git clone --depth=1 for things that you are
not going to develop. Just need HEAD.

● git gc for garbage collecting stale objects
etc. Can go --aggressive

● chmod 644 or 755 on either home or
bitbucket files / folders for duplicate data
across projects. Then someone else can
read that data from your folder share.
Remember these are network shares
already.

Parallel Processing

Look for multithreading opportunities! High level
languages make it super easy, some
ProcessPoolExecutor call is all you need.

Why don’t we use all the threads? Most lab
machines have 4 cores with 2 threads giving 8
executions, but we don’t want to block the
machine.

Long running jobs (this machine is so slow)

The goal is to be minimally disruptive as
possible. As if you are not even there…

What NOT to do:

● SSH into a machine (or even worse
voxel$i) and just start running 800% cpu
load

● Name script as
“donotkill_finishesin30min.py” and then
run another one every 30 minutes

But we don’t want to waste idle resources either!
If your thing is urgent, just take note:

● Beware of tmux, you can leave things
running around

● Check if someone is already running
something

● Do not use the entire machine resources, 1
less thread might allow a first year to read
their Haskell spec while you crunch
numbers in the background

http://www.imperial.ac.uk/computing/csg/guides/long-running-processes/

HTCondor
I have 100 videos to process,
why not get 100 machines?

HTCondor is a specialized workload management
system for compute-intensive jobs. Like other
full-featured batch systems, HTCondor provides a

job queueing mechanism,
scheduling policy, priority scheme,
resource monitoring, and resource
management. Users submit their serial or
parallel jobs to HTCondor, HTCondor places them into

a queue, chooses when and
where to run the jobs based

upon a policy, carefully monitors their progress, and
ultimately informs the user upon completion.

https://research.cs.wisc.edu/htcondor/

Getting started with Condor

By default the commands are not in $PATH, put
it in bashrc or your shell config

export
PATH=$PATH:/usr/local/condor/release/bin

https://www.doc.ic.ac.uk/condor/

Mainly interested in 2 commands:

● condor_submit [file], actually submits a job
to condor using job description file

● condor_q monitors your active jobs

Note that all machines are connected to DoC so
your home folder + bitbucket is available. Often,
if it runs on a standard lab machine, it will run
anywhere, except for GPU and other niche stuff.

Job description file

executable = foo
universe = vanilla
queue arguments from (
 15 2000
 30 2000
)

request specific resources
request_GPUs = 1
request_memory = ...

uname on some machines
universe = vanilla
executable = /bin/uname
arguments = -n -m -p
output = uname.$(Process).out
log = uname.log
queue 5

run command for every file
universe = vanilla
notification = Complete # notifies after every job!
notify_user = <your-email>
executable = /usr/bin/wc
arguments = $(item)
output = $(item).out
log = file.log
queue matching files data/*.txt

http://research.cs.wisc.edu/htcondor/manual/v8.4/condor_submit.html#man-condor-submit

You can also queue single
long running jobs which
Condor will handle without
annoying others!

A gentle touch SIGTERM

When someone logs onto the machine you are
running Condor jobs on, what happens?

Condor tries to gracefully terminate your job and
move it another available machine
automatically!

All you have to do is gracefully terminate your
job, you may want to save some checkpoint or
state to recover from.

"""Example raising KeyboardInterrupt"""
import signal
import time

def f(signum, frame):
 print("Getting interrupted")
 raise KeyboardInterrupt
signal.signal(signal.SIGTERM, f)

try:
 for i in range(100): # some long function
 print(i)
 time.sleep(i)
except KeyboardInterrupt:
 print("Terminating.") # Handle interrupt somehow

External Resources

There are other resources outside of DoC:

● High Performance Computing (HPC):
Good for large simulations that can be
parallelized, gives you large memory and
hundreds of cores. Requires access via
supervisor.

● Research Computing Service (RCS):
Dedicated college wide group for
computing stuff. Most services oriented
around HPC.

More useful considerations include student
packages offered by cloud providers:

● Microsoft Azure: Get free access using
Dreamspark (search Imperial College
Dreamspark), again good for servers etc.

● Amazon Web Services (AWS): Students
get some credit to run servers (EC2) and
store data (S3).

Feedback + Questions?
www.doc.ic.ac.uk/~nuric/fb

Office hours -> Tuesday mornings (this term) -> 558C

Project Survival 102
November 30, 2017 nuric@

Deep learning

TensorFlow

Lower level “tensor” manipulation library with
some high level API. Use directly if working on
deep learning architectures or bulk data
processing. If not, it is a little messy and
non-intuitive despite Python API (it has package
globals, runner sessions etc)

Runs on CPU and GPGPU for faster processing.
But it would depend on your model, ex RNNs
might run faster on CPU.

Keras

Actually a deep learning library built on
Tensorflow or Theano (you can pick). Designed
to be intuitive and hides all scaffolding code
needed. If your data shapes match, it is plug and
play using Numpy data similar to scikit-learn.

It still gives access to TensorFlow to build
custom functions but not as flexible as using
the actual library.

But what is a tensor?

3 # a rank 0 tensor; a scalar with shape []

[1., 2., 3.] # a rank 1 tensor; a vector with shape [3]

[[1., 2., 3.], [4., 5., 6.]] # a rank 2 tensor; a matrix with shape [2, 3]

[[[1., 2., 3.]], [[7., 8., 9.]]] # a rank 3 tensor with shape [2, 1, 3]

Think n-dimensional array, what it represents depends on the application

import tensorflow as tf

Model parameters

W = tf.Variable([.3], dtype=tf.float32)

b = tf.Variable([-.3], dtype=tf.float32)

Model input and output

x = tf.placeholder(tf.float32)

linear_model = W*x + b

y = tf.placeholder(tf.float32)

loss

loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares

optimizer

optimizer = tf.train.GradientDescentOptimizer(0.01)

train = optimizer.minimize(loss)

Variables are trainable
through automatic

differentiation.

Placeholders are your
inputs and outputs, the

values you set

training data

x_train = [1, 2, 3, 4]

y_train = [0, -1, -2, -3]

training loop

init = tf.global_variables_initializer()

sess = tf.Session()

sess.run(init) # reset values to wrong

for i in range(1000):

 sess.run(train, {x: x_train, y: y_train})

evaluate training accuracy

curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x: x_train, y: y_train})

print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))

Setup Session and start
training what will adjust

Variables

Training y = w*x + b with TensorFlow, the execution graph

Keras
Building complex networks

Well that’s enough of TensorFlow.
Using the good bits we are
interested in larger, more complex
neural networks. Keras allows us to
create modular networks with a
cleaner API.

import numpy as np
from keras.models import Sequential
from keras.layers import Dense

model = Sequential()
model.add(Dense(1, activation='linear', input_dim=1))

model.compile(loss='mse',
 optimizer='sgd',
 metrics=['accuracy'])

x_train = np.array([1, 2, 3, 4])
y_train = np.array([0, -1, -2, -3])

model.fit(x_train, y_train, epochs=5, batch_size=1)

print(model.predict(np.array([5, 6]))

Dense layer implements
Wx + b

Compile just sets what
loss and training we want

Representation of a Dense layer.

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
 activation='relu',
 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

Convolution layers + Max
Pooling

Final dense layer for
P(X=x) output using
sigmoid functionhttps://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py

Recursive Neural Networks (RNNs)

Long Short-Term Memory (LSTM)

model = Sequential()

model.add(LSTM(128, input_shape=(maxlen, len(chars))))

model.add(Dense(len(chars)))

model.add(Activation('softmax'))
LSTM layer applies the
same LSTM unit over a
time series (timesteps)

https://github.com/fchollet/keras/blob/master/examples/imdb_lstm.py

Surely it’s not that simple? Well there
is always preparing the data into the
format the neural network expects...

End to End memory networks

Captioning videos using CNN + RNN

Not so fast

● You need good data to train these

models. Having 2 sets of MRI images will
not give a magic results on cancer
diagnosis.

● Getting the data ready is often more

work than building the network. Ex,
vectorising inputs, loading images etc.

● Easy to build large network but much

harder to train. Don’t go crazy with

extra layers to create a deeper network.

● Expect failure and frustration more often
than not...

Tips

● Run your network with random weights,

do you get random outputs? Or is
it all 0s, 1s, check that.

● Try to overfit a single
point. Does your network actually

learn? If it cannot on a single data point
something is wrong.

● Use fit_generator for large data that is
streamed into the network like videos.

● A GPU might be slower for

your network architecture test before
crying for GPUs.

I need root to install packages -> no

Check if package already exists, if not install in
bitbucket, recommend using virtualenv to isolate
packages:

export
PYTHONUSERBASE=/vol/bitbucket/$USER/pypi/

export
PATH=$PATH:/vol/bitbucket/$USER/pypi/bin

pip3 install --user tensorflow[-gpu] keras
...

● You can be clever and share installations
by sharing bitbucket or home folders if you
have similar requirements.

● Most cases just require you to install
somewhere you have access and then tell
the program where to find it.

● If you are uncertain, double check with
CSG before giving up.

Monitoring
Take a tell don’t ask approach

● Code got stuck? Your loss
function is NaN? Why isn’t this
working after X epochs?

● Don’t be a victim, look after
your jobs, or let your jobs alert
you when it is important

● Check with commands like top,
who, to see what is going on
before you leave it overnight

Easy monitoring

Here is a one liner if you are using a script to
send an email:

blah.sh && mail -s "Jobs done"
$USER@imperial.ac.uk <<< "Foo
finished running, wake up!"

Make sure it doesn’t turn into a spam machine
though, instead there are better alternatives.

Use a webhook into a service like Slack or
Discord. It is often as simple as a post request.

keras.callbacks.RemoteMonitor(root= 'discord_url' ,
path='', field='data')

Feedback + Questions?
www.doc.ic.ac.uk/~nuric/fb

Office hours -> Tuesday mornings (this term) -> 558C

