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What to do?
So many 

possibilities
● Give up and code in Haskell
● I have a macbook, I’m good
● SSH into every lab machine
● Say I didn’t have enough 

time or resources

Have 20GB of data, 
deep neural model, 
need to pre-process 
some images, big 
data, machine 
learning data deep 
big blockchain 
learning machine 
mining



Source Code, github + gitlab

● Use github to keep a copy for yourself as part of your profile (if you want make it private 
with the student package)

● Use gitlab to integrate CI locally within DoC network
● Try to integrate a linter (ex pylint if in Python) to keep things tidy early, it will get messy

● Automate repetitive work done after writing code using Gitlab Runners



Gitlab Continuous Integration (CI)

Local gitlab integrates well with other 
infrastructure we have. Use gitlab CI to 
automate repetitive tasks, doesn’t have to be 
just unit tests.

You use runners to actually execute the CI 
pipeline, we will use the DoC IaaS (cloudstack) 
to create them.

# .gitlab-ci.yaml

test:

  script:

    - make test



BIG DATA
Things to consider carefully:

● Size of data, is it BIG? Videos are the 
worst.

● Interaction, is it read or write heavy, for 
example external library vs data you 
generate

● Origin, is it public, bound to university, 
medical data is often restricted

Mainly have 5 options:

● Home dir (~/), good for code, smaller data 
you generate, has quota limit but can be 
extended if all other options fail

● Bitbucket (/vol/bitbucket/$USER), good 
for large read-only data, can be slow

● Local (/data/$USER) local SSD disk, high 
performance, limited to only one machine

● Postgres (db.doc.ic.ac.uk), for structured 
sql data, good for filtering querying etc

● Onedrive (1TB) good for personal backup



BIG DATA
Housekeeping:

● zip old courseworks and backup on some 
personal cloud account.

● ~/Downloads, always has stale stuff, like 
specs from first year.

● ~/.cache, is mostly filled with browser 
stuff, change their settings

For coding stuff:

● git clone --depth=1 for things that you are 
not going to develop. Just need HEAD.

● git gc for garbage collecting stale objects 
etc. Can go --aggressive

● chmod 644 or 755 on either home or 
bitbucket files / folders for duplicate data 
across projects. Then someone else can 
read that data from your folder share. 
Remember these are network shares 
already.



Parallel Processing

Look for multithreading opportunities! High level 
languages make it super easy, some 
ProcessPoolExecutor call is all you need.

Why don’t we use all the threads? Most lab 
machines have 4 cores with 2 threads giving 8 
executions, but we don’t want to block the 
machine.



Long running jobs (this machine is so slow)

The goal is to be minimally disruptive as 
possible. As if you are not even there…

What NOT to do:

● SSH into a machine (or even worse 
voxel$i) and just start running 800% cpu 
load

● Name script as 
“donotkill_finishesin30min.py” and then 
run another one every 30 minutes

But we don’t want to waste idle resources either! 
If your thing is urgent, just take note:

● Beware of tmux, you can leave things 
running around

● Check if someone is already running 
something

● Do not use the entire machine resources, 1 
less thread might allow a first year to read 
their Haskell spec while you crunch 
numbers in the background

http://www.imperial.ac.uk/computing/csg/guides/long-running-processes/



HTCondor
I have 100 videos to process, 
why not get 100 machines?

HTCondor is a specialized workload management 
system for compute-intensive jobs. Like other 
full-featured batch systems, HTCondor provides a 

job queueing mechanism, 
scheduling policy, priority scheme, 
resource monitoring, and resource 
management. Users submit their serial or 
parallel jobs to HTCondor, HTCondor places them into 

a queue, chooses when and 
where to run the jobs based 

upon a policy, carefully monitors their progress, and 
ultimately informs the user upon completion.

https://research.cs.wisc.edu/htcondor/



Getting started with Condor

By default the commands are not in $PATH, put 
it in bashrc or your shell config

export 
PATH=$PATH:/usr/local/condor/release/bin

https://www.doc.ic.ac.uk/condor/

Mainly interested in 2 commands:

● condor_submit [file], actually submits a job 
to condor using job description file

● condor_q monitors your active jobs

Note that all machines are connected to DoC so 
your home folder + bitbucket is available. Often, 
if it runs on a standard lab machine, it will run 
anywhere, except for GPU and other niche stuff.



Job description file

executable     = foo
universe       = vanilla
queue arguments from (
  15 2000
   30 2000
)

# request specific resources
request_GPUs = 1
request_memory = ...

# uname on some machines
universe = vanilla
executable = /bin/uname
arguments = -n -m -p
output = uname.$(Process).out
log = uname.log
queue 5

# run command for every file
universe = vanilla
notification = Complete # notifies after every job!
notify_user = <your-email>
executable = /usr/bin/wc
arguments = $(item)
output = $(item).out
log = file.log
queue matching files data/*.txt

http://research.cs.wisc.edu/htcondor/manual/v8.4/condor_submit.html#man-condor-submit

You can also queue single 
long running jobs which 
Condor will handle without 
annoying others!



A gentle touch SIGTERM

When someone logs onto the machine you are 
running Condor jobs on, what happens?

Condor tries to gracefully terminate your job and 
move it another available machine 
automatically!

All you have to do is gracefully terminate your 
job, you may want to save some checkpoint or 
state to recover from.

"""Example raising KeyboardInterrupt"""
import signal
import time

def f(signum, frame):
  print("Getting interrupted")
  raise KeyboardInterrupt
signal.signal(signal.SIGTERM, f)

try:
  for i in range(100):  # some long function
    print(i)
    time.sleep(i)
except KeyboardInterrupt:
  print("Terminating.") # Handle interrupt somehow



External Resources

There are other resources outside of DoC:

● High Performance Computing (HPC): 
Good for large simulations that can be 
parallelized, gives you large memory and 
hundreds of cores. Requires access via 
supervisor.

● Research Computing Service (RCS): 
Dedicated college wide group for 
computing stuff. Most services oriented 
around HPC.

More useful considerations include student 
packages offered by cloud providers:

● Microsoft Azure: Get free access using 
Dreamspark (search Imperial College 
Dreamspark), again good for servers etc.

● Amazon Web Services (AWS): Students 
get some credit to run servers (EC2) and 
store data (S3).



Feedback + Questions?
www.doc.ic.ac.uk/~nuric/fb

Office hours -> Tuesday mornings (this term) -> 558C
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Deep learning

TensorFlow

Lower level “tensor” manipulation library with 
some high level API. Use directly if working on 
deep learning architectures or bulk data 
processing. If not, it is a little messy and 
non-intuitive despite Python API (it has package 
globals, runner sessions etc)

Runs on CPU and GPGPU for faster processing. 
But it would depend on your model, ex RNNs 
might run faster on CPU.

Keras

Actually a deep learning library built on 
Tensorflow or Theano (you can pick). Designed 
to be intuitive and hides all scaffolding code 
needed. If your data shapes match, it is plug and 
play using Numpy data similar to scikit-learn.

It still gives access to TensorFlow to build 
custom functions but not as flexible as using 
the actual library.



But what is a tensor?

3 # a rank 0 tensor; a scalar with shape []

[1., 2., 3.] # a rank 1 tensor; a vector with shape [3]

[[1., 2., 3.], [4., 5., 6.]] # a rank 2 tensor; a matrix with shape [2, 3]

[[[1., 2., 3.]], [[7., 8., 9.]]] # a rank 3 tensor with shape [2, 1, 3]

Think n-dimensional array, what it represents depends on the application



import tensorflow as tf

# Model parameters

W = tf.Variable([.3], dtype=tf.float32)

b = tf.Variable([-.3], dtype=tf.float32)

# Model input and output

x = tf.placeholder(tf.float32)

linear_model = W*x + b

y = tf.placeholder(tf.float32)

# loss

loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares

# optimizer

optimizer = tf.train.GradientDescentOptimizer(0.01)

train = optimizer.minimize(loss)

Variables are trainable 
through automatic 

differentiation.

Placeholders are your 
inputs and outputs, the 

values you set



# training data

x_train = [1, 2, 3, 4]

y_train = [0, -1, -2, -3]

# training loop

init = tf.global_variables_initializer()

sess = tf.Session()

sess.run(init) # reset values to wrong

for i in range(1000):

  sess.run(train, {x: x_train, y: y_train})

# evaluate training accuracy

curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x: x_train, y: y_train})

print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))

Setup Session and start 
training what will adjust 

Variables



Training y = w*x + b with TensorFlow, the execution graph



Keras
Building complex networks

Well that’s enough of TensorFlow. 
Using the good bits we are 
interested in larger, more complex 
neural networks. Keras allows us to 
create modular networks with a 
cleaner API.



import numpy as np
from keras.models import Sequential
from keras.layers import Dense

model = Sequential()
model.add(Dense(1, activation='linear', input_dim=1))

model.compile(loss='mse',
              optimizer='sgd',
              metrics=['accuracy'])

x_train = np.array([1, 2, 3, 4])
y_train = np.array([0, -1, -2, -3])

model.fit(x_train, y_train, epochs=5, batch_size=1)

print(model.predict(np.array([5, 6]))

Dense layer implements 
Wx + b

Compile just sets what 
loss and training we want



Representation of a Dense layer.



Convolutional Neural Networks (CNNs)



Convolutional Neural Networks (CNNs)



model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu',
                 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

Convolution layers + Max 
Pooling

Final dense layer for 
P(X=x) output using 
sigmoid functionhttps://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py



Recursive Neural Networks (RNNs)



Long Short-Term Memory (LSTM)



model = Sequential()

model.add(LSTM(128, input_shape=(maxlen, len(chars))))

model.add(Dense(len(chars)))

model.add(Activation( 'softmax'))
LSTM layer applies the 
same LSTM unit over a 
time series (timesteps)

https://github.com/fchollet/keras/blob/master/examples/imdb_lstm.py

Surely it’s not that simple? Well there 
is always preparing the data into the 
format the neural network expects...



End to End memory networks



Captioning videos using CNN + RNN



Not so fast

● You need good data to train these 

models. Having 2 sets of MRI images will 
not give a magic results on cancer 
diagnosis.

● Getting the data ready is often more 

work than building the network. Ex, 
vectorising inputs, loading images etc.

● Easy to build large network but much 

harder to train. Don’t go crazy with 

extra layers to create a deeper network.

● Expect failure and frustration more often 
than not...



Tips

● Run your network with random weights, 

do you get random outputs? Or is 
it all 0s, 1s, check that.

● Try to overfit a single 
point. Does your network actually 

learn? If it cannot on a single data point 
something is wrong.

● Use fit_generator for large data that is 
streamed into the network like videos.

● A GPU might be slower for 

your network architecture test before 
crying for GPUs.



I need root to install packages -> no

Check if package already exists, if not install in 
bitbucket, recommend using virtualenv to isolate 
packages:

export 
PYTHONUSERBASE=/vol/bitbucket/$USER/pypi/

export 
PATH=$PATH:/vol/bitbucket/$USER/pypi/bin

pip3 install --user tensorflow[-gpu] keras 
...

● You can be clever and share installations 
by sharing bitbucket or home folders if you 
have similar requirements.

● Most cases just require you to install 
somewhere you have access and then tell 
the program where to find it.

● If you are uncertain, double check with 
CSG before giving up.



Monitoring
Take a tell don’t ask approach

● Code got stuck? Your loss 
function is NaN? Why isn’t this 
working after X epochs?

● Don’t be a victim, look after 
your jobs, or let your jobs alert 
you when it is important

● Check with commands like top, 
who, to see what is going on 
before you leave it overnight



Easy monitoring

Here is a one liner if you are using a script to 
send an email:

blah.sh && mail -s "Jobs done" 
$USER@imperial.ac.uk <<< "Foo 
finished running, wake up!"

Make sure it doesn’t turn into a spam machine 
though, instead there are better alternatives.

Use a webhook into a service like Slack or 
Discord. It is often as simple as a post request.

keras.callbacks.RemoteMonitor(root= 'discord_url' , 
path='', field='data')



Feedback + Questions?
www.doc.ic.ac.uk/~nuric/fb

Office hours -> Tuesday mornings (this term) -> 558C


